aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Utils/CodeMoverUtils.cpp
blob: 648f4e64a4d2ad612e3210c1f74fe26b27e67ce9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
//===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform movements on basic blocks, and instructions
// contained within a function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/CodeMoverUtils.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"

using namespace llvm;

#define DEBUG_TYPE "codemover-utils"

STATISTIC(HasDependences,
          "Cannot move across instructions that has memory dependences");
STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
STATISTIC(NotControlFlowEquivalent,
          "Instructions are not control flow equivalent");
STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");

namespace {
/// Represent a control condition. A control condition is a condition of a
/// terminator to decide which successors to execute. The pointer field
/// represents the address of the condition of the terminator. The integer field
/// is a bool, it is true when the basic block is executed when V is true. For
/// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
/// integer field equals to true, while %cond is a control condition of bb1 with
/// the integer field equals to false.
using ControlCondition = PointerIntPair<Value *, 1, bool>;
#ifndef NDEBUG
raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
  OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
     << "]";
  return OS;
}
#endif

/// Represent a set of control conditions required to execute ToBB from FromBB.
class ControlConditions {
  using ConditionVectorTy = SmallVector<ControlCondition, 6>;

  /// A SmallVector of control conditions.
  ConditionVectorTy Conditions;

public:
  /// Return a ControlConditions which stores all conditions required to execute
  /// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
  /// number of conditions to collect. Return None if not all conditions are
  /// collected successfully, or we hit the limit.
  static const Optional<ControlConditions>
  collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
                           const DominatorTree &DT,
                           const PostDominatorTree &PDT,
                           unsigned MaxLookup = 6);

  /// Return true if there exists no control conditions required to execute ToBB
  /// from FromBB.
  bool isUnconditional() const { return Conditions.empty(); }

  /// Return a constant reference of Conditions.
  const ConditionVectorTy &getControlConditions() const { return Conditions; }

  /// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
  /// equals to \p True. Return true if inserted successfully.
  bool addControlCondition(ControlCondition C);

  /// Return true if for all control conditions in Conditions, there exists an
  /// equivalent control condition in \p Other.Conditions.
  bool isEquivalent(const ControlConditions &Other) const;

  /// Return true if \p C1 and \p C2 are equivalent.
  static bool isEquivalent(const ControlCondition &C1,
                           const ControlCondition &C2);

private:
  ControlConditions() = default;

  static bool isEquivalent(const Value &V1, const Value &V2);
  static bool isInverse(const Value &V1, const Value &V2);
};
} // namespace

static bool domTreeLevelBefore(DominatorTree *DT, const Instruction *InstA,
                               const Instruction *InstB) {
  // Use ordered basic block in case the 2 instructions are in the same
  // block.
  if (InstA->getParent() == InstB->getParent())
    return InstA->comesBefore(InstB);

  DomTreeNode *DA = DT->getNode(InstA->getParent());
  DomTreeNode *DB = DT->getNode(InstB->getParent());
  return DA->getLevel() < DB->getLevel();
}

const Optional<ControlConditions> ControlConditions::collectControlConditions(
    const BasicBlock &BB, const BasicBlock &Dominator, const DominatorTree &DT,
    const PostDominatorTree &PDT, unsigned MaxLookup) {
  assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");

  ControlConditions Conditions;
  unsigned NumConditions = 0;

  // BB is executed unconditional from itself.
  if (&Dominator == &BB)
    return Conditions;

  const BasicBlock *CurBlock = &BB;
  // Walk up the dominator tree from the associated DT node for BB to the
  // associated DT node for Dominator.
  do {
    assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
    BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
    assert(DT.dominates(&Dominator, IDom) &&
           "Expecting Dominator to dominate IDom");

    // Limitation: can only handle branch instruction currently.
    const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
    if (!BI)
      return None;

    bool Inserted = false;
    if (PDT.dominates(CurBlock, IDom)) {
      LLVM_DEBUG(dbgs() << CurBlock->getName()
                        << " is executed unconditionally from "
                        << IDom->getName() << "\n");
    } else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
      LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
                        << *BI->getCondition() << "\" is true from "
                        << IDom->getName() << "\n");
      Inserted = Conditions.addControlCondition(
          ControlCondition(BI->getCondition(), true));
    } else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
      LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
                        << *BI->getCondition() << "\" is false from "
                        << IDom->getName() << "\n");
      Inserted = Conditions.addControlCondition(
          ControlCondition(BI->getCondition(), false));
    } else
      return None;

    if (Inserted)
      ++NumConditions;

    if (MaxLookup != 0 && NumConditions > MaxLookup)
      return None;

    CurBlock = IDom;
  } while (CurBlock != &Dominator);

  return Conditions;
}

bool ControlConditions::addControlCondition(ControlCondition C) {
  bool Inserted = false;
  if (none_of(Conditions, [&](ControlCondition &Exists) {
        return ControlConditions::isEquivalent(C, Exists);
      })) {
    Conditions.push_back(C);
    Inserted = true;
  }

  LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
  return Inserted;
}

bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
  if (Conditions.empty() && Other.Conditions.empty())
    return true;

  if (Conditions.size() != Other.Conditions.size())
    return false;

  return all_of(Conditions, [&](const ControlCondition &C) {
    return any_of(Other.Conditions, [&](const ControlCondition &OtherC) {
      return ControlConditions::isEquivalent(C, OtherC);
    });
  });
}

bool ControlConditions::isEquivalent(const ControlCondition &C1,
                                     const ControlCondition &C2) {
  if (C1.getInt() == C2.getInt()) {
    if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
      return true;
  } else if (isInverse(*C1.getPointer(), *C2.getPointer()))
    return true;

  return false;
}

// FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
// Values.
// Currently, isEquivalent rely on other passes to ensure equivalent conditions
// have the same value, e.g. GVN.
bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
  return &V1 == &V2;
}

bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
  if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
    if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
      if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
          Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
          Cmp1->getOperand(1) == Cmp2->getOperand(1))
        return true;

      if (Cmp1->getPredicate() ==
              CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
          Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
          Cmp1->getOperand(1) == Cmp2->getOperand(0))
        return true;
    }
  return false;
}

bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
                                   const DominatorTree &DT,
                                   const PostDominatorTree &PDT) {
  return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
}

bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
                                   const DominatorTree &DT,
                                   const PostDominatorTree &PDT) {
  if (&BB0 == &BB1)
    return true;

  if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
      (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
    return true;

  // If the set of conditions required to execute BB0 and BB1 from their common
  // dominator are the same, then BB0 and BB1 are control flow equivalent.
  const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
  LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
                    << " and " << BB1.getName() << " is "
                    << CommonDominator->getName() << "\n");

  const Optional<ControlConditions> BB0Conditions =
      ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
                                                  PDT);
  if (BB0Conditions == None)
    return false;

  const Optional<ControlConditions> BB1Conditions =
      ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
                                                  PDT);
  if (BB1Conditions == None)
    return false;

  return BB0Conditions->isEquivalent(*BB1Conditions);
}

static bool reportInvalidCandidate(const Instruction &I,
                                   llvm::Statistic &Stat) {
  ++Stat;
  LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
                    << Stat.getDesc());
  return false;
}

/// Collect all instructions in between \p StartInst and \p EndInst, and store
/// them in \p InBetweenInsts.
static void
collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
                             SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
  assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");

  /// Get the next instructions of \p I, and push them to \p WorkList.
  auto getNextInsts = [](Instruction &I,
                         SmallPtrSetImpl<Instruction *> &WorkList) {
    if (Instruction *NextInst = I.getNextNode())
      WorkList.insert(NextInst);
    else {
      assert(I.isTerminator() && "Expecting a terminator instruction");
      for (BasicBlock *Succ : successors(&I))
        WorkList.insert(&Succ->front());
    }
  };

  SmallPtrSet<Instruction *, 10> WorkList;
  getNextInsts(StartInst, WorkList);
  while (!WorkList.empty()) {
    Instruction *CurInst = *WorkList.begin();
    WorkList.erase(CurInst);

    if (CurInst == &EndInst)
      continue;

    if (!InBetweenInsts.insert(CurInst).second)
      continue;

    getNextInsts(*CurInst, WorkList);
  }
}

bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
                              DominatorTree &DT, const PostDominatorTree *PDT,
                              DependenceInfo *DI, bool CheckForEntireBlock) {
  // Skip tests when we don't have PDT or DI
  if (!PDT || !DI)
    return false;

  // Cannot move itself before itself.
  if (&I == &InsertPoint)
    return false;

  // Not moved.
  if (I.getNextNode() == &InsertPoint)
    return true;

  if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
    return reportInvalidCandidate(I, NotMovedPHINode);

  if (I.isTerminator())
    return reportInvalidCandidate(I, NotMovedTerminator);

  // TODO remove this limitation.
  if (!isControlFlowEquivalent(I, InsertPoint, DT, *PDT))
    return reportInvalidCandidate(I, NotControlFlowEquivalent);

  if (isReachedBefore(&I, &InsertPoint, &DT, PDT))
    for (const Use &U : I.uses())
      if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
        if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
          return false;
  if (isReachedBefore(&InsertPoint, &I, &DT, PDT))
    for (const Value *Op : I.operands())
      if (auto *OpInst = dyn_cast<Instruction>(Op)) {
        if (&InsertPoint == OpInst)
          return false;
        // If OpInst is an instruction that appears earlier in the same BB as
        // I, then it is okay to move since OpInst will still be available.
        if (CheckForEntireBlock && I.getParent() == OpInst->getParent() &&
            DT.dominates(OpInst, &I))
          continue;
        if (!DT.dominates(OpInst, &InsertPoint))
          return false;
      }

  DT.updateDFSNumbers();
  const bool MoveForward = domTreeLevelBefore(&DT, &I, &InsertPoint);
  Instruction &StartInst = (MoveForward ? I : InsertPoint);
  Instruction &EndInst = (MoveForward ? InsertPoint : I);
  SmallPtrSet<Instruction *, 10> InstsToCheck;
  collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
  if (!MoveForward)
    InstsToCheck.insert(&InsertPoint);

  // Check if there exists instructions which may throw, may synchonize, or may
  // never return, from I to InsertPoint.
  if (!isSafeToSpeculativelyExecute(&I))
    if (llvm::any_of(InstsToCheck, [](Instruction *I) {
          if (I->mayThrow())
            return true;

          const CallBase *CB = dyn_cast<CallBase>(I);
          if (!CB)
            return false;
          if (!CB->hasFnAttr(Attribute::WillReturn))
            return true;
          if (!CB->hasFnAttr(Attribute::NoSync))
            return true;

          return false;
        })) {
      return reportInvalidCandidate(I, MayThrowException);
    }

  // Check if I has any output/flow/anti dependences with instructions from \p
  // StartInst to \p EndInst.
  if (llvm::any_of(InstsToCheck, [&DI, &I](Instruction *CurInst) {
        auto DepResult = DI->depends(&I, CurInst, true);
        if (DepResult && (DepResult->isOutput() || DepResult->isFlow() ||
                          DepResult->isAnti()))
          return true;
        return false;
      }))
    return reportInvalidCandidate(I, HasDependences);

  return true;
}

bool llvm::isSafeToMoveBefore(BasicBlock &BB, Instruction &InsertPoint,
                              DominatorTree &DT, const PostDominatorTree *PDT,
                              DependenceInfo *DI) {
  return llvm::all_of(BB, [&](Instruction &I) {
    if (BB.getTerminator() == &I)
      return true;

    return isSafeToMoveBefore(I, InsertPoint, DT, PDT, DI,
                              /*CheckForEntireBlock=*/true);
  });
}

void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
                                          DominatorTree &DT,
                                          const PostDominatorTree &PDT,
                                          DependenceInfo &DI) {
  for (Instruction &I :
       llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(FromBB)))) {
    Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();

    if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
      I.moveBefore(MovePos);
  }
}

void llvm::moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB,
                                    DominatorTree &DT,
                                    const PostDominatorTree &PDT,
                                    DependenceInfo &DI) {
  Instruction *MovePos = ToBB.getTerminator();
  while (FromBB.size() > 1) {
    Instruction &I = FromBB.front();
    if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
      I.moveBefore(MovePos);
  }
}

bool llvm::nonStrictlyPostDominate(const BasicBlock *ThisBlock,
                                   const BasicBlock *OtherBlock,
                                   const DominatorTree *DT,
                                   const PostDominatorTree *PDT) {
  assert(isControlFlowEquivalent(*ThisBlock, *OtherBlock, *DT, *PDT) &&
         "ThisBlock and OtherBlock must be CFG equivalent!");
  const BasicBlock *CommonDominator =
      DT->findNearestCommonDominator(ThisBlock, OtherBlock);
  if (CommonDominator == nullptr)
    return false;

  /// Recursively check the predecessors of \p ThisBlock up to
  /// their common dominator, and see if any of them post-dominates
  /// \p OtherBlock.
  SmallVector<const BasicBlock *, 8> WorkList;
  SmallPtrSet<const BasicBlock *, 8> Visited;
  WorkList.push_back(ThisBlock);
  while (!WorkList.empty()) {
    const BasicBlock *CurBlock = WorkList.back();
    WorkList.pop_back();
    Visited.insert(CurBlock);
    if (PDT->dominates(CurBlock, OtherBlock))
      return true;

    for (auto *Pred : predecessors(CurBlock)) {
      if (Pred == CommonDominator || Visited.count(Pred))
        continue;
      WorkList.push_back(Pred);
    }
  }
  return false;
}

bool llvm::isReachedBefore(const Instruction *I0, const Instruction *I1,
                           const DominatorTree *DT,
                           const PostDominatorTree *PDT) {
  const BasicBlock *BB0 = I0->getParent();
  const BasicBlock *BB1 = I1->getParent();
  if (BB0 == BB1)
    return DT->dominates(I0, I1);

  return nonStrictlyPostDominate(BB1, BB0, DT, PDT);
}