aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Utils/CallPromotionUtils.cpp
blob: 56b6e4bc46a5140eba7b2895ad3f80658006df86 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
//===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities useful for promoting indirect call sites to
// direct call sites.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;

#define DEBUG_TYPE "call-promotion-utils"

/// Fix-up phi nodes in an invoke instruction's normal destination.
///
/// After versioning an invoke instruction, values coming from the original
/// block will now be coming from the "merge" block. For example, in the code
/// below:
///
///   then_bb:
///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
///
///   else_bb:
///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
///
///   merge_bb:
///     %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ]
///     br %normal_dst
///
///   normal_dst:
///     %t3 = phi i32 [ %x, %orig_bb ], ...
///
/// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in
/// "normal_dst" must be fixed to refer to "merge_bb":
///
///    normal_dst:
///      %t3 = phi i32 [ %x, %merge_bb ], ...
///
static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
                                      BasicBlock *MergeBlock) {
  for (PHINode &Phi : Invoke->getNormalDest()->phis()) {
    int Idx = Phi.getBasicBlockIndex(OrigBlock);
    if (Idx == -1)
      continue;
    Phi.setIncomingBlock(Idx, MergeBlock);
  }
}

/// Fix-up phi nodes in an invoke instruction's unwind destination.
///
/// After versioning an invoke instruction, values coming from the original
/// block will now be coming from either the "then" block or the "else" block.
/// For example, in the code below:
///
///   then_bb:
///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
///
///   else_bb:
///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
///
///   unwind_dst:
///     %t3 = phi i32 [ %x, %orig_bb ], ...
///
/// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in
/// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb":
///
///   unwind_dst:
///     %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ...
///
static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
                                      BasicBlock *ThenBlock,
                                      BasicBlock *ElseBlock) {
  for (PHINode &Phi : Invoke->getUnwindDest()->phis()) {
    int Idx = Phi.getBasicBlockIndex(OrigBlock);
    if (Idx == -1)
      continue;
    auto *V = Phi.getIncomingValue(Idx);
    Phi.setIncomingBlock(Idx, ThenBlock);
    Phi.addIncoming(V, ElseBlock);
  }
}

/// Create a phi node for the returned value of a call or invoke instruction.
///
/// After versioning a call or invoke instruction that returns a value, we have
/// to merge the value of the original and new instructions. We do this by
/// creating a phi node and replacing uses of the original instruction with this
/// phi node.
///
/// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is
/// defined in "then_bb", we create the following phi node:
///
///   ; Uses of the original instruction are replaced by uses of the phi node.
///   %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ],
///
static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst,
                             BasicBlock *MergeBlock, IRBuilder<> &Builder) {

  if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty())
    return;

  Builder.SetInsertPoint(&MergeBlock->front());
  PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0);
  SmallVector<User *, 16> UsersToUpdate(OrigInst->users());
  for (User *U : UsersToUpdate)
    U->replaceUsesOfWith(OrigInst, Phi);
  Phi->addIncoming(OrigInst, OrigInst->getParent());
  Phi->addIncoming(NewInst, NewInst->getParent());
}

/// Cast a call or invoke instruction to the given type.
///
/// When promoting a call site, the return type of the call site might not match
/// that of the callee. If this is the case, we have to cast the returned value
/// to the correct type. The location of the cast depends on if we have a call
/// or invoke instruction.
///
/// For example, if the call instruction below requires a bitcast after
/// promotion:
///
///   orig_bb:
///     %t0 = call i32 @func()
///     ...
///
/// The bitcast is placed after the call instruction:
///
///   orig_bb:
///     ; Uses of the original return value are replaced by uses of the bitcast.
///     %t0 = call i32 @func()
///     %t1 = bitcast i32 %t0 to ...
///     ...
///
/// A similar transformation is performed for invoke instructions. However,
/// since invokes are terminating, a new block is created for the bitcast. For
/// example, if the invoke instruction below requires a bitcast after promotion:
///
///   orig_bb:
///     %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst
///
/// The edge between the original block and the invoke's normal destination is
/// split, and the bitcast is placed there:
///
///   orig_bb:
///     %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst
///
///   split_bb:
///     ; Uses of the original return value are replaced by uses of the bitcast.
///     %t1 = bitcast i32 %t0 to ...
///     br label %normal_dst
///
static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast) {

  // Save the users of the calling instruction. These uses will be changed to
  // use the bitcast after we create it.
  SmallVector<User *, 16> UsersToUpdate(CB.users());

  // Determine an appropriate location to create the bitcast for the return
  // value. The location depends on if we have a call or invoke instruction.
  Instruction *InsertBefore = nullptr;
  if (auto *Invoke = dyn_cast<InvokeInst>(&CB))
    InsertBefore =
        &SplitEdge(Invoke->getParent(), Invoke->getNormalDest())->front();
  else
    InsertBefore = &*std::next(CB.getIterator());

  // Bitcast the return value to the correct type.
  auto *Cast = CastInst::CreateBitOrPointerCast(&CB, RetTy, "", InsertBefore);
  if (RetBitCast)
    *RetBitCast = Cast;

  // Replace all the original uses of the calling instruction with the bitcast.
  for (User *U : UsersToUpdate)
    U->replaceUsesOfWith(&CB, Cast);
}

/// Predicate and clone the given call site.
///
/// This function creates an if-then-else structure at the location of the call
/// site. The "if" condition compares the call site's called value to the given
/// callee. The original call site is moved into the "else" block, and a clone
/// of the call site is placed in the "then" block. The cloned instruction is
/// returned.
///
/// For example, the call instruction below:
///
///   orig_bb:
///     %t0 = call i32 %ptr()
///     ...
///
/// Is replace by the following:
///
///   orig_bb:
///     %cond = icmp eq i32 ()* %ptr, @func
///     br i1 %cond, %then_bb, %else_bb
///
///   then_bb:
///     ; The clone of the original call instruction is placed in the "then"
///     ; block. It is not yet promoted.
///     %t1 = call i32 %ptr()
///     br merge_bb
///
///   else_bb:
///     ; The original call instruction is moved to the "else" block.
///     %t0 = call i32 %ptr()
///     br merge_bb
///
///   merge_bb:
///     ; Uses of the original call instruction are replaced by uses of the phi
///     ; node.
///     %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
///     ...
///
/// A similar transformation is performed for invoke instructions. However,
/// since invokes are terminating, more work is required. For example, the
/// invoke instruction below:
///
///   orig_bb:
///     %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst
///
/// Is replace by the following:
///
///   orig_bb:
///     %cond = icmp eq i32 ()* %ptr, @func
///     br i1 %cond, %then_bb, %else_bb
///
///   then_bb:
///     ; The clone of the original invoke instruction is placed in the "then"
///     ; block, and its normal destination is set to the "merge" block. It is
///     ; not yet promoted.
///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
///
///   else_bb:
///     ; The original invoke instruction is moved into the "else" block, and
///     ; its normal destination is set to the "merge" block.
///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
///
///   merge_bb:
///     ; Uses of the original invoke instruction are replaced by uses of the
///     ; phi node, and the merge block branches to the normal destination.
///     %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
///     br %normal_dst
///
/// An indirect musttail call is processed slightly differently in that:
/// 1. No merge block needed for the orginal and the cloned callsite, since
///    either one ends the flow. No phi node is needed either.
/// 2. The return statement following the original call site is duplicated too
///    and placed immediately after the cloned call site per the IR convention.
///
/// For example, the musttail call instruction below:
///
///   orig_bb:
///     %t0 = musttail call i32 %ptr()
///     ...
///
/// Is replaced by the following:
///
///   cond_bb:
///     %cond = icmp eq i32 ()* %ptr, @func
///     br i1 %cond, %then_bb, %orig_bb
///
///   then_bb:
///     ; The clone of the original call instruction is placed in the "then"
///     ; block. It is not yet promoted.
///     %t1 = musttail call i32 %ptr()
///     ret %t1
///
///   orig_bb:
///     ; The original call instruction stays in its original block.
///     %t0 = musttail call i32 %ptr()
///     ret %t0
static CallBase &versionCallSite(CallBase &CB, Value *Callee,
                                 MDNode *BranchWeights) {

  IRBuilder<> Builder(&CB);
  CallBase *OrigInst = &CB;
  BasicBlock *OrigBlock = OrigInst->getParent();

  // Create the compare. The called value and callee must have the same type to
  // be compared.
  if (CB.getCalledOperand()->getType() != Callee->getType())
    Callee = Builder.CreateBitCast(Callee, CB.getCalledOperand()->getType());
  auto *Cond = Builder.CreateICmpEQ(CB.getCalledOperand(), Callee);

  if (OrigInst->isMustTailCall()) {
    // Create an if-then structure. The original instruction stays in its block,
    // and a clone of the original instruction is placed in the "then" block.
    Instruction *ThenTerm =
        SplitBlockAndInsertIfThen(Cond, &CB, false, BranchWeights);
    BasicBlock *ThenBlock = ThenTerm->getParent();
    ThenBlock->setName("if.true.direct_targ");
    CallBase *NewInst = cast<CallBase>(OrigInst->clone());
    NewInst->insertBefore(ThenTerm);

    // Place a clone of the optional bitcast after the new call site.
    Value *NewRetVal = NewInst;
    auto Next = OrigInst->getNextNode();
    if (auto *BitCast = dyn_cast_or_null<BitCastInst>(Next)) {
      assert(BitCast->getOperand(0) == OrigInst &&
             "bitcast following musttail call must use the call");
      auto NewBitCast = BitCast->clone();
      NewBitCast->replaceUsesOfWith(OrigInst, NewInst);
      NewBitCast->insertBefore(ThenTerm);
      NewRetVal = NewBitCast;
      Next = BitCast->getNextNode();
    }

    // Place a clone of the return instruction after the new call site.
    ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
    assert(Ret && "musttail call must precede a ret with an optional bitcast");
    auto NewRet = Ret->clone();
    if (Ret->getReturnValue())
      NewRet->replaceUsesOfWith(Ret->getReturnValue(), NewRetVal);
    NewRet->insertBefore(ThenTerm);

    // A return instructions is terminating, so we don't need the terminator
    // instruction just created.
    ThenTerm->eraseFromParent();

    return *NewInst;
  }

  // Create an if-then-else structure. The original instruction is moved into
  // the "else" block, and a clone of the original instruction is placed in the
  // "then" block.
  Instruction *ThenTerm = nullptr;
  Instruction *ElseTerm = nullptr;
  SplitBlockAndInsertIfThenElse(Cond, &CB, &ThenTerm, &ElseTerm, BranchWeights);
  BasicBlock *ThenBlock = ThenTerm->getParent();
  BasicBlock *ElseBlock = ElseTerm->getParent();
  BasicBlock *MergeBlock = OrigInst->getParent();

  ThenBlock->setName("if.true.direct_targ");
  ElseBlock->setName("if.false.orig_indirect");
  MergeBlock->setName("if.end.icp");

  CallBase *NewInst = cast<CallBase>(OrigInst->clone());
  OrigInst->moveBefore(ElseTerm);
  NewInst->insertBefore(ThenTerm);

  // If the original call site is an invoke instruction, we have extra work to
  // do since invoke instructions are terminating. We have to fix-up phi nodes
  // in the invoke's normal and unwind destinations.
  if (auto *OrigInvoke = dyn_cast<InvokeInst>(OrigInst)) {
    auto *NewInvoke = cast<InvokeInst>(NewInst);

    // Invoke instructions are terminating, so we don't need the terminator
    // instructions that were just created.
    ThenTerm->eraseFromParent();
    ElseTerm->eraseFromParent();

    // Branch from the "merge" block to the original normal destination.
    Builder.SetInsertPoint(MergeBlock);
    Builder.CreateBr(OrigInvoke->getNormalDest());

    // Fix-up phi nodes in the original invoke's normal and unwind destinations.
    fixupPHINodeForNormalDest(OrigInvoke, OrigBlock, MergeBlock);
    fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock);

    // Now set the normal destinations of the invoke instructions to be the
    // "merge" block.
    OrigInvoke->setNormalDest(MergeBlock);
    NewInvoke->setNormalDest(MergeBlock);
  }

  // Create a phi node for the returned value of the call site.
  createRetPHINode(OrigInst, NewInst, MergeBlock, Builder);

  return *NewInst;
}

bool llvm::isLegalToPromote(const CallBase &CB, Function *Callee,
                            const char **FailureReason) {
  assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");

  auto &DL = Callee->getParent()->getDataLayout();

  // Check the return type. The callee's return value type must be bitcast
  // compatible with the call site's type.
  Type *CallRetTy = CB.getType();
  Type *FuncRetTy = Callee->getReturnType();
  if (CallRetTy != FuncRetTy)
    if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy, CallRetTy, DL)) {
      if (FailureReason)
        *FailureReason = "Return type mismatch";
      return false;
    }

  // The number of formal arguments of the callee.
  unsigned NumParams = Callee->getFunctionType()->getNumParams();

  // The number of actual arguments in the call.
  unsigned NumArgs = CB.arg_size();

  // Check the number of arguments. The callee and call site must agree on the
  // number of arguments.
  if (NumArgs != NumParams && !Callee->isVarArg()) {
    if (FailureReason)
      *FailureReason = "The number of arguments mismatch";
    return false;
  }

  // Check the argument types. The callee's formal argument types must be
  // bitcast compatible with the corresponding actual argument types of the call
  // site.
  unsigned I = 0;
  for (; I < NumParams; ++I) {
    Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I);
    Type *ActualTy = CB.getArgOperand(I)->getType();
    if (FormalTy == ActualTy)
      continue;
    if (!CastInst::isBitOrNoopPointerCastable(ActualTy, FormalTy, DL)) {
      if (FailureReason)
        *FailureReason = "Argument type mismatch";
      return false;
    }
    // Make sure that the callee and call agree on byval/inalloca. The types do
    // not have to match.

    if (Callee->hasParamAttribute(I, Attribute::ByVal) !=
        CB.getAttributes().hasParamAttr(I, Attribute::ByVal)) {
      if (FailureReason)
        *FailureReason = "byval mismatch";
      return false;
    }
    if (Callee->hasParamAttribute(I, Attribute::InAlloca) !=
        CB.getAttributes().hasParamAttr(I, Attribute::InAlloca)) {
      if (FailureReason)
        *FailureReason = "inalloca mismatch";
      return false;
    }
  }
  for (; I < NumArgs; I++) {
    // Vararg functions can have more arguments than parameters.
    assert(Callee->isVarArg());
    if (CB.paramHasAttr(I, Attribute::StructRet)) {
      if (FailureReason)
        *FailureReason = "SRet arg to vararg function";
      return false;
    }
  }

  return true;
}

CallBase &llvm::promoteCall(CallBase &CB, Function *Callee,
                            CastInst **RetBitCast) {
  assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");

  // Set the called function of the call site to be the given callee (but don't
  // change the type).
  CB.setCalledOperand(Callee);

  // Since the call site will no longer be direct, we must clear metadata that
  // is only appropriate for indirect calls. This includes !prof and !callees
  // metadata.
  CB.setMetadata(LLVMContext::MD_prof, nullptr);
  CB.setMetadata(LLVMContext::MD_callees, nullptr);

  // If the function type of the call site matches that of the callee, no
  // additional work is required.
  if (CB.getFunctionType() == Callee->getFunctionType())
    return CB;

  // Save the return types of the call site and callee.
  Type *CallSiteRetTy = CB.getType();
  Type *CalleeRetTy = Callee->getReturnType();

  // Change the function type of the call site the match that of the callee.
  CB.mutateFunctionType(Callee->getFunctionType());

  // Inspect the arguments of the call site. If an argument's type doesn't
  // match the corresponding formal argument's type in the callee, bitcast it
  // to the correct type.
  auto CalleeType = Callee->getFunctionType();
  auto CalleeParamNum = CalleeType->getNumParams();

  LLVMContext &Ctx = Callee->getContext();
  const AttributeList &CallerPAL = CB.getAttributes();
  // The new list of argument attributes.
  SmallVector<AttributeSet, 4> NewArgAttrs;
  bool AttributeChanged = false;

  for (unsigned ArgNo = 0; ArgNo < CalleeParamNum; ++ArgNo) {
    auto *Arg = CB.getArgOperand(ArgNo);
    Type *FormalTy = CalleeType->getParamType(ArgNo);
    Type *ActualTy = Arg->getType();
    if (FormalTy != ActualTy) {
      auto *Cast = CastInst::CreateBitOrPointerCast(Arg, FormalTy, "", &CB);
      CB.setArgOperand(ArgNo, Cast);

      // Remove any incompatible attributes for the argument.
      AttrBuilder ArgAttrs(Ctx, CallerPAL.getParamAttrs(ArgNo));
      ArgAttrs.remove(AttributeFuncs::typeIncompatible(FormalTy));

      // We may have a different byval/inalloca type.
      if (ArgAttrs.getByValType())
        ArgAttrs.addByValAttr(Callee->getParamByValType(ArgNo));
      if (ArgAttrs.getInAllocaType())
        ArgAttrs.addInAllocaAttr(Callee->getParamInAllocaType(ArgNo));

      NewArgAttrs.push_back(AttributeSet::get(Ctx, ArgAttrs));
      AttributeChanged = true;
    } else
      NewArgAttrs.push_back(CallerPAL.getParamAttrs(ArgNo));
  }

  // If the return type of the call site doesn't match that of the callee, cast
  // the returned value to the appropriate type.
  // Remove any incompatible return value attribute.
  AttrBuilder RAttrs(Ctx, CallerPAL.getRetAttrs());
  if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy) {
    createRetBitCast(CB, CallSiteRetTy, RetBitCast);
    RAttrs.remove(AttributeFuncs::typeIncompatible(CalleeRetTy));
    AttributeChanged = true;
  }

  // Set the new callsite attribute.
  if (AttributeChanged)
    CB.setAttributes(AttributeList::get(Ctx, CallerPAL.getFnAttrs(),
                                        AttributeSet::get(Ctx, RAttrs),
                                        NewArgAttrs));

  return CB;
}

CallBase &llvm::promoteCallWithIfThenElse(CallBase &CB, Function *Callee,
                                          MDNode *BranchWeights) {

  // Version the indirect call site. If the called value is equal to the given
  // callee, 'NewInst' will be executed, otherwise the original call site will
  // be executed.
  CallBase &NewInst = versionCallSite(CB, Callee, BranchWeights);

  // Promote 'NewInst' so that it directly calls the desired function.
  return promoteCall(NewInst, Callee);
}

bool llvm::tryPromoteCall(CallBase &CB) {
  assert(!CB.getCalledFunction());
  Module *M = CB.getCaller()->getParent();
  const DataLayout &DL = M->getDataLayout();
  Value *Callee = CB.getCalledOperand();

  LoadInst *VTableEntryLoad = dyn_cast<LoadInst>(Callee);
  if (!VTableEntryLoad)
    return false; // Not a vtable entry load.
  Value *VTableEntryPtr = VTableEntryLoad->getPointerOperand();
  APInt VTableOffset(DL.getTypeSizeInBits(VTableEntryPtr->getType()), 0);
  Value *VTableBasePtr = VTableEntryPtr->stripAndAccumulateConstantOffsets(
      DL, VTableOffset, /* AllowNonInbounds */ true);
  LoadInst *VTablePtrLoad = dyn_cast<LoadInst>(VTableBasePtr);
  if (!VTablePtrLoad)
    return false; // Not a vtable load.
  Value *Object = VTablePtrLoad->getPointerOperand();
  APInt ObjectOffset(DL.getTypeSizeInBits(Object->getType()), 0);
  Value *ObjectBase = Object->stripAndAccumulateConstantOffsets(
      DL, ObjectOffset, /* AllowNonInbounds */ true);
  if (!(isa<AllocaInst>(ObjectBase) && ObjectOffset == 0))
    // Not an Alloca or the offset isn't zero.
    return false;

  // Look for the vtable pointer store into the object by the ctor.
  BasicBlock::iterator BBI(VTablePtrLoad);
  Value *VTablePtr = FindAvailableLoadedValue(
      VTablePtrLoad, VTablePtrLoad->getParent(), BBI, 0, nullptr, nullptr);
  if (!VTablePtr)
    return false; // No vtable found.
  APInt VTableOffsetGVBase(DL.getTypeSizeInBits(VTablePtr->getType()), 0);
  Value *VTableGVBase = VTablePtr->stripAndAccumulateConstantOffsets(
      DL, VTableOffsetGVBase, /* AllowNonInbounds */ true);
  GlobalVariable *GV = dyn_cast<GlobalVariable>(VTableGVBase);
  if (!(GV && GV->isConstant() && GV->hasDefinitiveInitializer()))
    // Not in the form of a global constant variable with an initializer.
    return false;

  Constant *VTableGVInitializer = GV->getInitializer();
  APInt VTableGVOffset = VTableOffsetGVBase + VTableOffset;
  if (!(VTableGVOffset.getActiveBits() <= 64))
    return false; // Out of range.
  Constant *Ptr = getPointerAtOffset(VTableGVInitializer,
                                     VTableGVOffset.getZExtValue(),
                                     *M);
  if (!Ptr)
    return false; // No constant (function) pointer found.
  Function *DirectCallee = dyn_cast<Function>(Ptr->stripPointerCasts());
  if (!DirectCallee)
    return false; // No function pointer found.

  if (!isLegalToPromote(CB, DirectCallee))
    return false;

  // Success.
  promoteCall(CB, DirectCallee);
  return true;
}

#undef DEBUG_TYPE