aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Utils/UnifyLoopExits.cpp
blob: 0b718ed6136ea2dd07a90a5d544a3698a947bf60 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// For each natural loop with multiple exit blocks, this pass creates a new
// block N such that all exiting blocks now branch to N, and then control flow
// is redistributed to all the original exit blocks.
//
// Limitation: This assumes that all terminators in the CFG are direct branches
//             (the "br" instruction). The presence of any other control flow
//             such as indirectbr, switch or callbr will cause an assert.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/UnifyLoopExits.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

#define DEBUG_TYPE "unify-loop-exits"

using namespace llvm;

namespace {
struct UnifyLoopExitsLegacyPass : public FunctionPass {
  static char ID;
  UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
    initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredID(LowerSwitchID);
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreservedID(LowerSwitchID);
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }

  bool runOnFunction(Function &F) override;
};
} // namespace

char UnifyLoopExitsLegacyPass::ID = 0;

FunctionPass *llvm::createUnifyLoopExitsPass() {
  return new UnifyLoopExitsLegacyPass();
}

INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
                      "Fixup each natural loop to have a single exit block",
                      false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
                    "Fixup each natural loop to have a single exit block",
                    false /* Only looks at CFG */, false /* Analysis Pass */)

// The current transform introduces new control flow paths which may break the
// SSA requirement that every def must dominate all its uses. For example,
// consider a value D defined inside the loop that is used by some instruction
// U outside the loop. It follows that D dominates U, since the original
// program has valid SSA form. After merging the exits, all paths from D to U
// now flow through the unified exit block. In addition, there may be other
// paths that do not pass through D, but now reach the unified exit
// block. Thus, D no longer dominates U.
//
// Restore the dominance by creating a phi for each such D at the new unified
// loop exit. But when doing this, ignore any uses U that are in the new unified
// loop exit, since those were introduced specially when the block was created.
//
// The use of SSAUpdater seems like overkill for this operation. The location
// for creating the new PHI is well-known, and also the set of incoming blocks
// to the new PHI.
static void restoreSSA(const DominatorTree &DT, const Loop *L,
                       const SetVector<BasicBlock *> &Incoming,
                       BasicBlock *LoopExitBlock) {
  using InstVector = SmallVector<Instruction *, 8>;
  using IIMap = MapVector<Instruction *, InstVector>;
  IIMap ExternalUsers;
  for (auto BB : L->blocks()) {
    for (auto &I : *BB) {
      for (auto &U : I.uses()) {
        auto UserInst = cast<Instruction>(U.getUser());
        auto UserBlock = UserInst->getParent();
        if (UserBlock == LoopExitBlock)
          continue;
        if (L->contains(UserBlock))
          continue;
        LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
                          << BB->getName() << ")"
                          << ": " << UserInst->getName() << "("
                          << UserBlock->getName() << ")"
                          << "\n");
        ExternalUsers[&I].push_back(UserInst);
      }
    }
  }

  for (auto II : ExternalUsers) {
    // For each Def used outside the loop, create NewPhi in
    // LoopExitBlock. NewPhi receives Def only along exiting blocks that
    // dominate it, while the remaining values are undefined since those paths
    // didn't exist in the original CFG.
    auto Def = II.first;
    LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
    auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
                                  Def->getName() + ".moved",
                                  LoopExitBlock->getTerminator());
    for (auto In : Incoming) {
      LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
      if (Def->getParent() == In || DT.dominates(Def, In)) {
        LLVM_DEBUG(dbgs() << "dominated\n");
        NewPhi->addIncoming(Def, In);
      } else {
        LLVM_DEBUG(dbgs() << "not dominated\n");
        NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
      }
    }

    LLVM_DEBUG(dbgs() << "external users:");
    for (auto U : II.second) {
      LLVM_DEBUG(dbgs() << " " << U->getName());
      U->replaceUsesOfWith(Def, NewPhi);
    }
    LLVM_DEBUG(dbgs() << "\n");
  }
}

static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
  // To unify the loop exits, we need a list of the exiting blocks as
  // well as exit blocks. The functions for locating these lists both
  // traverse the entire loop body. It is more efficient to first
  // locate the exiting blocks and then examine their successors to
  // locate the exit blocks.
  SetVector<BasicBlock *> ExitingBlocks;
  SetVector<BasicBlock *> Exits;

  // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
  SmallVector<BasicBlock *, 8> Temp;
  L->getExitingBlocks(Temp);
  for (auto BB : Temp) {
    ExitingBlocks.insert(BB);
    for (auto S : successors(BB)) {
      auto SL = LI.getLoopFor(S);
      // A successor is not an exit if it is directly or indirectly in the
      // current loop.
      if (SL == L || L->contains(SL))
        continue;
      Exits.insert(S);
    }
  }

  LLVM_DEBUG(
      dbgs() << "Found exit blocks:";
      for (auto Exit : Exits) {
        dbgs() << " " << Exit->getName();
      }
      dbgs() << "\n";

      dbgs() << "Found exiting blocks:";
      for (auto EB : ExitingBlocks) {
        dbgs() << " " << EB->getName();
      }
      dbgs() << "\n";);

  if (Exits.size() <= 1) {
    LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
    return false;
  }

  SmallVector<BasicBlock *, 8> GuardBlocks;
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
                                            Exits, "loop.exit");

  restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);

#if defined(EXPENSIVE_CHECKS)
  assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif // EXPENSIVE_CHECKS
  L->verifyLoop();

  // The guard blocks were created outside the loop, so they need to become
  // members of the parent loop.
  if (auto ParentLoop = L->getParentLoop()) {
    for (auto G : GuardBlocks) {
      ParentLoop->addBasicBlockToLoop(G, LI);
    }
    ParentLoop->verifyLoop();
  }

#if defined(EXPENSIVE_CHECKS)
  LI.verify(DT);
#endif // EXPENSIVE_CHECKS

  return true;
}

static bool runImpl(LoopInfo &LI, DominatorTree &DT) {

  bool Changed = false;
  auto Loops = LI.getLoopsInPreorder();
  for (auto L : Loops) {
    LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
                      << LI.getLoopDepth(L->getHeader()) << ")\n");
    Changed |= unifyLoopExits(DT, LI, L);
  }
  return Changed;
}

bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
  LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
                    << "\n");
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  return runImpl(LI, DT);
}

namespace llvm {

PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
                                          FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);

  if (!runImpl(LI, DT))
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<LoopAnalysis>();
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}
} // namespace llvm