1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
|
//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller. It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
"forget-scev-loop-unroll", cl::init(false), cl::Hidden,
cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
" the current top-most loop. This is sometimes preferred to reduce"
" compile time."));
static cl::opt<unsigned>
UnrollThreshold("unroll-threshold", cl::Hidden,
cl::desc("The cost threshold for loop unrolling"));
static cl::opt<unsigned>
UnrollOptSizeThreshold(
"unroll-optsize-threshold", cl::init(0), cl::Hidden,
cl::desc("The cost threshold for loop unrolling when optimizing for "
"size"));
static cl::opt<unsigned> UnrollPartialThreshold(
"unroll-partial-threshold", cl::Hidden,
cl::desc("The cost threshold for partial loop unrolling"));
static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
"unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
"to the threshold when aggressively unrolling a loop due to the "
"dynamic cost savings. If completely unrolling a loop will reduce "
"the total runtime from X to Y, we boost the loop unroll "
"threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
"X/Y). This limit avoids excessive code bloat."));
static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
"unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
cl::desc("Don't allow loop unrolling to simulate more than this number of"
"iterations when checking full unroll profitability"));
static cl::opt<unsigned> UnrollCount(
"unroll-count", cl::Hidden,
cl::desc("Use this unroll count for all loops including those with "
"unroll_count pragma values, for testing purposes"));
static cl::opt<unsigned> UnrollMaxCount(
"unroll-max-count", cl::Hidden,
cl::desc("Set the max unroll count for partial and runtime unrolling, for"
"testing purposes"));
static cl::opt<unsigned> UnrollFullMaxCount(
"unroll-full-max-count", cl::Hidden,
cl::desc(
"Set the max unroll count for full unrolling, for testing purposes"));
static cl::opt<bool>
UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
cl::desc("Allows loops to be partially unrolled until "
"-unroll-threshold loop size is reached."));
static cl::opt<bool> UnrollAllowRemainder(
"unroll-allow-remainder", cl::Hidden,
cl::desc("Allow generation of a loop remainder (extra iterations) "
"when unrolling a loop."));
static cl::opt<bool>
UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
cl::desc("Unroll loops with run-time trip counts"));
static cl::opt<unsigned> UnrollMaxUpperBound(
"unroll-max-upperbound", cl::init(8), cl::Hidden,
cl::desc(
"The max of trip count upper bound that is considered in unrolling"));
static cl::opt<unsigned> PragmaUnrollThreshold(
"pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
cl::desc("Unrolled size limit for loops with an unroll(full) or "
"unroll_count pragma."));
static cl::opt<unsigned> FlatLoopTripCountThreshold(
"flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
cl::desc("If the runtime tripcount for the loop is lower than the "
"threshold, the loop is considered as flat and will be less "
"aggressively unrolled."));
static cl::opt<bool> UnrollUnrollRemainder(
"unroll-remainder", cl::Hidden,
cl::desc("Allow the loop remainder to be unrolled."));
// This option isn't ever intended to be enabled, it serves to allow
// experiments to check the assumptions about when this kind of revisit is
// necessary.
static cl::opt<bool> UnrollRevisitChildLoops(
"unroll-revisit-child-loops", cl::Hidden,
cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
"This shouldn't typically be needed as child loops (or their "
"clones) were already visited."));
static cl::opt<unsigned> UnrollThresholdAggressive(
"unroll-threshold-aggressive", cl::init(300), cl::Hidden,
cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
"optimizations"));
static cl::opt<unsigned>
UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
cl::Hidden,
cl::desc("Default threshold (max size of unrolled "
"loop), used in all but O3 optimizations"));
/// A magic value for use with the Threshold parameter to indicate
/// that the loop unroll should be performed regardless of how much
/// code expansion would result.
static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
/// Gather the various unrolling parameters based on the defaults, compiler
/// flags, TTI overrides and user specified parameters.
TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
OptimizationRemarkEmitter &ORE, int OptLevel,
Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
TargetTransformInfo::UnrollingPreferences UP;
// Set up the defaults
UP.Threshold =
OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
UP.MaxPercentThresholdBoost = 400;
UP.OptSizeThreshold = UnrollOptSizeThreshold;
UP.PartialThreshold = 150;
UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
UP.Count = 0;
UP.DefaultUnrollRuntimeCount = 8;
UP.MaxCount = std::numeric_limits<unsigned>::max();
UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
UP.BEInsns = 2;
UP.Partial = false;
UP.Runtime = false;
UP.AllowRemainder = true;
UP.UnrollRemainder = false;
UP.AllowExpensiveTripCount = false;
UP.Force = false;
UP.UpperBound = false;
UP.UnrollAndJam = false;
UP.UnrollAndJamInnerLoopThreshold = 60;
UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
// Override with any target specific settings
TTI.getUnrollingPreferences(L, SE, UP, &ORE);
// Apply size attributes
bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
// Let unroll hints / pragmas take precedence over PGSO.
(hasUnrollTransformation(L) != TM_ForcedByUser &&
llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
PGSOQueryType::IRPass));
if (OptForSize) {
UP.Threshold = UP.OptSizeThreshold;
UP.PartialThreshold = UP.PartialOptSizeThreshold;
UP.MaxPercentThresholdBoost = 100;
}
// Apply any user values specified by cl::opt
if (UnrollThreshold.getNumOccurrences() > 0)
UP.Threshold = UnrollThreshold;
if (UnrollPartialThreshold.getNumOccurrences() > 0)
UP.PartialThreshold = UnrollPartialThreshold;
if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
if (UnrollMaxCount.getNumOccurrences() > 0)
UP.MaxCount = UnrollMaxCount;
if (UnrollFullMaxCount.getNumOccurrences() > 0)
UP.FullUnrollMaxCount = UnrollFullMaxCount;
if (UnrollAllowPartial.getNumOccurrences() > 0)
UP.Partial = UnrollAllowPartial;
if (UnrollAllowRemainder.getNumOccurrences() > 0)
UP.AllowRemainder = UnrollAllowRemainder;
if (UnrollRuntime.getNumOccurrences() > 0)
UP.Runtime = UnrollRuntime;
if (UnrollMaxUpperBound == 0)
UP.UpperBound = false;
if (UnrollUnrollRemainder.getNumOccurrences() > 0)
UP.UnrollRemainder = UnrollUnrollRemainder;
if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
// Apply user values provided by argument
if (UserThreshold.hasValue()) {
UP.Threshold = *UserThreshold;
UP.PartialThreshold = *UserThreshold;
}
if (UserCount.hasValue())
UP.Count = *UserCount;
if (UserAllowPartial.hasValue())
UP.Partial = *UserAllowPartial;
if (UserRuntime.hasValue())
UP.Runtime = *UserRuntime;
if (UserUpperBound.hasValue())
UP.UpperBound = *UserUpperBound;
if (UserFullUnrollMaxCount.hasValue())
UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
return UP;
}
namespace {
/// A struct to densely store the state of an instruction after unrolling at
/// each iteration.
///
/// This is designed to work like a tuple of <Instruction *, int> for the
/// purposes of hashing and lookup, but to be able to associate two boolean
/// states with each key.
struct UnrolledInstState {
Instruction *I;
int Iteration : 30;
unsigned IsFree : 1;
unsigned IsCounted : 1;
};
/// Hashing and equality testing for a set of the instruction states.
struct UnrolledInstStateKeyInfo {
using PtrInfo = DenseMapInfo<Instruction *>;
using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
static inline UnrolledInstState getEmptyKey() {
return {PtrInfo::getEmptyKey(), 0, 0, 0};
}
static inline UnrolledInstState getTombstoneKey() {
return {PtrInfo::getTombstoneKey(), 0, 0, 0};
}
static inline unsigned getHashValue(const UnrolledInstState &S) {
return PairInfo::getHashValue({S.I, S.Iteration});
}
static inline bool isEqual(const UnrolledInstState &LHS,
const UnrolledInstState &RHS) {
return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
}
};
struct EstimatedUnrollCost {
/// The estimated cost after unrolling.
unsigned UnrolledCost;
/// The estimated dynamic cost of executing the instructions in the
/// rolled form.
unsigned RolledDynamicCost;
};
struct PragmaInfo {
PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
: UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
PragmaEnableUnroll(PEU) {}
const bool UserUnrollCount;
const bool PragmaFullUnroll;
const unsigned PragmaCount;
const bool PragmaEnableUnroll;
};
} // end anonymous namespace
/// Figure out if the loop is worth full unrolling.
///
/// Complete loop unrolling can make some loads constant, and we need to know
/// if that would expose any further optimization opportunities. This routine
/// estimates this optimization. It computes cost of unrolled loop
/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
/// dynamic cost we mean that we won't count costs of blocks that are known not
/// to be executed (i.e. if we have a branch in the loop and we know that at the
/// given iteration its condition would be resolved to true, we won't add up the
/// cost of the 'false'-block).
/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
/// the analysis failed (no benefits expected from the unrolling, or the loop is
/// too big to analyze), the returned value is None.
static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
const SmallPtrSetImpl<const Value *> &EphValues,
const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
unsigned MaxIterationsCountToAnalyze) {
// We want to be able to scale offsets by the trip count and add more offsets
// to them without checking for overflows, and we already don't want to
// analyze *massive* trip counts, so we force the max to be reasonably small.
assert(MaxIterationsCountToAnalyze <
(unsigned)(std::numeric_limits<int>::max() / 2) &&
"The unroll iterations max is too large!");
// Only analyze inner loops. We can't properly estimate cost of nested loops
// and we won't visit inner loops again anyway.
if (!L->isInnermost())
return None;
// Don't simulate loops with a big or unknown tripcount
if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
return None;
SmallSetVector<BasicBlock *, 16> BBWorklist;
SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
DenseMap<Value *, Value *> SimplifiedValues;
SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
// The estimated cost of the unrolled form of the loop. We try to estimate
// this by simplifying as much as we can while computing the estimate.
InstructionCost UnrolledCost = 0;
// We also track the estimated dynamic (that is, actually executed) cost in
// the rolled form. This helps identify cases when the savings from unrolling
// aren't just exposing dead control flows, but actual reduced dynamic
// instructions due to the simplifications which we expect to occur after
// unrolling.
InstructionCost RolledDynamicCost = 0;
// We track the simplification of each instruction in each iteration. We use
// this to recursively merge costs into the unrolled cost on-demand so that
// we don't count the cost of any dead code. This is essentially a map from
// <instruction, int> to <bool, bool>, but stored as a densely packed struct.
DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
// A small worklist used to accumulate cost of instructions from each
// observable and reached root in the loop.
SmallVector<Instruction *, 16> CostWorklist;
// PHI-used worklist used between iterations while accumulating cost.
SmallVector<Instruction *, 4> PHIUsedList;
// Helper function to accumulate cost for instructions in the loop.
auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
assert(Iteration >= 0 && "Cannot have a negative iteration!");
assert(CostWorklist.empty() && "Must start with an empty cost list");
assert(PHIUsedList.empty() && "Must start with an empty phi used list");
CostWorklist.push_back(&RootI);
TargetTransformInfo::TargetCostKind CostKind =
RootI.getFunction()->hasMinSize() ?
TargetTransformInfo::TCK_CodeSize :
TargetTransformInfo::TCK_SizeAndLatency;
for (;; --Iteration) {
do {
Instruction *I = CostWorklist.pop_back_val();
// InstCostMap only uses I and Iteration as a key, the other two values
// don't matter here.
auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
if (CostIter == InstCostMap.end())
// If an input to a PHI node comes from a dead path through the loop
// we may have no cost data for it here. What that actually means is
// that it is free.
continue;
auto &Cost = *CostIter;
if (Cost.IsCounted)
// Already counted this instruction.
continue;
// Mark that we are counting the cost of this instruction now.
Cost.IsCounted = true;
// If this is a PHI node in the loop header, just add it to the PHI set.
if (auto *PhiI = dyn_cast<PHINode>(I))
if (PhiI->getParent() == L->getHeader()) {
assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
"inherently simplify during unrolling.");
if (Iteration == 0)
continue;
// Push the incoming value from the backedge into the PHI used list
// if it is an in-loop instruction. We'll use this to populate the
// cost worklist for the next iteration (as we count backwards).
if (auto *OpI = dyn_cast<Instruction>(
PhiI->getIncomingValueForBlock(L->getLoopLatch())))
if (L->contains(OpI))
PHIUsedList.push_back(OpI);
continue;
}
// First accumulate the cost of this instruction.
if (!Cost.IsFree) {
UnrolledCost += TTI.getUserCost(I, CostKind);
LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
<< Iteration << "): ");
LLVM_DEBUG(I->dump());
}
// We must count the cost of every operand which is not free,
// recursively. If we reach a loop PHI node, simply add it to the set
// to be considered on the next iteration (backwards!).
for (Value *Op : I->operands()) {
// Check whether this operand is free due to being a constant or
// outside the loop.
auto *OpI = dyn_cast<Instruction>(Op);
if (!OpI || !L->contains(OpI))
continue;
// Otherwise accumulate its cost.
CostWorklist.push_back(OpI);
}
} while (!CostWorklist.empty());
if (PHIUsedList.empty())
// We've exhausted the search.
break;
assert(Iteration > 0 &&
"Cannot track PHI-used values past the first iteration!");
CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
PHIUsedList.clear();
}
};
// Ensure that we don't violate the loop structure invariants relied on by
// this analysis.
assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
assert(L->isLCSSAForm(DT) &&
"Must have loops in LCSSA form to track live-out values.");
LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
TargetTransformInfo::TargetCostKind CostKind =
L->getHeader()->getParent()->hasMinSize() ?
TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
// Simulate execution of each iteration of the loop counting instructions,
// which would be simplified.
// Since the same load will take different values on different iterations,
// we literally have to go through all loop's iterations.
for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
// Prepare for the iteration by collecting any simplified entry or backedge
// inputs.
for (Instruction &I : *L->getHeader()) {
auto *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
break;
// The loop header PHI nodes must have exactly two input: one from the
// loop preheader and one from the loop latch.
assert(
PHI->getNumIncomingValues() == 2 &&
"Must have an incoming value only for the preheader and the latch.");
Value *V = PHI->getIncomingValueForBlock(
Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
if (Iteration != 0 && SimplifiedValues.count(V))
V = SimplifiedValues.lookup(V);
SimplifiedInputValues.push_back({PHI, V});
}
// Now clear and re-populate the map for the next iteration.
SimplifiedValues.clear();
while (!SimplifiedInputValues.empty())
SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
BBWorklist.clear();
BBWorklist.insert(L->getHeader());
// Note that we *must not* cache the size, this loop grows the worklist.
for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
BasicBlock *BB = BBWorklist[Idx];
// Visit all instructions in the given basic block and try to simplify
// it. We don't change the actual IR, just count optimization
// opportunities.
for (Instruction &I : *BB) {
// These won't get into the final code - don't even try calculating the
// cost for them.
if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
continue;
// Track this instruction's expected baseline cost when executing the
// rolled loop form.
RolledDynamicCost += TTI.getUserCost(&I, CostKind);
// Visit the instruction to analyze its loop cost after unrolling,
// and if the visitor returns true, mark the instruction as free after
// unrolling and continue.
bool IsFree = Analyzer.visit(I);
bool Inserted = InstCostMap.insert({&I, (int)Iteration,
(unsigned)IsFree,
/*IsCounted*/ false}).second;
(void)Inserted;
assert(Inserted && "Cannot have a state for an unvisited instruction!");
if (IsFree)
continue;
// Can't properly model a cost of a call.
// FIXME: With a proper cost model we should be able to do it.
if (auto *CI = dyn_cast<CallInst>(&I)) {
const Function *Callee = CI->getCalledFunction();
if (!Callee || TTI.isLoweredToCall(Callee)) {
LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
return None;
}
}
// If the instruction might have a side-effect recursively account for
// the cost of it and all the instructions leading up to it.
if (I.mayHaveSideEffects())
AddCostRecursively(I, Iteration);
// If unrolled body turns out to be too big, bail out.
if (UnrolledCost > MaxUnrolledLoopSize) {
LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
<< " UnrolledCost: " << UnrolledCost
<< ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
<< "\n");
return None;
}
}
Instruction *TI = BB->getTerminator();
auto getSimplifiedConstant = [&](Value *V) -> Constant * {
if (SimplifiedValues.count(V))
V = SimplifiedValues.lookup(V);
return dyn_cast<Constant>(V);
};
// Add in the live successors by first checking whether we have terminator
// that may be simplified based on the values simplified by this call.
BasicBlock *KnownSucc = nullptr;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional()) {
if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
// Just take the first successor if condition is undef
if (isa<UndefValue>(SimpleCond))
KnownSucc = BI->getSuccessor(0);
else if (ConstantInt *SimpleCondVal =
dyn_cast<ConstantInt>(SimpleCond))
KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
// Just take the first successor if condition is undef
if (isa<UndefValue>(SimpleCond))
KnownSucc = SI->getSuccessor(0);
else if (ConstantInt *SimpleCondVal =
dyn_cast<ConstantInt>(SimpleCond))
KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
}
}
if (KnownSucc) {
if (L->contains(KnownSucc))
BBWorklist.insert(KnownSucc);
else
ExitWorklist.insert({BB, KnownSucc});
continue;
}
// Add BB's successors to the worklist.
for (BasicBlock *Succ : successors(BB))
if (L->contains(Succ))
BBWorklist.insert(Succ);
else
ExitWorklist.insert({BB, Succ});
AddCostRecursively(*TI, Iteration);
}
// If we found no optimization opportunities on the first iteration, we
// won't find them on later ones too.
if (UnrolledCost == RolledDynamicCost) {
LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
<< " UnrolledCost: " << UnrolledCost << "\n");
return None;
}
}
while (!ExitWorklist.empty()) {
BasicBlock *ExitingBB, *ExitBB;
std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
for (Instruction &I : *ExitBB) {
auto *PN = dyn_cast<PHINode>(&I);
if (!PN)
break;
Value *Op = PN->getIncomingValueForBlock(ExitingBB);
if (auto *OpI = dyn_cast<Instruction>(Op))
if (L->contains(OpI))
AddCostRecursively(*OpI, TripCount - 1);
}
}
assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
"All instructions must have a valid cost, whether the "
"loop is rolled or unrolled.");
LLVM_DEBUG(dbgs() << "Analysis finished:\n"
<< "UnrolledCost: " << UnrolledCost << ", "
<< "RolledDynamicCost: " << RolledDynamicCost << "\n");
return {{unsigned(*UnrolledCost.getValue()),
unsigned(*RolledDynamicCost.getValue())}};
}
/// ApproximateLoopSize - Approximate the size of the loop.
unsigned llvm::ApproximateLoopSize(
const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
const TargetTransformInfo &TTI,
const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
CodeMetrics Metrics;
for (BasicBlock *BB : L->blocks())
Metrics.analyzeBasicBlock(BB, TTI, EphValues);
NumCalls = Metrics.NumInlineCandidates;
NotDuplicatable = Metrics.notDuplicatable;
Convergent = Metrics.convergent;
unsigned LoopSize = Metrics.NumInsts;
// Don't allow an estimate of size zero. This would allows unrolling of loops
// with huge iteration counts, which is a compile time problem even if it's
// not a problem for code quality. Also, the code using this size may assume
// that each loop has at least three instructions (likely a conditional
// branch, a comparison feeding that branch, and some kind of loop increment
// feeding that comparison instruction).
LoopSize = std::max(LoopSize, BEInsns + 1);
return LoopSize;
}
// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
// returned.
static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
if (MDNode *LoopID = L->getLoopID())
return GetUnrollMetadata(LoopID, Name);
return nullptr;
}
// Returns true if the loop has an unroll(full) pragma.
static bool hasUnrollFullPragma(const Loop *L) {
return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}
// Returns true if the loop has an unroll(enable) pragma. This metadata is used
// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
static bool hasUnrollEnablePragma(const Loop *L) {
return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
}
// Returns true if the loop has an runtime unroll(disable) pragma.
static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}
// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma. Otherwise return 0.
static unsigned unrollCountPragmaValue(const Loop *L) {
MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
if (MD) {
assert(MD->getNumOperands() == 2 &&
"Unroll count hint metadata should have two operands.");
unsigned Count =
mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
assert(Count >= 1 && "Unroll count must be positive.");
return Count;
}
return 0;
}
// Computes the boosting factor for complete unrolling.
// If fully unrolling the loop would save a lot of RolledDynamicCost, it would
// be beneficial to fully unroll the loop even if unrolledcost is large. We
// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
// the unroll threshold.
static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
unsigned MaxPercentThresholdBoost) {
if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
return 100;
else if (Cost.UnrolledCost != 0)
// The boosting factor is RolledDynamicCost / UnrolledCost
return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
MaxPercentThresholdBoost);
else
return MaxPercentThresholdBoost;
}
// Produce an estimate of the unrolled cost of the specified loop. This
// is used to a) produce a cost estimate for partial unrolling and b) to
// cheaply estimate cost for full unrolling when we don't want to symbolically
// evaluate all iterations.
class UnrollCostEstimator {
const unsigned LoopSize;
public:
UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
// Returns loop size estimation for unrolled loop, given the unrolling
// configuration specified by UP.
uint64_t
getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP,
const unsigned CountOverwrite = 0) const {
assert(LoopSize >= UP.BEInsns &&
"LoopSize should not be less than BEInsns!");
if (CountOverwrite)
return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite +
UP.BEInsns;
else
return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count +
UP.BEInsns;
}
};
static Optional<unsigned>
shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
const unsigned TripMultiple, const unsigned TripCount,
const UnrollCostEstimator UCE,
const TargetTransformInfo::UnrollingPreferences &UP) {
// Using unroll pragma
// 1st priority is unroll count set by "unroll-count" option.
if (PInfo.UserUnrollCount) {
if (UP.AllowRemainder &&
UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
return (unsigned)UnrollCount;
}
// 2nd priority is unroll count set by pragma.
if (PInfo.PragmaCount > 0) {
if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)) &&
UCE.getUnrolledLoopSize(UP, PInfo.PragmaCount) < PragmaUnrollThreshold)
return PInfo.PragmaCount;
}
if (PInfo.PragmaFullUnroll && TripCount != 0) {
if (UCE.getUnrolledLoopSize(UP, TripCount) < PragmaUnrollThreshold)
return TripCount;
}
// if didn't return until here, should continue to other priorties
return None;
}
static Optional<unsigned> shouldFullUnroll(
Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
const TargetTransformInfo::UnrollingPreferences &UP) {
assert(FullUnrollTripCount && "should be non-zero!");
if (FullUnrollTripCount > UP.FullUnrollMaxCount)
return None;
// When computing the unrolled size, note that BEInsns are not replicated
// like the rest of the loop body.
if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
return FullUnrollTripCount;
// The loop isn't that small, but we still can fully unroll it if that
// helps to remove a significant number of instructions.
// To check that, run additional analysis on the loop.
if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
L, FullUnrollTripCount, DT, SE, EphValues, TTI,
UP.Threshold * UP.MaxPercentThresholdBoost / 100,
UP.MaxIterationsCountToAnalyze)) {
unsigned Boost =
getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
return FullUnrollTripCount;
}
return None;
}
static Optional<unsigned>
shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
const UnrollCostEstimator UCE,
const TargetTransformInfo::UnrollingPreferences &UP) {
if (!TripCount)
return None;
if (!UP.Partial) {
LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
<< "-unroll-allow-partial not given\n");
return 0;
}
unsigned count = UP.Count;
if (count == 0)
count = TripCount;
if (UP.PartialThreshold != NoThreshold) {
// Reduce unroll count to be modulo of TripCount for partial unrolling.
if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
(LoopSize - UP.BEInsns);
if (count > UP.MaxCount)
count = UP.MaxCount;
while (count != 0 && TripCount % count != 0)
count--;
if (UP.AllowRemainder && count <= 1) {
// If there is no Count that is modulo of TripCount, set Count to
// largest power-of-two factor that satisfies the threshold limit.
// As we'll create fixup loop, do the type of unrolling only if
// remainder loop is allowed.
count = UP.DefaultUnrollRuntimeCount;
while (count != 0 &&
UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
count >>= 1;
}
if (count < 2) {
count = 0;
}
} else {
count = TripCount;
}
if (count > UP.MaxCount)
count = UP.MaxCount;
LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n");
return count;
}
// Returns true if unroll count was set explicitly.
// Calculates unroll count and writes it to UP.Count.
// Unless IgnoreUser is true, will also use metadata and command-line options
// that are specific to to the LoopUnroll pass (which, for instance, are
// irrelevant for the LoopUnrollAndJam pass).
// FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
// many LoopUnroll-specific options. The shared functionality should be
// refactored into it own function.
bool llvm::computeUnrollCount(
Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
TargetTransformInfo::UnrollingPreferences &UP,
TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
UnrollCostEstimator UCE(*L, LoopSize);
const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
const bool PragmaFullUnroll = hasUnrollFullPragma(L);
const unsigned PragmaCount = unrollCountPragmaValue(L);
const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
PragmaEnableUnroll || UserUnrollCount;
PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
PragmaEnableUnroll);
// Use an explicit peel count that has been specified for testing. In this
// case it's not permitted to also specify an explicit unroll count.
if (PP.PeelCount) {
if (UnrollCount.getNumOccurrences() > 0) {
report_fatal_error("Cannot specify both explicit peel count and "
"explicit unroll count");
}
UP.Count = 1;
UP.Runtime = false;
return true;
}
// Check for explicit Count.
// 1st priority is unroll count set by "unroll-count" option.
// 2nd priority is unroll count set by pragma.
if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
UCE, UP)) {
UP.Count = *UnrollFactor;
if (UserUnrollCount || (PragmaCount > 0)) {
UP.AllowExpensiveTripCount = true;
UP.Force = true;
}
UP.Runtime |= (PragmaCount > 0);
return ExplicitUnroll;
} else {
if (ExplicitUnroll && TripCount != 0) {
// If the loop has an unrolling pragma, we want to be more aggressive with
// unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
// value which is larger than the default limits.
UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
UP.PartialThreshold =
std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
}
}
// 3rd priority is exact full unrolling. This will eliminate all copies
// of some exit test.
UP.Count = 0;
if (TripCount) {
UP.Count = TripCount;
if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
TripCount, UCE, UP)) {
UP.Count = *UnrollFactor;
UseUpperBound = false;
return ExplicitUnroll;
}
}
// 4th priority is bounded unrolling.
// We can unroll by the upper bound amount if it's generally allowed or if
// we know that the loop is executed either the upper bound or zero times.
// (MaxOrZero unrolling keeps only the first loop test, so the number of
// loop tests remains the same compared to the non-unrolled version, whereas
// the generic upper bound unrolling keeps all but the last loop test so the
// number of loop tests goes up which may end up being worse on targets with
// constrained branch predictor resources so is controlled by an option.)
// In addition we only unroll small upper bounds.
// Note that the cost of bounded unrolling is always strictly greater than
// cost of exact full unrolling. As such, if we have an exact count and
// found it unprofitable, we'll never chose to bounded unroll.
if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
MaxTripCount <= UnrollMaxUpperBound) {
UP.Count = MaxTripCount;
if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
MaxTripCount, UCE, UP)) {
UP.Count = *UnrollFactor;
UseUpperBound = true;
return ExplicitUnroll;
}
}
// 5th priority is loop peeling.
computePeelCount(L, LoopSize, PP, TripCount, DT, SE, UP.Threshold);
if (PP.PeelCount) {
UP.Runtime = false;
UP.Count = 1;
return ExplicitUnroll;
}
// Before starting partial unrolling, set up.partial to true,
// if user explicitly asked for unrolling
if (TripCount)
UP.Partial |= ExplicitUnroll;
// 6th priority is partial unrolling.
// Try partial unroll only when TripCount could be statically calculated.
if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
UP.Count = *UnrollFactor;
if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
UP.Count != TripCount)
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE,
"FullUnrollAsDirectedTooLarge",
L->getStartLoc(), L->getHeader())
<< "Unable to fully unroll loop as directed by unroll pragma "
"because "
"unrolled size is too large.";
});
if (UP.PartialThreshold != NoThreshold) {
if (UP.Count == 0) {
if (PragmaEnableUnroll)
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE,
"UnrollAsDirectedTooLarge",
L->getStartLoc(), L->getHeader())
<< "Unable to unroll loop as directed by unroll(enable) "
"pragma "
"because unrolled size is too large.";
});
}
}
return ExplicitUnroll;
}
assert(TripCount == 0 &&
"All cases when TripCount is constant should be covered here.");
if (PragmaFullUnroll)
ORE->emit([&]() {
return OptimizationRemarkMissed(
DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
L->getStartLoc(), L->getHeader())
<< "Unable to fully unroll loop as directed by unroll(full) "
"pragma "
"because loop has a runtime trip count.";
});
// 7th priority is runtime unrolling.
// Don't unroll a runtime trip count loop when it is disabled.
if (hasRuntimeUnrollDisablePragma(L)) {
UP.Count = 0;
return false;
}
// Don't unroll a small upper bound loop unless user or TTI asked to do so.
if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
UP.Count = 0;
return false;
}
// Check if the runtime trip count is too small when profile is available.
if (L->getHeader()->getParent()->hasProfileData()) {
if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
if (*ProfileTripCount < FlatLoopTripCountThreshold)
return false;
else
UP.AllowExpensiveTripCount = true;
}
}
UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
if (!UP.Runtime) {
LLVM_DEBUG(
dbgs() << " will not try to unroll loop with runtime trip count "
<< "-unroll-runtime not given\n");
UP.Count = 0;
return false;
}
if (UP.Count == 0)
UP.Count = UP.DefaultUnrollRuntimeCount;
// Reduce unroll count to be the largest power-of-two factor of
// the original count which satisfies the threshold limit.
while (UP.Count != 0 &&
UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
UP.Count >>= 1;
#ifndef NDEBUG
unsigned OrigCount = UP.Count;
#endif
if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
while (UP.Count != 0 && TripMultiple % UP.Count != 0)
UP.Count >>= 1;
LLVM_DEBUG(
dbgs() << "Remainder loop is restricted (that could architecture "
"specific or because the loop contains a convergent "
"instruction), so unroll count must divide the trip "
"multiple, "
<< TripMultiple << ". Reducing unroll count from " << OrigCount
<< " to " << UP.Count << ".\n");
using namespace ore;
if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE,
"DifferentUnrollCountFromDirected",
L->getStartLoc(), L->getHeader())
<< "Unable to unroll loop the number of times directed by "
"unroll_count pragma because remainder loop is restricted "
"(that could architecture specific or because the loop "
"contains a convergent instruction) and so must have an "
"unroll "
"count that divides the loop trip multiple of "
<< NV("TripMultiple", TripMultiple) << ". Unrolling instead "
<< NV("UnrollCount", UP.Count) << " time(s).";
});
}
if (UP.Count > UP.MaxCount)
UP.Count = UP.MaxCount;
if (MaxTripCount && UP.Count > MaxTripCount)
UP.Count = MaxTripCount;
LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
<< "\n");
if (UP.Count < 2)
UP.Count = 0;
return ExplicitUnroll;
}
static LoopUnrollResult tryToUnrollLoop(
Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
const TargetTransformInfo &TTI, AssumptionCache &AC,
OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
Optional<bool> ProvidedAllowPeeling,
Optional<bool> ProvidedAllowProfileBasedPeeling,
Optional<unsigned> ProvidedFullUnrollMaxCount) {
LLVM_DEBUG(dbgs() << "Loop Unroll: F["
<< L->getHeader()->getParent()->getName() << "] Loop %"
<< L->getHeader()->getName() << "\n");
TransformationMode TM = hasUnrollTransformation(L);
if (TM & TM_Disable)
return LoopUnrollResult::Unmodified;
// If this loop isn't forced to be unrolled, avoid unrolling it when the
// parent loop has an explicit unroll-and-jam pragma. This is to prevent
// automatic unrolling from interfering with the user requested
// transformation.
Loop *ParentL = L->getParentLoop();
if (ParentL != nullptr &&
hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
hasUnrollTransformation(L) != TM_ForcedByUser) {
LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
<< " llvm.loop.unroll_and_jam.\n");
return LoopUnrollResult::Unmodified;
}
// If this loop isn't forced to be unrolled, avoid unrolling it when the
// loop has an explicit unroll-and-jam pragma. This is to prevent automatic
// unrolling from interfering with the user requested transformation.
if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
hasUnrollTransformation(L) != TM_ForcedByUser) {
LLVM_DEBUG(
dbgs()
<< " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
return LoopUnrollResult::Unmodified;
}
if (!L->isLoopSimplifyForm()) {
LLVM_DEBUG(
dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
return LoopUnrollResult::Unmodified;
}
// When automatic unrolling is disabled, do not unroll unless overridden for
// this loop.
if (OnlyWhenForced && !(TM & TM_Enable))
return LoopUnrollResult::Unmodified;
bool OptForSize = L->getHeader()->getParent()->hasOptSize();
unsigned NumInlineCandidates;
bool NotDuplicatable;
bool Convergent;
TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
ProvidedFullUnrollMaxCount);
TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
// Exit early if unrolling is disabled. For OptForSize, we pick the loop size
// as threshold later on.
if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
!OptForSize)
return LoopUnrollResult::Unmodified;
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
unsigned LoopSize =
ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
TTI, EphValues, UP.BEInsns);
LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
if (NotDuplicatable) {
LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
<< " instructions.\n");
return LoopUnrollResult::Unmodified;
}
// When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
// later), to (fully) unroll loops, if it does not increase code size.
if (OptForSize)
UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
if (NumInlineCandidates != 0) {
LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return LoopUnrollResult::Unmodified;
}
// Find the smallest exact trip count for any exit. This is an upper bound
// on the loop trip count, but an exit at an earlier iteration is still
// possible. An unroll by the smallest exact trip count guarantees that all
// brnaches relating to at least one exit can be eliminated. This is unlike
// the max trip count, which only guarantees that the backedge can be broken.
unsigned TripCount = 0;
unsigned TripMultiple = 1;
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBlock : ExitingBlocks)
if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
if (!TripCount || TC < TripCount)
TripCount = TripMultiple = TC;
if (!TripCount) {
// If no exact trip count is known, determine the trip multiple of either
// the loop latch or the single exiting block.
// TODO: Relax for multiple exits.
BasicBlock *ExitingBlock = L->getLoopLatch();
if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
ExitingBlock = L->getExitingBlock();
if (ExitingBlock)
TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
}
// If the loop contains a convergent operation, the prelude we'd add
// to do the first few instructions before we hit the unrolled loop
// is unsafe -- it adds a control-flow dependency to the convergent
// operation. Therefore restrict remainder loop (try unrolling without).
//
// TODO: This is quite conservative. In practice, convergent_op()
// is likely to be called unconditionally in the loop. In this
// case, the program would be ill-formed (on most architectures)
// unless n were the same on all threads in a thread group.
// Assuming n is the same on all threads, any kind of unrolling is
// safe. But currently llvm's notion of convergence isn't powerful
// enough to express this.
if (Convergent)
UP.AllowRemainder = false;
// Try to find the trip count upper bound if we cannot find the exact trip
// count.
unsigned MaxTripCount = 0;
bool MaxOrZero = false;
if (!TripCount) {
MaxTripCount = SE.getSmallConstantMaxTripCount(L);
MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
}
// computeUnrollCount() decides whether it is beneficial to use upper bound to
// fully unroll the loop.
bool UseUpperBound = false;
bool IsCountSetExplicitly = computeUnrollCount(
L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
TripMultiple, LoopSize, UP, PP, UseUpperBound);
if (!UP.Count)
return LoopUnrollResult::Unmodified;
if (PP.PeelCount) {
assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
<< " with iteration count " << PP.PeelCount << "!\n");
ORE.emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
L->getHeader())
<< " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
<< " iterations";
});
if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA)) {
simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
// If the loop was peeled, we already "used up" the profile information
// we had, so we don't want to unroll or peel again.
if (PP.PeelProfiledIterations)
L->setLoopAlreadyUnrolled();
return LoopUnrollResult::PartiallyUnrolled;
}
return LoopUnrollResult::Unmodified;
}
// At this point, UP.Runtime indicates that run-time unrolling is allowed.
// However, we only want to actually perform it if we don't know the trip
// count and the unroll count doesn't divide the known trip multiple.
// TODO: This decision should probably be pushed up into
// computeUnrollCount().
UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
// Save loop properties before it is transformed.
MDNode *OrigLoopID = L->getLoopID();
// Unroll the loop.
Loop *RemainderLoop = nullptr;
LoopUnrollResult UnrollResult = UnrollLoop(
L,
{UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
UP.UnrollRemainder, ForgetAllSCEV},
LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
if (UnrollResult == LoopUnrollResult::Unmodified)
return LoopUnrollResult::Unmodified;
if (RemainderLoop) {
Optional<MDNode *> RemainderLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
LLVMLoopUnrollFollowupRemainder});
if (RemainderLoopID.hasValue())
RemainderLoop->setLoopID(RemainderLoopID.getValue());
}
if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
Optional<MDNode *> NewLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
LLVMLoopUnrollFollowupUnrolled});
if (NewLoopID.hasValue()) {
L->setLoopID(NewLoopID.getValue());
// Do not setLoopAlreadyUnrolled if loop attributes have been specified
// explicitly.
return UnrollResult;
}
}
// If loop has an unroll count pragma or unrolled by explicitly set count
// mark loop as unrolled to prevent unrolling beyond that requested.
if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
L->setLoopAlreadyUnrolled();
return UnrollResult;
}
namespace {
class LoopUnroll : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
int OptLevel;
/// If false, use a cost model to determine whether unrolling of a loop is
/// profitable. If true, only loops that explicitly request unrolling via
/// metadata are considered. All other loops are skipped.
bool OnlyWhenForced;
/// If false, when SCEV is invalidated, only forget everything in the
/// top-most loop (call forgetTopMostLoop), of the loop being processed.
/// Otherwise, forgetAllLoops and rebuild when needed next.
bool ForgetAllSCEV;
Optional<unsigned> ProvidedCount;
Optional<unsigned> ProvidedThreshold;
Optional<bool> ProvidedAllowPartial;
Optional<bool> ProvidedRuntime;
Optional<bool> ProvidedUpperBound;
Optional<bool> ProvidedAllowPeeling;
Optional<bool> ProvidedAllowProfileBasedPeeling;
Optional<unsigned> ProvidedFullUnrollMaxCount;
LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
Optional<unsigned> Count = None,
Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
Optional<bool> UpperBound = None,
Optional<bool> AllowPeeling = None,
Optional<bool> AllowProfileBasedPeeling = None,
Optional<unsigned> ProvidedFullUnrollMaxCount = None)
: LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
ProvidedAllowPeeling(AllowPeeling),
ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
Function &F = *L->getHeader()->getParent();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
// For the old PM, we can't use OptimizationRemarkEmitter as an analysis
// pass. Function analyses need to be preserved across loop transformations
// but ORE cannot be preserved (see comment before the pass definition).
OptimizationRemarkEmitter ORE(&F);
bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
LoopUnrollResult Result = tryToUnrollLoop(
L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
ProvidedFullUnrollMaxCount);
if (Result == LoopUnrollResult::FullyUnrolled)
LPM.markLoopAsDeleted(*L);
return Result != LoopUnrollResult::Unmodified;
}
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG...
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfoWrapperPass>();
// FIXME: Loop passes are required to preserve domtree, and for now we just
// recreate dom info if anything gets unrolled.
getLoopAnalysisUsage(AU);
}
};
} // end anonymous namespace
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
bool ForgetAllSCEV, int Threshold, int Count,
int AllowPartial, int Runtime, int UpperBound,
int AllowPeeling) {
// TODO: It would make more sense for this function to take the optionals
// directly, but that's dangerous since it would silently break out of tree
// callers.
return new LoopUnroll(
OptLevel, OnlyWhenForced, ForgetAllSCEV,
Threshold == -1 ? None : Optional<unsigned>(Threshold),
Count == -1 ? None : Optional<unsigned>(Count),
AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
Runtime == -1 ? None : Optional<bool>(Runtime),
UpperBound == -1 ? None : Optional<bool>(UpperBound),
AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
}
Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
bool ForgetAllSCEV) {
return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
0, 0, 0, 1);
}
PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
// For the new PM, we can't use OptimizationRemarkEmitter as an analysis
// pass. Function analyses need to be preserved across loop transformations
// but ORE cannot be preserved (see comment before the pass definition).
OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
// Keep track of the previous loop structure so we can identify new loops
// created by unrolling.
Loop *ParentL = L.getParentLoop();
SmallPtrSet<Loop *, 4> OldLoops;
if (ParentL)
OldLoops.insert(ParentL->begin(), ParentL->end());
else
OldLoops.insert(AR.LI.begin(), AR.LI.end());
std::string LoopName = std::string(L.getName());
bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
/*BFI*/ nullptr, /*PSI*/ nullptr,
/*PreserveLCSSA*/ true, OptLevel,
OnlyWhenForced, ForgetSCEV, /*Count*/ None,
/*Threshold*/ None, /*AllowPartial*/ false,
/*Runtime*/ false, /*UpperBound*/ false,
/*AllowPeeling*/ true,
/*AllowProfileBasedPeeling*/ false,
/*FullUnrollMaxCount*/ None) !=
LoopUnrollResult::Unmodified;
if (!Changed)
return PreservedAnalyses::all();
// The parent must not be damaged by unrolling!
#ifndef NDEBUG
if (ParentL)
ParentL->verifyLoop();
#endif
// Unrolling can do several things to introduce new loops into a loop nest:
// - Full unrolling clones child loops within the current loop but then
// removes the current loop making all of the children appear to be new
// sibling loops.
//
// When a new loop appears as a sibling loop after fully unrolling,
// its nesting structure has fundamentally changed and we want to revisit
// it to reflect that.
//
// When unrolling has removed the current loop, we need to tell the
// infrastructure that it is gone.
//
// Finally, we support a debugging/testing mode where we revisit child loops
// as well. These are not expected to require further optimizations as either
// they or the loop they were cloned from have been directly visited already.
// But the debugging mode allows us to check this assumption.
bool IsCurrentLoopValid = false;
SmallVector<Loop *, 4> SibLoops;
if (ParentL)
SibLoops.append(ParentL->begin(), ParentL->end());
else
SibLoops.append(AR.LI.begin(), AR.LI.end());
erase_if(SibLoops, [&](Loop *SibLoop) {
if (SibLoop == &L) {
IsCurrentLoopValid = true;
return true;
}
// Otherwise erase the loop from the list if it was in the old loops.
return OldLoops.contains(SibLoop);
});
Updater.addSiblingLoops(SibLoops);
if (!IsCurrentLoopValid) {
Updater.markLoopAsDeleted(L, LoopName);
} else {
// We can only walk child loops if the current loop remained valid.
if (UnrollRevisitChildLoops) {
// Walk *all* of the child loops.
SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
Updater.addChildLoops(ChildLoops);
}
}
return getLoopPassPreservedAnalyses();
}
PreservedAnalyses LoopUnrollPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &LI = AM.getResult<LoopAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
LoopAnalysisManager *LAM = nullptr;
if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
LAM = &LAMProxy->getManager();
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
ProfileSummaryInfo *PSI =
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
bool Changed = false;
// The unroller requires loops to be in simplified form, and also needs LCSSA.
// Since simplification may add new inner loops, it has to run before the
// legality and profitability checks. This means running the loop unroller
// will simplify all loops, regardless of whether anything end up being
// unrolled.
for (auto &L : LI) {
Changed |=
simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
}
// Add the loop nests in the reverse order of LoopInfo. See method
// declaration.
SmallPriorityWorklist<Loop *, 4> Worklist;
appendLoopsToWorklist(LI, Worklist);
while (!Worklist.empty()) {
// Because the LoopInfo stores the loops in RPO, we walk the worklist
// from back to front so that we work forward across the CFG, which
// for unrolling is only needed to get optimization remarks emitted in
// a forward order.
Loop &L = *Worklist.pop_back_val();
#ifndef NDEBUG
Loop *ParentL = L.getParentLoop();
#endif
// Check if the profile summary indicates that the profiled application
// has a huge working set size, in which case we disable peeling to avoid
// bloating it further.
Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
if (PSI && PSI->hasHugeWorkingSetSize())
LocalAllowPeeling = false;
std::string LoopName = std::string(L.getName());
// The API here is quite complex to call and we allow to select some
// flavors of unrolling during construction time (by setting UnrollOpts).
LoopUnrollResult Result = tryToUnrollLoop(
&L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
/*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
UnrollOpts.ForgetSCEV, /*Count*/ None,
/*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
UnrollOpts.AllowUpperBound, LocalAllowPeeling,
UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
Changed |= Result != LoopUnrollResult::Unmodified;
// The parent must not be damaged by unrolling!
#ifndef NDEBUG
if (Result != LoopUnrollResult::Unmodified && ParentL)
ParentL->verifyLoop();
#endif
// Clear any cached analysis results for L if we removed it completely.
if (LAM && Result == LoopUnrollResult::FullyUnrolled)
LAM->clear(L, LoopName);
}
if (!Changed)
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
void LoopUnrollPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
OS, MapClassName2PassName);
OS << "<";
if (UnrollOpts.AllowPartial != None)
OS << (UnrollOpts.AllowPartial.getValue() ? "" : "no-") << "partial;";
if (UnrollOpts.AllowPeeling != None)
OS << (UnrollOpts.AllowPeeling.getValue() ? "" : "no-") << "peeling;";
if (UnrollOpts.AllowRuntime != None)
OS << (UnrollOpts.AllowRuntime.getValue() ? "" : "no-") << "runtime;";
if (UnrollOpts.AllowUpperBound != None)
OS << (UnrollOpts.AllowUpperBound.getValue() ? "" : "no-") << "upperbound;";
if (UnrollOpts.AllowProfileBasedPeeling != None)
OS << (UnrollOpts.AllowProfileBasedPeeling.getValue() ? "" : "no-")
<< "profile-peeling;";
if (UnrollOpts.FullUnrollMaxCount != None)
OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ";";
OS << "O" << UnrollOpts.OptLevel;
OS << ">";
}
|