1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
|
//===- SampleProfileInference.cpp - Adjust sample profiles in the IR ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a profile inference algorithm. Given an incomplete and
// possibly imprecise block counts, the algorithm reconstructs realistic block
// and edge counts that satisfy flow conservation rules, while minimally modify
// input block counts.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SampleProfileInference.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/Support/Debug.h"
#include <queue>
#include <set>
using namespace llvm;
#define DEBUG_TYPE "sample-profile-inference"
namespace {
/// A value indicating an infinite flow/capacity/weight of a block/edge.
/// Not using numeric_limits<int64_t>::max(), as the values can be summed up
/// during the execution.
static constexpr int64_t INF = ((int64_t)1) << 50;
/// The minimum-cost maximum flow algorithm.
///
/// The algorithm finds the maximum flow of minimum cost on a given (directed)
/// network using a modified version of the classical Moore-Bellman-Ford
/// approach. The algorithm applies a number of augmentation iterations in which
/// flow is sent along paths of positive capacity from the source to the sink.
/// The worst-case time complexity of the implementation is O(v(f)*m*n), where
/// where m is the number of edges, n is the number of vertices, and v(f) is the
/// value of the maximum flow. However, the observed running time on typical
/// instances is sub-quadratic, that is, o(n^2).
///
/// The input is a set of edges with specified costs and capacities, and a pair
/// of nodes (source and sink). The output is the flow along each edge of the
/// minimum total cost respecting the given edge capacities.
class MinCostMaxFlow {
public:
// Initialize algorithm's data structures for a network of a given size.
void initialize(uint64_t NodeCount, uint64_t SourceNode, uint64_t SinkNode) {
Source = SourceNode;
Target = SinkNode;
Nodes = std::vector<Node>(NodeCount);
Edges = std::vector<std::vector<Edge>>(NodeCount, std::vector<Edge>());
}
// Run the algorithm.
int64_t run() {
// Find an augmenting path and update the flow along the path
size_t AugmentationIters = 0;
while (findAugmentingPath()) {
augmentFlowAlongPath();
AugmentationIters++;
}
// Compute the total flow and its cost
int64_t TotalCost = 0;
int64_t TotalFlow = 0;
for (uint64_t Src = 0; Src < Nodes.size(); Src++) {
for (auto &Edge : Edges[Src]) {
if (Edge.Flow > 0) {
TotalCost += Edge.Cost * Edge.Flow;
if (Src == Source)
TotalFlow += Edge.Flow;
}
}
}
LLVM_DEBUG(dbgs() << "Completed profi after " << AugmentationIters
<< " iterations with " << TotalFlow << " total flow"
<< " of " << TotalCost << " cost\n");
(void)TotalFlow;
return TotalCost;
}
/// Adding an edge to the network with a specified capacity and a cost.
/// Multiple edges between a pair of nodes are allowed but self-edges
/// are not supported.
void addEdge(uint64_t Src, uint64_t Dst, int64_t Capacity, int64_t Cost) {
assert(Capacity > 0 && "adding an edge of zero capacity");
assert(Src != Dst && "loop edge are not supported");
Edge SrcEdge;
SrcEdge.Dst = Dst;
SrcEdge.Cost = Cost;
SrcEdge.Capacity = Capacity;
SrcEdge.Flow = 0;
SrcEdge.RevEdgeIndex = Edges[Dst].size();
Edge DstEdge;
DstEdge.Dst = Src;
DstEdge.Cost = -Cost;
DstEdge.Capacity = 0;
DstEdge.Flow = 0;
DstEdge.RevEdgeIndex = Edges[Src].size();
Edges[Src].push_back(SrcEdge);
Edges[Dst].push_back(DstEdge);
}
/// Adding an edge to the network of infinite capacity and a given cost.
void addEdge(uint64_t Src, uint64_t Dst, int64_t Cost) {
addEdge(Src, Dst, INF, Cost);
}
/// Get the total flow from a given source node.
/// Returns a list of pairs (target node, amount of flow to the target).
const std::vector<std::pair<uint64_t, int64_t>> getFlow(uint64_t Src) const {
std::vector<std::pair<uint64_t, int64_t>> Flow;
for (auto &Edge : Edges[Src]) {
if (Edge.Flow > 0)
Flow.push_back(std::make_pair(Edge.Dst, Edge.Flow));
}
return Flow;
}
/// Get the total flow between a pair of nodes.
int64_t getFlow(uint64_t Src, uint64_t Dst) const {
int64_t Flow = 0;
for (auto &Edge : Edges[Src]) {
if (Edge.Dst == Dst) {
Flow += Edge.Flow;
}
}
return Flow;
}
/// A cost of increasing a block's count by one.
static constexpr int64_t AuxCostInc = 10;
/// A cost of decreasing a block's count by one.
static constexpr int64_t AuxCostDec = 20;
/// A cost of increasing a count of zero-weight block by one.
static constexpr int64_t AuxCostIncZero = 11;
/// A cost of increasing the entry block's count by one.
static constexpr int64_t AuxCostIncEntry = 40;
/// A cost of decreasing the entry block's count by one.
static constexpr int64_t AuxCostDecEntry = 10;
/// A cost of taking an unlikely jump.
static constexpr int64_t AuxCostUnlikely = ((int64_t)1) << 30;
private:
/// Check for existence of an augmenting path with a positive capacity.
bool findAugmentingPath() {
// Initialize data structures
for (auto &Node : Nodes) {
Node.Distance = INF;
Node.ParentNode = uint64_t(-1);
Node.ParentEdgeIndex = uint64_t(-1);
Node.Taken = false;
}
std::queue<uint64_t> Queue;
Queue.push(Source);
Nodes[Source].Distance = 0;
Nodes[Source].Taken = true;
while (!Queue.empty()) {
uint64_t Src = Queue.front();
Queue.pop();
Nodes[Src].Taken = false;
// Although the residual network contains edges with negative costs
// (in particular, backward edges), it can be shown that there are no
// negative-weight cycles and the following two invariants are maintained:
// (i) Dist[Source, V] >= 0 and (ii) Dist[V, Target] >= 0 for all nodes V,
// where Dist is the length of the shortest path between two nodes. This
// allows to prune the search-space of the path-finding algorithm using
// the following early-stop criteria:
// -- If we find a path with zero-distance from Source to Target, stop the
// search, as the path is the shortest since Dist[Source, Target] >= 0;
// -- If we have Dist[Source, V] > Dist[Source, Target], then do not
// process node V, as it is guaranteed _not_ to be on a shortest path
// from Source to Target; it follows from inequalities
// Dist[Source, Target] >= Dist[Source, V] + Dist[V, Target]
// >= Dist[Source, V]
if (Nodes[Target].Distance == 0)
break;
if (Nodes[Src].Distance > Nodes[Target].Distance)
continue;
// Process adjacent edges
for (uint64_t EdgeIdx = 0; EdgeIdx < Edges[Src].size(); EdgeIdx++) {
auto &Edge = Edges[Src][EdgeIdx];
if (Edge.Flow < Edge.Capacity) {
uint64_t Dst = Edge.Dst;
int64_t NewDistance = Nodes[Src].Distance + Edge.Cost;
if (Nodes[Dst].Distance > NewDistance) {
// Update the distance and the parent node/edge
Nodes[Dst].Distance = NewDistance;
Nodes[Dst].ParentNode = Src;
Nodes[Dst].ParentEdgeIndex = EdgeIdx;
// Add the node to the queue, if it is not there yet
if (!Nodes[Dst].Taken) {
Queue.push(Dst);
Nodes[Dst].Taken = true;
}
}
}
}
}
return Nodes[Target].Distance != INF;
}
/// Update the current flow along the augmenting path.
void augmentFlowAlongPath() {
// Find path capacity
int64_t PathCapacity = INF;
uint64_t Now = Target;
while (Now != Source) {
uint64_t Pred = Nodes[Now].ParentNode;
auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex];
PathCapacity = std::min(PathCapacity, Edge.Capacity - Edge.Flow);
Now = Pred;
}
assert(PathCapacity > 0 && "found an incorrect augmenting path");
// Update the flow along the path
Now = Target;
while (Now != Source) {
uint64_t Pred = Nodes[Now].ParentNode;
auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex];
auto &RevEdge = Edges[Now][Edge.RevEdgeIndex];
Edge.Flow += PathCapacity;
RevEdge.Flow -= PathCapacity;
Now = Pred;
}
}
/// A node in a flow network.
struct Node {
/// The cost of the cheapest path from the source to the current node.
int64_t Distance;
/// The node preceding the current one in the path.
uint64_t ParentNode;
/// The index of the edge between ParentNode and the current node.
uint64_t ParentEdgeIndex;
/// An indicator of whether the current node is in a queue.
bool Taken;
};
/// An edge in a flow network.
struct Edge {
/// The cost of the edge.
int64_t Cost;
/// The capacity of the edge.
int64_t Capacity;
/// The current flow on the edge.
int64_t Flow;
/// The destination node of the edge.
uint64_t Dst;
/// The index of the reverse edge between Dst and the current node.
uint64_t RevEdgeIndex;
};
/// The set of network nodes.
std::vector<Node> Nodes;
/// The set of network edges.
std::vector<std::vector<Edge>> Edges;
/// Source node of the flow.
uint64_t Source;
/// Target (sink) node of the flow.
uint64_t Target;
};
/// A post-processing adjustment of control flow. It applies two steps by
/// rerouting some flow and making it more realistic:
///
/// - First, it removes all isolated components ("islands") with a positive flow
/// that are unreachable from the entry block. For every such component, we
/// find the shortest from the entry to an exit passing through the component,
/// and increase the flow by one unit along the path.
///
/// - Second, it identifies all "unknown subgraphs" consisting of basic blocks
/// with no sampled counts. Then it rebalnces the flow that goes through such
/// a subgraph so that each branch is taken with probability 50%.
/// An unknown subgraph is such that for every two nodes u and v:
/// - u dominates v and u is not unknown;
/// - v post-dominates u; and
/// - all inner-nodes of all (u,v)-paths are unknown.
///
class FlowAdjuster {
public:
FlowAdjuster(FlowFunction &Func) : Func(Func) {
assert(Func.Blocks[Func.Entry].isEntry() &&
"incorrect index of the entry block");
}
// Run the post-processing
void run() {
/// Adjust the flow to get rid of isolated components.
joinIsolatedComponents();
/// Rebalance the flow inside unknown subgraphs.
rebalanceUnknownSubgraphs();
}
private:
void joinIsolatedComponents() {
// Find blocks that are reachable from the source
auto Visited = BitVector(NumBlocks(), false);
findReachable(Func.Entry, Visited);
// Iterate over all non-reachable blocks and adjust their weights
for (uint64_t I = 0; I < NumBlocks(); I++) {
auto &Block = Func.Blocks[I];
if (Block.Flow > 0 && !Visited[I]) {
// Find a path from the entry to an exit passing through the block I
auto Path = findShortestPath(I);
// Increase the flow along the path
assert(Path.size() > 0 && Path[0]->Source == Func.Entry &&
"incorrectly computed path adjusting control flow");
Func.Blocks[Func.Entry].Flow += 1;
for (auto &Jump : Path) {
Jump->Flow += 1;
Func.Blocks[Jump->Target].Flow += 1;
// Update reachability
findReachable(Jump->Target, Visited);
}
}
}
}
/// Run BFS from a given block along the jumps with a positive flow and mark
/// all reachable blocks.
void findReachable(uint64_t Src, BitVector &Visited) {
if (Visited[Src])
return;
std::queue<uint64_t> Queue;
Queue.push(Src);
Visited[Src] = true;
while (!Queue.empty()) {
Src = Queue.front();
Queue.pop();
for (auto Jump : Func.Blocks[Src].SuccJumps) {
uint64_t Dst = Jump->Target;
if (Jump->Flow > 0 && !Visited[Dst]) {
Queue.push(Dst);
Visited[Dst] = true;
}
}
}
}
/// Find the shortest path from the entry block to an exit block passing
/// through a given block.
std::vector<FlowJump *> findShortestPath(uint64_t BlockIdx) {
// A path from the entry block to BlockIdx
auto ForwardPath = findShortestPath(Func.Entry, BlockIdx);
// A path from BlockIdx to an exit block
auto BackwardPath = findShortestPath(BlockIdx, AnyExitBlock);
// Concatenate the two paths
std::vector<FlowJump *> Result;
Result.insert(Result.end(), ForwardPath.begin(), ForwardPath.end());
Result.insert(Result.end(), BackwardPath.begin(), BackwardPath.end());
return Result;
}
/// Apply the Dijkstra algorithm to find the shortest path from a given
/// Source to a given Target block.
/// If Target == -1, then the path ends at an exit block.
std::vector<FlowJump *> findShortestPath(uint64_t Source, uint64_t Target) {
// Quit early, if possible
if (Source == Target)
return std::vector<FlowJump *>();
if (Func.Blocks[Source].isExit() && Target == AnyExitBlock)
return std::vector<FlowJump *>();
// Initialize data structures
auto Distance = std::vector<int64_t>(NumBlocks(), INF);
auto Parent = std::vector<FlowJump *>(NumBlocks(), nullptr);
Distance[Source] = 0;
std::set<std::pair<uint64_t, uint64_t>> Queue;
Queue.insert(std::make_pair(Distance[Source], Source));
// Run the Dijkstra algorithm
while (!Queue.empty()) {
uint64_t Src = Queue.begin()->second;
Queue.erase(Queue.begin());
// If we found a solution, quit early
if (Src == Target ||
(Func.Blocks[Src].isExit() && Target == AnyExitBlock))
break;
for (auto Jump : Func.Blocks[Src].SuccJumps) {
uint64_t Dst = Jump->Target;
int64_t JumpDist = jumpDistance(Jump);
if (Distance[Dst] > Distance[Src] + JumpDist) {
Queue.erase(std::make_pair(Distance[Dst], Dst));
Distance[Dst] = Distance[Src] + JumpDist;
Parent[Dst] = Jump;
Queue.insert(std::make_pair(Distance[Dst], Dst));
}
}
}
// If Target is not provided, find the closest exit block
if (Target == AnyExitBlock) {
for (uint64_t I = 0; I < NumBlocks(); I++) {
if (Func.Blocks[I].isExit() && Parent[I] != nullptr) {
if (Target == AnyExitBlock || Distance[Target] > Distance[I]) {
Target = I;
}
}
}
}
assert(Parent[Target] != nullptr && "a path does not exist");
// Extract the constructed path
std::vector<FlowJump *> Result;
uint64_t Now = Target;
while (Now != Source) {
assert(Now == Parent[Now]->Target && "incorrect parent jump");
Result.push_back(Parent[Now]);
Now = Parent[Now]->Source;
}
// Reverse the path, since it is extracted from Target to Source
std::reverse(Result.begin(), Result.end());
return Result;
}
/// A distance of a path for a given jump.
/// In order to incite the path to use blocks/jumps with large positive flow,
/// and avoid changing branch probability of outgoing edges drastically,
/// set the distance as follows:
/// if Jump.Flow > 0, then distance = max(100 - Jump->Flow, 0)
/// if Block.Weight > 0, then distance = 1
/// otherwise distance >> 1
int64_t jumpDistance(FlowJump *Jump) const {
int64_t BaseDistance = 100;
if (Jump->IsUnlikely)
return MinCostMaxFlow::AuxCostUnlikely;
if (Jump->Flow > 0)
return std::max(BaseDistance - (int64_t)Jump->Flow, (int64_t)0);
if (Func.Blocks[Jump->Target].Weight > 0)
return BaseDistance;
return BaseDistance * (NumBlocks() + 1);
};
uint64_t NumBlocks() const { return Func.Blocks.size(); }
/// Rebalance unknown subgraphs so that the flow is split evenly across the
/// outgoing branches of every block of the subgraph. The method iterates over
/// blocks with known weight and identifies unknown subgraphs rooted at the
/// blocks. Then it verifies if flow rebalancing is feasible and applies it.
void rebalanceUnknownSubgraphs() {
// Try to find unknown subgraphs from each block
for (uint64_t I = 0; I < Func.Blocks.size(); I++) {
auto SrcBlock = &Func.Blocks[I];
// Verify if rebalancing rooted at SrcBlock is feasible
if (!canRebalanceAtRoot(SrcBlock))
continue;
// Find an unknown subgraphs starting at SrcBlock. Along the way,
// fill in known destinations and intermediate unknown blocks.
std::vector<FlowBlock *> UnknownBlocks;
std::vector<FlowBlock *> KnownDstBlocks;
findUnknownSubgraph(SrcBlock, KnownDstBlocks, UnknownBlocks);
// Verify if rebalancing of the subgraph is feasible. If the search is
// successful, find the unique destination block (which can be null)
FlowBlock *DstBlock = nullptr;
if (!canRebalanceSubgraph(SrcBlock, KnownDstBlocks, UnknownBlocks,
DstBlock))
continue;
// We cannot rebalance subgraphs containing cycles among unknown blocks
if (!isAcyclicSubgraph(SrcBlock, DstBlock, UnknownBlocks))
continue;
// Rebalance the flow
rebalanceUnknownSubgraph(SrcBlock, DstBlock, UnknownBlocks);
}
}
/// Verify if rebalancing rooted at a given block is possible.
bool canRebalanceAtRoot(const FlowBlock *SrcBlock) {
// Do not attempt to find unknown subgraphs from an unknown or a
// zero-flow block
if (SrcBlock->UnknownWeight || SrcBlock->Flow == 0)
return false;
// Do not attempt to process subgraphs from a block w/o unknown sucessors
bool HasUnknownSuccs = false;
for (auto Jump : SrcBlock->SuccJumps) {
if (Func.Blocks[Jump->Target].UnknownWeight) {
HasUnknownSuccs = true;
break;
}
}
if (!HasUnknownSuccs)
return false;
return true;
}
/// Find an unknown subgraph starting at block SrcBlock. The method sets
/// identified destinations, KnownDstBlocks, and intermediate UnknownBlocks.
void findUnknownSubgraph(const FlowBlock *SrcBlock,
std::vector<FlowBlock *> &KnownDstBlocks,
std::vector<FlowBlock *> &UnknownBlocks) {
// Run BFS from SrcBlock and make sure all paths are going through unknown
// blocks and end at a non-unknown DstBlock
auto Visited = BitVector(NumBlocks(), false);
std::queue<uint64_t> Queue;
Queue.push(SrcBlock->Index);
Visited[SrcBlock->Index] = true;
while (!Queue.empty()) {
auto &Block = Func.Blocks[Queue.front()];
Queue.pop();
// Process blocks reachable from Block
for (auto Jump : Block.SuccJumps) {
// If Jump can be ignored, skip it
if (ignoreJump(SrcBlock, nullptr, Jump))
continue;
uint64_t Dst = Jump->Target;
// If Dst has been visited, skip Jump
if (Visited[Dst])
continue;
// Process block Dst
Visited[Dst] = true;
if (!Func.Blocks[Dst].UnknownWeight) {
KnownDstBlocks.push_back(&Func.Blocks[Dst]);
} else {
Queue.push(Dst);
UnknownBlocks.push_back(&Func.Blocks[Dst]);
}
}
}
}
/// Verify if rebalancing of the subgraph is feasible. If the checks are
/// successful, set the unique destination block, DstBlock (can be null).
bool canRebalanceSubgraph(const FlowBlock *SrcBlock,
const std::vector<FlowBlock *> &KnownDstBlocks,
const std::vector<FlowBlock *> &UnknownBlocks,
FlowBlock *&DstBlock) {
// If the list of unknown blocks is empty, we don't need rebalancing
if (UnknownBlocks.empty())
return false;
// If there are multiple known sinks, we can't rebalance
if (KnownDstBlocks.size() > 1)
return false;
DstBlock = KnownDstBlocks.empty() ? nullptr : KnownDstBlocks.front();
// Verify sinks of the subgraph
for (auto Block : UnknownBlocks) {
if (Block->SuccJumps.empty()) {
// If there are multiple (known and unknown) sinks, we can't rebalance
if (DstBlock != nullptr)
return false;
continue;
}
size_t NumIgnoredJumps = 0;
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
NumIgnoredJumps++;
}
// If there is a non-sink block in UnknownBlocks with all jumps ignored,
// then we can't rebalance
if (NumIgnoredJumps == Block->SuccJumps.size())
return false;
}
return true;
}
/// Decide whether the Jump is ignored while processing an unknown subgraphs
/// rooted at basic block SrcBlock with the destination block, DstBlock.
bool ignoreJump(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
const FlowJump *Jump) {
// Ignore unlikely jumps with zero flow
if (Jump->IsUnlikely && Jump->Flow == 0)
return true;
auto JumpSource = &Func.Blocks[Jump->Source];
auto JumpTarget = &Func.Blocks[Jump->Target];
// Do not ignore jumps coming into DstBlock
if (DstBlock != nullptr && JumpTarget == DstBlock)
return false;
// Ignore jumps out of SrcBlock to known blocks
if (!JumpTarget->UnknownWeight && JumpSource == SrcBlock)
return true;
// Ignore jumps to known blocks with zero flow
if (!JumpTarget->UnknownWeight && JumpTarget->Flow == 0)
return true;
return false;
}
/// Verify if the given unknown subgraph is acyclic, and if yes, reorder
/// UnknownBlocks in the topological order (so that all jumps are "forward").
bool isAcyclicSubgraph(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
std::vector<FlowBlock *> &UnknownBlocks) {
// Extract local in-degrees in the considered subgraph
auto LocalInDegree = std::vector<uint64_t>(NumBlocks(), 0);
auto fillInDegree = [&](const FlowBlock *Block) {
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
LocalInDegree[Jump->Target]++;
}
};
fillInDegree(SrcBlock);
for (auto Block : UnknownBlocks) {
fillInDegree(Block);
}
// A loop containing SrcBlock
if (LocalInDegree[SrcBlock->Index] > 0)
return false;
std::vector<FlowBlock *> AcyclicOrder;
std::queue<uint64_t> Queue;
Queue.push(SrcBlock->Index);
while (!Queue.empty()) {
FlowBlock *Block = &Func.Blocks[Queue.front()];
Queue.pop();
// Stop propagation once we reach DstBlock, if any
if (DstBlock != nullptr && Block == DstBlock)
break;
// Keep an acyclic order of unknown blocks
if (Block->UnknownWeight && Block != SrcBlock)
AcyclicOrder.push_back(Block);
// Add to the queue all successors with zero local in-degree
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
uint64_t Dst = Jump->Target;
LocalInDegree[Dst]--;
if (LocalInDegree[Dst] == 0) {
Queue.push(Dst);
}
}
}
// If there is a cycle in the subgraph, AcyclicOrder contains only a subset
// of all blocks
if (UnknownBlocks.size() != AcyclicOrder.size())
return false;
UnknownBlocks = AcyclicOrder;
return true;
}
/// Rebalance a given subgraph rooted at SrcBlock, ending at DstBlock and
/// having UnknownBlocks intermediate blocks.
void rebalanceUnknownSubgraph(const FlowBlock *SrcBlock,
const FlowBlock *DstBlock,
const std::vector<FlowBlock *> &UnknownBlocks) {
assert(SrcBlock->Flow > 0 && "zero-flow block in unknown subgraph");
// Ditribute flow from the source block
uint64_t BlockFlow = 0;
// SrcBlock's flow is the sum of outgoing flows along non-ignored jumps
for (auto Jump : SrcBlock->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
BlockFlow += Jump->Flow;
}
rebalanceBlock(SrcBlock, DstBlock, SrcBlock, BlockFlow);
// Ditribute flow from the remaining blocks
for (auto Block : UnknownBlocks) {
assert(Block->UnknownWeight && "incorrect unknown subgraph");
uint64_t BlockFlow = 0;
// Block's flow is the sum of incoming flows
for (auto Jump : Block->PredJumps) {
BlockFlow += Jump->Flow;
}
Block->Flow = BlockFlow;
rebalanceBlock(SrcBlock, DstBlock, Block, BlockFlow);
}
}
/// Redistribute flow for a block in a subgraph rooted at SrcBlock,
/// and ending at DstBlock.
void rebalanceBlock(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
const FlowBlock *Block, uint64_t BlockFlow) {
// Process all successor jumps and update corresponding flow values
size_t BlockDegree = 0;
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
BlockDegree++;
}
// If all successor jumps of the block are ignored, skip it
if (DstBlock == nullptr && BlockDegree == 0)
return;
assert(BlockDegree > 0 && "all outgoing jumps are ignored");
// Each of the Block's successors gets the following amount of flow.
// Rounding the value up so that all flow is propagated
uint64_t SuccFlow = (BlockFlow + BlockDegree - 1) / BlockDegree;
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
uint64_t Flow = std::min(SuccFlow, BlockFlow);
Jump->Flow = Flow;
BlockFlow -= Flow;
}
assert(BlockFlow == 0 && "not all flow is propagated");
}
/// A constant indicating an arbitrary exit block of a function.
static constexpr uint64_t AnyExitBlock = uint64_t(-1);
/// The function.
FlowFunction &Func;
};
/// Initializing flow network for a given function.
///
/// Every block is split into three nodes that are responsible for (i) an
/// incoming flow, (ii) an outgoing flow, and (iii) penalizing an increase or
/// reduction of the block weight.
void initializeNetwork(MinCostMaxFlow &Network, FlowFunction &Func) {
uint64_t NumBlocks = Func.Blocks.size();
assert(NumBlocks > 1 && "Too few blocks in a function");
LLVM_DEBUG(dbgs() << "Initializing profi for " << NumBlocks << " blocks\n");
// Pre-process data: make sure the entry weight is at least 1
if (Func.Blocks[Func.Entry].Weight == 0) {
Func.Blocks[Func.Entry].Weight = 1;
}
// Introducing dummy source/sink pairs to allow flow circulation.
// The nodes corresponding to blocks of Func have indicies in the range
// [0..3 * NumBlocks); the dummy nodes are indexed by the next four values.
uint64_t S = 3 * NumBlocks;
uint64_t T = S + 1;
uint64_t S1 = S + 2;
uint64_t T1 = S + 3;
Network.initialize(3 * NumBlocks + 4, S1, T1);
// Create three nodes for every block of the function
for (uint64_t B = 0; B < NumBlocks; B++) {
auto &Block = Func.Blocks[B];
assert((!Block.UnknownWeight || Block.Weight == 0 || Block.isEntry()) &&
"non-zero weight of a block w/o weight except for an entry");
// Split every block into two nodes
uint64_t Bin = 3 * B;
uint64_t Bout = 3 * B + 1;
uint64_t Baux = 3 * B + 2;
if (Block.Weight > 0) {
Network.addEdge(S1, Bout, Block.Weight, 0);
Network.addEdge(Bin, T1, Block.Weight, 0);
}
// Edges from S and to T
assert((!Block.isEntry() || !Block.isExit()) &&
"a block cannot be an entry and an exit");
if (Block.isEntry()) {
Network.addEdge(S, Bin, 0);
} else if (Block.isExit()) {
Network.addEdge(Bout, T, 0);
}
// An auxiliary node to allow increase/reduction of block counts:
// We assume that decreasing block counts is more expensive than increasing,
// and thus, setting separate costs here. In the future we may want to tune
// the relative costs so as to maximize the quality of generated profiles.
int64_t AuxCostInc = MinCostMaxFlow::AuxCostInc;
int64_t AuxCostDec = MinCostMaxFlow::AuxCostDec;
if (Block.UnknownWeight) {
// Do not penalize changing weights of blocks w/o known profile count
AuxCostInc = 0;
AuxCostDec = 0;
} else {
// Increasing the count for "cold" blocks with zero initial count is more
// expensive than for "hot" ones
if (Block.Weight == 0) {
AuxCostInc = MinCostMaxFlow::AuxCostIncZero;
}
// Modifying the count of the entry block is expensive
if (Block.isEntry()) {
AuxCostInc = MinCostMaxFlow::AuxCostIncEntry;
AuxCostDec = MinCostMaxFlow::AuxCostDecEntry;
}
}
// For blocks with self-edges, do not penalize a reduction of the count,
// as all of the increase can be attributed to the self-edge
if (Block.HasSelfEdge) {
AuxCostDec = 0;
}
Network.addEdge(Bin, Baux, AuxCostInc);
Network.addEdge(Baux, Bout, AuxCostInc);
if (Block.Weight > 0) {
Network.addEdge(Bout, Baux, AuxCostDec);
Network.addEdge(Baux, Bin, AuxCostDec);
}
}
// Creating edges for every jump
for (auto &Jump : Func.Jumps) {
uint64_t Src = Jump.Source;
uint64_t Dst = Jump.Target;
if (Src != Dst) {
uint64_t SrcOut = 3 * Src + 1;
uint64_t DstIn = 3 * Dst;
uint64_t Cost = Jump.IsUnlikely ? MinCostMaxFlow::AuxCostUnlikely : 0;
Network.addEdge(SrcOut, DstIn, Cost);
}
}
// Make sure we have a valid flow circulation
Network.addEdge(T, S, 0);
}
/// Extract resulting block and edge counts from the flow network.
void extractWeights(MinCostMaxFlow &Network, FlowFunction &Func) {
uint64_t NumBlocks = Func.Blocks.size();
// Extract resulting block counts
for (uint64_t Src = 0; Src < NumBlocks; Src++) {
auto &Block = Func.Blocks[Src];
uint64_t SrcOut = 3 * Src + 1;
int64_t Flow = 0;
for (auto &Adj : Network.getFlow(SrcOut)) {
uint64_t DstIn = Adj.first;
int64_t DstFlow = Adj.second;
bool IsAuxNode = (DstIn < 3 * NumBlocks && DstIn % 3 == 2);
if (!IsAuxNode || Block.HasSelfEdge) {
Flow += DstFlow;
}
}
Block.Flow = Flow;
assert(Flow >= 0 && "negative block flow");
}
// Extract resulting jump counts
for (auto &Jump : Func.Jumps) {
uint64_t Src = Jump.Source;
uint64_t Dst = Jump.Target;
int64_t Flow = 0;
if (Src != Dst) {
uint64_t SrcOut = 3 * Src + 1;
uint64_t DstIn = 3 * Dst;
Flow = Network.getFlow(SrcOut, DstIn);
} else {
uint64_t SrcOut = 3 * Src + 1;
uint64_t SrcAux = 3 * Src + 2;
int64_t AuxFlow = Network.getFlow(SrcOut, SrcAux);
if (AuxFlow > 0)
Flow = AuxFlow;
}
Jump.Flow = Flow;
assert(Flow >= 0 && "negative jump flow");
}
}
#ifndef NDEBUG
/// Verify that the computed flow values satisfy flow conservation rules
void verifyWeights(const FlowFunction &Func) {
const uint64_t NumBlocks = Func.Blocks.size();
auto InFlow = std::vector<uint64_t>(NumBlocks, 0);
auto OutFlow = std::vector<uint64_t>(NumBlocks, 0);
for (auto &Jump : Func.Jumps) {
InFlow[Jump.Target] += Jump.Flow;
OutFlow[Jump.Source] += Jump.Flow;
}
uint64_t TotalInFlow = 0;
uint64_t TotalOutFlow = 0;
for (uint64_t I = 0; I < NumBlocks; I++) {
auto &Block = Func.Blocks[I];
if (Block.isEntry()) {
TotalInFlow += Block.Flow;
assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow");
} else if (Block.isExit()) {
TotalOutFlow += Block.Flow;
assert(Block.Flow == InFlow[I] && "incorrectly computed control flow");
} else {
assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow");
assert(Block.Flow == InFlow[I] && "incorrectly computed control flow");
}
}
assert(TotalInFlow == TotalOutFlow && "incorrectly computed control flow");
// Verify that there are no isolated flow components
// One could modify FlowFunction to hold edges indexed by the sources, which
// will avoid a creation of the object
auto PositiveFlowEdges = std::vector<std::vector<uint64_t>>(NumBlocks);
for (auto &Jump : Func.Jumps) {
if (Jump.Flow > 0) {
PositiveFlowEdges[Jump.Source].push_back(Jump.Target);
}
}
// Run BFS from the source along edges with positive flow
std::queue<uint64_t> Queue;
auto Visited = BitVector(NumBlocks, false);
Queue.push(Func.Entry);
Visited[Func.Entry] = true;
while (!Queue.empty()) {
uint64_t Src = Queue.front();
Queue.pop();
for (uint64_t Dst : PositiveFlowEdges[Src]) {
if (!Visited[Dst]) {
Queue.push(Dst);
Visited[Dst] = true;
}
}
}
// Verify that every block that has a positive flow is reached from the source
// along edges with a positive flow
for (uint64_t I = 0; I < NumBlocks; I++) {
auto &Block = Func.Blocks[I];
assert((Visited[I] || Block.Flow == 0) && "an isolated flow component");
}
}
#endif
} // end of anonymous namespace
/// Apply the profile inference algorithm for a given flow function
void llvm::applyFlowInference(FlowFunction &Func) {
// Create and apply an inference network model
auto InferenceNetwork = MinCostMaxFlow();
initializeNetwork(InferenceNetwork, Func);
InferenceNetwork.run();
// Extract flow values for every block and every edge
extractWeights(InferenceNetwork, Func);
// Post-processing adjustments to the flow
auto Adjuster = FlowAdjuster(Func);
Adjuster.run();
#ifndef NDEBUG
// Verify the result
verifyWeights(Func);
#endif
}
|