1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------===//
//
// This file implements the PredicateInfo class.
//
//===----------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Transforms/Utils.h"
#include <algorithm>
#define DEBUG_TYPE "predicateinfo"
using namespace llvm;
using namespace PatternMatch;
INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
"PredicateInfo Printer", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
"PredicateInfo Printer", false, false)
static cl::opt<bool> VerifyPredicateInfo(
"verify-predicateinfo", cl::init(false), cl::Hidden,
cl::desc("Verify PredicateInfo in legacy printer pass."));
DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
"Controls which variables are renamed with predicateinfo");
// Maximum number of conditions considered for renaming for each branch/assume.
// This limits renaming of deep and/or chains.
static const unsigned MaxCondsPerBranch = 8;
namespace {
// Given a predicate info that is a type of branching terminator, get the
// branching block.
const BasicBlock *getBranchBlock(const PredicateBase *PB) {
assert(isa<PredicateWithEdge>(PB) &&
"Only branches and switches should have PHIOnly defs that "
"require branch blocks.");
return cast<PredicateWithEdge>(PB)->From;
}
// Given a predicate info that is a type of branching terminator, get the
// branching terminator.
static Instruction *getBranchTerminator(const PredicateBase *PB) {
assert(isa<PredicateWithEdge>(PB) &&
"Not a predicate info type we know how to get a terminator from.");
return cast<PredicateWithEdge>(PB)->From->getTerminator();
}
// Given a predicate info that is a type of branching terminator, get the
// edge this predicate info represents
std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
assert(isa<PredicateWithEdge>(PB) &&
"Not a predicate info type we know how to get an edge from.");
const auto *PEdge = cast<PredicateWithEdge>(PB);
return std::make_pair(PEdge->From, PEdge->To);
}
}
namespace llvm {
enum LocalNum {
// Operations that must appear first in the block.
LN_First,
// Operations that are somewhere in the middle of the block, and are sorted on
// demand.
LN_Middle,
// Operations that must appear last in a block, like successor phi node uses.
LN_Last
};
// Associate global and local DFS info with defs and uses, so we can sort them
// into a global domination ordering.
struct ValueDFS {
int DFSIn = 0;
int DFSOut = 0;
unsigned int LocalNum = LN_Middle;
// Only one of Def or Use will be set.
Value *Def = nullptr;
Use *U = nullptr;
// Neither PInfo nor EdgeOnly participate in the ordering
PredicateBase *PInfo = nullptr;
bool EdgeOnly = false;
};
// Perform a strict weak ordering on instructions and arguments.
static bool valueComesBefore(const Value *A, const Value *B) {
auto *ArgA = dyn_cast_or_null<Argument>(A);
auto *ArgB = dyn_cast_or_null<Argument>(B);
if (ArgA && !ArgB)
return true;
if (ArgB && !ArgA)
return false;
if (ArgA && ArgB)
return ArgA->getArgNo() < ArgB->getArgNo();
return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
}
// This compares ValueDFS structures. Doing so allows us to walk the minimum
// number of instructions necessary to compute our def/use ordering.
struct ValueDFS_Compare {
DominatorTree &DT;
ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
bool operator()(const ValueDFS &A, const ValueDFS &B) const {
if (&A == &B)
return false;
// The only case we can't directly compare them is when they in the same
// block, and both have localnum == middle. In that case, we have to use
// comesbefore to see what the real ordering is, because they are in the
// same basic block.
assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
"Equal DFS-in numbers imply equal out numbers");
bool SameBlock = A.DFSIn == B.DFSIn;
// We want to put the def that will get used for a given set of phi uses,
// before those phi uses.
// So we sort by edge, then by def.
// Note that only phi nodes uses and defs can come last.
if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
return comparePHIRelated(A, B);
bool isADef = A.Def;
bool isBDef = B.Def;
if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
return std::tie(A.DFSIn, A.LocalNum, isADef) <
std::tie(B.DFSIn, B.LocalNum, isBDef);
return localComesBefore(A, B);
}
// For a phi use, or a non-materialized def, return the edge it represents.
std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
if (!VD.Def && VD.U) {
auto *PHI = cast<PHINode>(VD.U->getUser());
return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
}
// This is really a non-materialized def.
return ::getBlockEdge(VD.PInfo);
}
// For two phi related values, return the ordering.
bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
BasicBlock *ASrc, *ADest, *BSrc, *BDest;
std::tie(ASrc, ADest) = getBlockEdge(A);
std::tie(BSrc, BDest) = getBlockEdge(B);
#ifndef NDEBUG
// This function should only be used for values in the same BB, check that.
DomTreeNode *DomASrc = DT.getNode(ASrc);
DomTreeNode *DomBSrc = DT.getNode(BSrc);
assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
"DFS numbers for A should match the ones of the source block");
assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
"DFS numbers for B should match the ones of the source block");
assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
#endif
(void)ASrc;
(void)BSrc;
// Use DFS numbers to compare destination blocks, to guarantee a
// deterministic order.
DomTreeNode *DomADest = DT.getNode(ADest);
DomTreeNode *DomBDest = DT.getNode(BDest);
unsigned AIn = DomADest->getDFSNumIn();
unsigned BIn = DomBDest->getDFSNumIn();
bool isADef = A.Def;
bool isBDef = B.Def;
assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
"Def and U cannot be set at the same time");
// Now sort by edge destination and then defs before uses.
return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
}
// Get the definition of an instruction that occurs in the middle of a block.
Value *getMiddleDef(const ValueDFS &VD) const {
if (VD.Def)
return VD.Def;
// It's possible for the defs and uses to be null. For branches, the local
// numbering will say the placed predicaeinfos should go first (IE
// LN_beginning), so we won't be in this function. For assumes, we will end
// up here, beause we need to order the def we will place relative to the
// assume. So for the purpose of ordering, we pretend the def is right
// after the assume, because that is where we will insert the info.
if (!VD.U) {
assert(VD.PInfo &&
"No def, no use, and no predicateinfo should not occur");
assert(isa<PredicateAssume>(VD.PInfo) &&
"Middle of block should only occur for assumes");
return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
}
return nullptr;
}
// Return either the Def, if it's not null, or the user of the Use, if the def
// is null.
const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
if (Def)
return cast<Instruction>(Def);
return cast<Instruction>(U->getUser());
}
// This performs the necessary local basic block ordering checks to tell
// whether A comes before B, where both are in the same basic block.
bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
auto *ADef = getMiddleDef(A);
auto *BDef = getMiddleDef(B);
// See if we have real values or uses. If we have real values, we are
// guaranteed they are instructions or arguments. No matter what, we are
// guaranteed they are in the same block if they are instructions.
auto *ArgA = dyn_cast_or_null<Argument>(ADef);
auto *ArgB = dyn_cast_or_null<Argument>(BDef);
if (ArgA || ArgB)
return valueComesBefore(ArgA, ArgB);
auto *AInst = getDefOrUser(ADef, A.U);
auto *BInst = getDefOrUser(BDef, B.U);
return valueComesBefore(AInst, BInst);
}
};
class PredicateInfoBuilder {
// Used to store information about each value we might rename.
struct ValueInfo {
SmallVector<PredicateBase *, 4> Infos;
};
PredicateInfo &PI;
Function &F;
DominatorTree &DT;
AssumptionCache &AC;
// This stores info about each operand or comparison result we make copies
// of. The real ValueInfos start at index 1, index 0 is unused so that we
// can more easily detect invalid indexing.
SmallVector<ValueInfo, 32> ValueInfos;
// This gives the index into the ValueInfos array for a given Value. Because
// 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
// whether it returned a valid result.
DenseMap<Value *, unsigned int> ValueInfoNums;
// The set of edges along which we can only handle phi uses, due to critical
// edges.
DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
ValueInfo &getOrCreateValueInfo(Value *);
const ValueInfo &getValueInfo(Value *) const;
void processAssume(IntrinsicInst *, BasicBlock *,
SmallVectorImpl<Value *> &OpsToRename);
void processBranch(BranchInst *, BasicBlock *,
SmallVectorImpl<Value *> &OpsToRename);
void processSwitch(SwitchInst *, BasicBlock *,
SmallVectorImpl<Value *> &OpsToRename);
void renameUses(SmallVectorImpl<Value *> &OpsToRename);
void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
PredicateBase *PB);
typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
public:
PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
AssumptionCache &AC)
: PI(PI), F(F), DT(DT), AC(AC) {
// Push an empty operand info so that we can detect 0 as not finding one
ValueInfos.resize(1);
}
void buildPredicateInfo();
};
bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
const ValueDFS &VDUse) const {
if (Stack.empty())
return false;
// If it's a phi only use, make sure it's for this phi node edge, and that the
// use is in a phi node. If it's anything else, and the top of the stack is
// EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
// the defs they must go with so that we can know it's time to pop the stack
// when we hit the end of the phi uses for a given def.
if (Stack.back().EdgeOnly) {
if (!VDUse.U)
return false;
auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
if (!PHI)
return false;
// Check edge
BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
if (EdgePred != getBranchBlock(Stack.back().PInfo))
return false;
// Use dominates, which knows how to handle edge dominance.
return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
}
return (VDUse.DFSIn >= Stack.back().DFSIn &&
VDUse.DFSOut <= Stack.back().DFSOut);
}
void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
const ValueDFS &VD) {
while (!Stack.empty() && !stackIsInScope(Stack, VD))
Stack.pop_back();
}
// Convert the uses of Op into a vector of uses, associating global and local
// DFS info with each one.
void PredicateInfoBuilder::convertUsesToDFSOrdered(
Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
for (auto &U : Op->uses()) {
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
ValueDFS VD;
// Put the phi node uses in the incoming block.
BasicBlock *IBlock;
if (auto *PN = dyn_cast<PHINode>(I)) {
IBlock = PN->getIncomingBlock(U);
// Make phi node users appear last in the incoming block
// they are from.
VD.LocalNum = LN_Last;
} else {
// If it's not a phi node use, it is somewhere in the middle of the
// block.
IBlock = I->getParent();
VD.LocalNum = LN_Middle;
}
DomTreeNode *DomNode = DT.getNode(IBlock);
// It's possible our use is in an unreachable block. Skip it if so.
if (!DomNode)
continue;
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.U = &U;
DFSOrderedSet.push_back(VD);
}
}
}
bool shouldRename(Value *V) {
// Only want real values, not constants. Additionally, operands with one use
// are only being used in the comparison, which means they will not be useful
// for us to consider for predicateinfo.
return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
}
// Collect relevant operations from Comparison that we may want to insert copies
// for.
void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
auto *Op0 = Comparison->getOperand(0);
auto *Op1 = Comparison->getOperand(1);
if (Op0 == Op1)
return;
CmpOperands.push_back(Op0);
CmpOperands.push_back(Op1);
}
// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
Value *Op, PredicateBase *PB) {
auto &OperandInfo = getOrCreateValueInfo(Op);
if (OperandInfo.Infos.empty())
OpsToRename.push_back(Op);
PI.AllInfos.push_back(PB);
OperandInfo.Infos.push_back(PB);
}
// Process an assume instruction and place relevant operations we want to rename
// into OpsToRename.
void PredicateInfoBuilder::processAssume(
IntrinsicInst *II, BasicBlock *AssumeBB,
SmallVectorImpl<Value *> &OpsToRename) {
SmallVector<Value *, 4> Worklist;
SmallPtrSet<Value *, 4> Visited;
Worklist.push_back(II->getOperand(0));
while (!Worklist.empty()) {
Value *Cond = Worklist.pop_back_val();
if (!Visited.insert(Cond).second)
continue;
if (Visited.size() > MaxCondsPerBranch)
break;
Value *Op0, *Op1;
if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
Worklist.push_back(Op1);
Worklist.push_back(Op0);
}
SmallVector<Value *, 4> Values;
Values.push_back(Cond);
if (auto *Cmp = dyn_cast<CmpInst>(Cond))
collectCmpOps(Cmp, Values);
for (Value *V : Values) {
if (shouldRename(V)) {
auto *PA = new PredicateAssume(V, II, Cond);
addInfoFor(OpsToRename, V, PA);
}
}
}
}
// Process a block terminating branch, and place relevant operations to be
// renamed into OpsToRename.
void PredicateInfoBuilder::processBranch(
BranchInst *BI, BasicBlock *BranchBB,
SmallVectorImpl<Value *> &OpsToRename) {
BasicBlock *FirstBB = BI->getSuccessor(0);
BasicBlock *SecondBB = BI->getSuccessor(1);
for (BasicBlock *Succ : {FirstBB, SecondBB}) {
bool TakenEdge = Succ == FirstBB;
// Don't try to insert on a self-edge. This is mainly because we will
// eliminate during renaming anyway.
if (Succ == BranchBB)
continue;
SmallVector<Value *, 4> Worklist;
SmallPtrSet<Value *, 4> Visited;
Worklist.push_back(BI->getCondition());
while (!Worklist.empty()) {
Value *Cond = Worklist.pop_back_val();
if (!Visited.insert(Cond).second)
continue;
if (Visited.size() > MaxCondsPerBranch)
break;
Value *Op0, *Op1;
if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
: match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
Worklist.push_back(Op1);
Worklist.push_back(Op0);
}
SmallVector<Value *, 4> Values;
Values.push_back(Cond);
if (auto *Cmp = dyn_cast<CmpInst>(Cond))
collectCmpOps(Cmp, Values);
for (Value *V : Values) {
if (shouldRename(V)) {
PredicateBase *PB =
new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
addInfoFor(OpsToRename, V, PB);
if (!Succ->getSinglePredecessor())
EdgeUsesOnly.insert({BranchBB, Succ});
}
}
}
}
}
// Process a block terminating switch, and place relevant operations to be
// renamed into OpsToRename.
void PredicateInfoBuilder::processSwitch(
SwitchInst *SI, BasicBlock *BranchBB,
SmallVectorImpl<Value *> &OpsToRename) {
Value *Op = SI->getCondition();
if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
return;
// Remember how many outgoing edges there are to every successor.
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
BasicBlock *TargetBlock = SI->getSuccessor(i);
++SwitchEdges[TargetBlock];
}
// Now propagate info for each case value
for (auto C : SI->cases()) {
BasicBlock *TargetBlock = C.getCaseSuccessor();
if (SwitchEdges.lookup(TargetBlock) == 1) {
PredicateSwitch *PS = new PredicateSwitch(
Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
addInfoFor(OpsToRename, Op, PS);
if (!TargetBlock->getSinglePredecessor())
EdgeUsesOnly.insert({BranchBB, TargetBlock});
}
}
}
// Build predicate info for our function
void PredicateInfoBuilder::buildPredicateInfo() {
DT.updateDFSNumbers();
// Collect operands to rename from all conditional branch terminators, as well
// as assume statements.
SmallVector<Value *, 8> OpsToRename;
for (auto DTN : depth_first(DT.getRootNode())) {
BasicBlock *BranchBB = DTN->getBlock();
if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
if (!BI->isConditional())
continue;
// Can't insert conditional information if they all go to the same place.
if (BI->getSuccessor(0) == BI->getSuccessor(1))
continue;
processBranch(BI, BranchBB, OpsToRename);
} else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
processSwitch(SI, BranchBB, OpsToRename);
}
}
for (auto &Assume : AC.assumptions()) {
if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
if (DT.isReachableFromEntry(II->getParent()))
processAssume(II, II->getParent(), OpsToRename);
}
// Now rename all our operations.
renameUses(OpsToRename);
}
// Given the renaming stack, make all the operands currently on the stack real
// by inserting them into the IR. Return the last operation's value.
Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
ValueDFSStack &RenameStack,
Value *OrigOp) {
// Find the first thing we have to materialize
auto RevIter = RenameStack.rbegin();
for (; RevIter != RenameStack.rend(); ++RevIter)
if (RevIter->Def)
break;
size_t Start = RevIter - RenameStack.rbegin();
// The maximum number of things we should be trying to materialize at once
// right now is 4, depending on if we had an assume, a branch, and both used
// and of conditions.
for (auto RenameIter = RenameStack.end() - Start;
RenameIter != RenameStack.end(); ++RenameIter) {
auto *Op =
RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
ValueDFS &Result = *RenameIter;
auto *ValInfo = Result.PInfo;
ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
? OrigOp
: (RenameStack.end() - Start - 1)->Def;
// For edge predicates, we can just place the operand in the block before
// the terminator. For assume, we have to place it right before the assume
// to ensure we dominate all of our uses. Always insert right before the
// relevant instruction (terminator, assume), so that we insert in proper
// order in the case of multiple predicateinfo in the same block.
// The number of named values is used to detect if a new declaration was
// added. If so, that declaration is tracked so that it can be removed when
// the analysis is done. The corner case were a new declaration results in
// a name clash and the old name being renamed is not considered as that
// represents an invalid module.
if (isa<PredicateWithEdge>(ValInfo)) {
IRBuilder<> B(getBranchTerminator(ValInfo));
auto NumDecls = F.getParent()->getNumNamedValues();
Function *IF = Intrinsic::getDeclaration(
F.getParent(), Intrinsic::ssa_copy, Op->getType());
if (NumDecls != F.getParent()->getNumNamedValues())
PI.CreatedDeclarations.insert(IF);
CallInst *PIC =
B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
PI.PredicateMap.insert({PIC, ValInfo});
Result.Def = PIC;
} else {
auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
assert(PAssume &&
"Should not have gotten here without it being an assume");
// Insert the predicate directly after the assume. While it also holds
// directly before it, assume(i1 true) is not a useful fact.
IRBuilder<> B(PAssume->AssumeInst->getNextNode());
auto NumDecls = F.getParent()->getNumNamedValues();
Function *IF = Intrinsic::getDeclaration(
F.getParent(), Intrinsic::ssa_copy, Op->getType());
if (NumDecls != F.getParent()->getNumNamedValues())
PI.CreatedDeclarations.insert(IF);
CallInst *PIC = B.CreateCall(IF, Op);
PI.PredicateMap.insert({PIC, ValInfo});
Result.Def = PIC;
}
}
return RenameStack.back().Def;
}
// Instead of the standard SSA renaming algorithm, which is O(Number of
// instructions), and walks the entire dominator tree, we walk only the defs +
// uses. The standard SSA renaming algorithm does not really rely on the
// dominator tree except to order the stack push/pops of the renaming stacks, so
// that defs end up getting pushed before hitting the correct uses. This does
// not require the dominator tree, only the *order* of the dominator tree. The
// complete and correct ordering of the defs and uses, in dominator tree is
// contained in the DFS numbering of the dominator tree. So we sort the defs and
// uses into the DFS ordering, and then just use the renaming stack as per
// normal, pushing when we hit a def (which is a predicateinfo instruction),
// popping when we are out of the dfs scope for that def, and replacing any uses
// with top of stack if it exists. In order to handle liveness without
// propagating liveness info, we don't actually insert the predicateinfo
// instruction def until we see a use that it would dominate. Once we see such
// a use, we materialize the predicateinfo instruction in the right place and
// use it.
//
// TODO: Use this algorithm to perform fast single-variable renaming in
// promotememtoreg and memoryssa.
void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
ValueDFS_Compare Compare(DT);
// Compute liveness, and rename in O(uses) per Op.
for (auto *Op : OpsToRename) {
LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
unsigned Counter = 0;
SmallVector<ValueDFS, 16> OrderedUses;
const auto &ValueInfo = getValueInfo(Op);
// Insert the possible copies into the def/use list.
// They will become real copies if we find a real use for them, and never
// created otherwise.
for (auto &PossibleCopy : ValueInfo.Infos) {
ValueDFS VD;
// Determine where we are going to place the copy by the copy type.
// The predicate info for branches always come first, they will get
// materialized in the split block at the top of the block.
// The predicate info for assumes will be somewhere in the middle,
// it will get materialized in front of the assume.
if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
VD.LocalNum = LN_Middle;
DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
if (!DomNode)
continue;
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.PInfo = PossibleCopy;
OrderedUses.push_back(VD);
} else if (isa<PredicateWithEdge>(PossibleCopy)) {
// If we can only do phi uses, we treat it like it's in the branch
// block, and handle it specially. We know that it goes last, and only
// dominate phi uses.
auto BlockEdge = getBlockEdge(PossibleCopy);
if (EdgeUsesOnly.count(BlockEdge)) {
VD.LocalNum = LN_Last;
auto *DomNode = DT.getNode(BlockEdge.first);
if (DomNode) {
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.PInfo = PossibleCopy;
VD.EdgeOnly = true;
OrderedUses.push_back(VD);
}
} else {
// Otherwise, we are in the split block (even though we perform
// insertion in the branch block).
// Insert a possible copy at the split block and before the branch.
VD.LocalNum = LN_First;
auto *DomNode = DT.getNode(BlockEdge.second);
if (DomNode) {
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.PInfo = PossibleCopy;
OrderedUses.push_back(VD);
}
}
}
}
convertUsesToDFSOrdered(Op, OrderedUses);
// Here we require a stable sort because we do not bother to try to
// assign an order to the operands the uses represent. Thus, two
// uses in the same instruction do not have a strict sort order
// currently and will be considered equal. We could get rid of the
// stable sort by creating one if we wanted.
llvm::stable_sort(OrderedUses, Compare);
SmallVector<ValueDFS, 8> RenameStack;
// For each use, sorted into dfs order, push values and replaces uses with
// top of stack, which will represent the reaching def.
for (auto &VD : OrderedUses) {
// We currently do not materialize copy over copy, but we should decide if
// we want to.
bool PossibleCopy = VD.PInfo != nullptr;
if (RenameStack.empty()) {
LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
} else {
LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
<< RenameStack.back().DFSIn << ","
<< RenameStack.back().DFSOut << ")\n");
}
LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
<< VD.DFSOut << ")\n");
bool ShouldPush = (VD.Def || PossibleCopy);
bool OutOfScope = !stackIsInScope(RenameStack, VD);
if (OutOfScope || ShouldPush) {
// Sync to our current scope.
popStackUntilDFSScope(RenameStack, VD);
if (ShouldPush) {
RenameStack.push_back(VD);
}
}
// If we get to this point, and the stack is empty we must have a use
// with no renaming needed, just skip it.
if (RenameStack.empty())
continue;
// Skip values, only want to rename the uses
if (VD.Def || PossibleCopy)
continue;
if (!DebugCounter::shouldExecute(RenameCounter)) {
LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
continue;
}
ValueDFS &Result = RenameStack.back();
// If the possible copy dominates something, materialize our stack up to
// this point. This ensures every comparison that affects our operation
// ends up with predicateinfo.
if (!Result.Def)
Result.Def = materializeStack(Counter, RenameStack, Op);
LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
<< *VD.U->get() << " in " << *(VD.U->getUser())
<< "\n");
assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
"Predicateinfo def should have dominated this use");
VD.U->set(Result.Def);
}
}
}
PredicateInfoBuilder::ValueInfo &
PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
auto OIN = ValueInfoNums.find(Operand);
if (OIN == ValueInfoNums.end()) {
// This will grow it
ValueInfos.resize(ValueInfos.size() + 1);
// This will use the new size and give us a 0 based number of the info
auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
assert(InsertResult.second && "Value info number already existed?");
return ValueInfos[InsertResult.first->second];
}
return ValueInfos[OIN->second];
}
const PredicateInfoBuilder::ValueInfo &
PredicateInfoBuilder::getValueInfo(Value *Operand) const {
auto OINI = ValueInfoNums.lookup(Operand);
assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
assert(OINI < ValueInfos.size() &&
"Value Info Number greater than size of Value Info Table");
return ValueInfos[OINI];
}
PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
AssumptionCache &AC)
: F(F) {
PredicateInfoBuilder Builder(*this, F, DT, AC);
Builder.buildPredicateInfo();
}
// Remove all declarations we created . The PredicateInfo consumers are
// responsible for remove the ssa_copy calls created.
PredicateInfo::~PredicateInfo() {
// Collect function pointers in set first, as SmallSet uses a SmallVector
// internally and we have to remove the asserting value handles first.
SmallPtrSet<Function *, 20> FunctionPtrs;
for (auto &F : CreatedDeclarations)
FunctionPtrs.insert(&*F);
CreatedDeclarations.clear();
for (Function *F : FunctionPtrs) {
assert(F->user_begin() == F->user_end() &&
"PredicateInfo consumer did not remove all SSA copies.");
F->eraseFromParent();
}
}
Optional<PredicateConstraint> PredicateBase::getConstraint() const {
switch (Type) {
case PT_Assume:
case PT_Branch: {
bool TrueEdge = true;
if (auto *PBranch = dyn_cast<PredicateBranch>(this))
TrueEdge = PBranch->TrueEdge;
if (Condition == RenamedOp) {
return {{CmpInst::ICMP_EQ,
TrueEdge ? ConstantInt::getTrue(Condition->getType())
: ConstantInt::getFalse(Condition->getType())}};
}
CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
if (!Cmp) {
// TODO: Make this an assertion once RenamedOp is fully accurate.
return None;
}
CmpInst::Predicate Pred;
Value *OtherOp;
if (Cmp->getOperand(0) == RenamedOp) {
Pred = Cmp->getPredicate();
OtherOp = Cmp->getOperand(1);
} else if (Cmp->getOperand(1) == RenamedOp) {
Pred = Cmp->getSwappedPredicate();
OtherOp = Cmp->getOperand(0);
} else {
// TODO: Make this an assertion once RenamedOp is fully accurate.
return None;
}
// Invert predicate along false edge.
if (!TrueEdge)
Pred = CmpInst::getInversePredicate(Pred);
return {{Pred, OtherOp}};
}
case PT_Switch:
if (Condition != RenamedOp) {
// TODO: Make this an assertion once RenamedOp is fully accurate.
return None;
}
return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
}
llvm_unreachable("Unknown predicate type");
}
void PredicateInfo::verifyPredicateInfo() const {}
char PredicateInfoPrinterLegacyPass::ID = 0;
PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
: FunctionPass(ID) {
initializePredicateInfoPrinterLegacyPassPass(
*PassRegistry::getPassRegistry());
}
void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
}
// Replace ssa_copy calls created by PredicateInfo with their operand.
static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) {
const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
auto *II = dyn_cast<IntrinsicInst>(&Inst);
if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
continue;
Inst.replaceAllUsesWith(II->getOperand(0));
Inst.eraseFromParent();
}
}
bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
PredInfo->print(dbgs());
if (VerifyPredicateInfo)
PredInfo->verifyPredicateInfo();
replaceCreatedSSACopys(*PredInfo, F);
return false;
}
PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
OS << "PredicateInfo for function: " << F.getName() << "\n";
auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
PredInfo->print(OS);
replaceCreatedSSACopys(*PredInfo, F);
return PreservedAnalyses::all();
}
/// An assembly annotator class to print PredicateInfo information in
/// comments.
class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
friend class PredicateInfo;
const PredicateInfo *PredInfo;
public:
PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
void emitBasicBlockStartAnnot(const BasicBlock *BB,
formatted_raw_ostream &OS) override {}
void emitInstructionAnnot(const Instruction *I,
formatted_raw_ostream &OS) override {
if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
OS << "; Has predicate info\n";
if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
<< " Comparison:" << *PB->Condition << " Edge: [";
PB->From->printAsOperand(OS);
OS << ",";
PB->To->printAsOperand(OS);
OS << "]";
} else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
<< " Switch:" << *PS->Switch << " Edge: [";
PS->From->printAsOperand(OS);
OS << ",";
PS->To->printAsOperand(OS);
OS << "]";
} else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
OS << "; assume predicate info {"
<< " Comparison:" << *PA->Condition;
}
OS << ", RenamedOp: ";
PI->RenamedOp->printAsOperand(OS, false);
OS << " }\n";
}
}
};
void PredicateInfo::print(raw_ostream &OS) const {
PredicateInfoAnnotatedWriter Writer(this);
F.print(OS, &Writer);
}
void PredicateInfo::dump() const {
PredicateInfoAnnotatedWriter Writer(this);
F.print(dbgs(), &Writer);
}
PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
return PreservedAnalyses::all();
}
}
|