aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Scalar/LoopPredication.cpp
blob: aa7e79a589f2703ab976b29c4386d1e8d81847c3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LoopPredication pass tries to convert loop variant range checks to loop
// invariant by widening checks across loop iterations. For example, it will
// convert
//
//   for (i = 0; i < n; i++) {
//     guard(i < len);
//     ...
//   }
//
// to
//
//   for (i = 0; i < n; i++) {
//     guard(n - 1 < len);
//     ...
//   }
//
// After this transformation the condition of the guard is loop invariant, so
// loop-unswitch can later unswitch the loop by this condition which basically
// predicates the loop by the widened condition:
//
//   if (n - 1 < len)
//     for (i = 0; i < n; i++) {
//       ...
//     }
//   else
//     deoptimize
//
// It's tempting to rely on SCEV here, but it has proven to be problematic.
// Generally the facts SCEV provides about the increment step of add
// recurrences are true if the backedge of the loop is taken, which implicitly
// assumes that the guard doesn't fail. Using these facts to optimize the
// guard results in a circular logic where the guard is optimized under the
// assumption that it never fails.
//
// For example, in the loop below the induction variable will be marked as nuw
// basing on the guard. Basing on nuw the guard predicate will be considered
// monotonic. Given a monotonic condition it's tempting to replace the induction
// variable in the condition with its value on the last iteration. But this
// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
//
//   for (int i = b; i != e; i++)
//     guard(i u< len)
//
// One of the ways to reason about this problem is to use an inductive proof
// approach. Given the loop:
//
//   if (B(0)) {
//     do {
//       I = PHI(0, I.INC)
//       I.INC = I + Step
//       guard(G(I));
//     } while (B(I));
//   }
//
// where B(x) and G(x) are predicates that map integers to booleans, we want a
// loop invariant expression M such the following program has the same semantics
// as the above:
//
//   if (B(0)) {
//     do {
//       I = PHI(0, I.INC)
//       I.INC = I + Step
//       guard(G(0) && M);
//     } while (B(I));
//   }
//
// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
//
// Informal proof that the transformation above is correct:
//
//   By the definition of guards we can rewrite the guard condition to:
//     G(I) && G(0) && M
//
//   Let's prove that for each iteration of the loop:
//     G(0) && M => G(I)
//   And the condition above can be simplified to G(Start) && M.
//
//   Induction base.
//     G(0) && M => G(0)
//
//   Induction step. Assuming G(0) && M => G(I) on the subsequent
//   iteration:
//
//     B(I) is true because it's the backedge condition.
//     G(I) is true because the backedge is guarded by this condition.
//
//   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
//
// Note that we can use anything stronger than M, i.e. any condition which
// implies M.
//
// When S = 1 (i.e. forward iterating loop), the transformation is supported
// when:
//   * The loop has a single latch with the condition of the form:
//     B(X) = latchStart + X <pred> latchLimit,
//     where <pred> is u<, u<=, s<, or s<=.
//   * The guard condition is of the form
//     G(X) = guardStart + X u< guardLimit
//
//   For the ult latch comparison case M is:
//     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
//        guardStart + X + 1 u< guardLimit
//
//   The only way the antecedent can be true and the consequent can be false is
//   if
//     X == guardLimit - 1 - guardStart
//   (and guardLimit is non-zero, but we won't use this latter fact).
//   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
//     latchStart + guardLimit - 1 - guardStart u< latchLimit
//   and its negation is
//     latchStart + guardLimit - 1 - guardStart u>= latchLimit
//
//   In other words, if
//     latchLimit u<= latchStart + guardLimit - 1 - guardStart
//   then:
//   (the ranges below are written in ConstantRange notation, where [A, B) is the
//   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
//
//      forall X . guardStart + X u< guardLimit &&
//                 latchStart + X u< latchLimit =>
//        guardStart + X + 1 u< guardLimit
//   == forall X . guardStart + X u< guardLimit &&
//                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
//        guardStart + X + 1 u< guardLimit
//   == forall X . (guardStart + X) in [0, guardLimit) &&
//                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
//        (guardStart + X + 1) in [0, guardLimit)
//   == forall X . X in [-guardStart, guardLimit - guardStart) &&
//                 X in [-latchStart, guardLimit - 1 - guardStart) =>
//         X in [-guardStart - 1, guardLimit - guardStart - 1)
//   == true
//
//   So the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart u>= latchLimit
//   Similarly for ule condition the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart u> latchLimit
//   For slt condition the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart s>= latchLimit
//   For sle condition the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart s> latchLimit
//
// When S = -1 (i.e. reverse iterating loop), the transformation is supported
// when:
//   * The loop has a single latch with the condition of the form:
//     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
//   * The guard condition is of the form
//     G(X) = X - 1 u< guardLimit
//
//   For the ugt latch comparison case M is:
//     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
//
//   The only way the antecedent can be true and the consequent can be false is if
//     X == 1.
//   If X == 1 then the second half of the antecedent is
//     1 u> latchLimit, and its negation is latchLimit u>= 1.
//
//   So the widened condition is:
//     guardStart u< guardLimit && latchLimit u>= 1.
//   Similarly for sgt condition the widened condition is:
//     guardStart u< guardLimit && latchLimit s>= 1.
//   For uge condition the widened condition is:
//     guardStart u< guardLimit && latchLimit u> 1.
//   For sge condition the widened condition is:
//     guardStart u< guardLimit && latchLimit s> 1.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopPredication.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/GuardUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

#define DEBUG_TYPE "loop-predication"

STATISTIC(TotalConsidered, "Number of guards considered");
STATISTIC(TotalWidened, "Number of checks widened");

using namespace llvm;

static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
                                        cl::Hidden, cl::init(true));

static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
                                        cl::Hidden, cl::init(true));

static cl::opt<bool>
    SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
                            cl::Hidden, cl::init(false));

// This is the scale factor for the latch probability. We use this during
// profitability analysis to find other exiting blocks that have a much higher
// probability of exiting the loop instead of loop exiting via latch.
// This value should be greater than 1 for a sane profitability check.
static cl::opt<float> LatchExitProbabilityScale(
    "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
    cl::desc("scale factor for the latch probability. Value should be greater "
             "than 1. Lower values are ignored"));

static cl::opt<bool> PredicateWidenableBranchGuards(
    "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
    cl::desc("Whether or not we should predicate guards "
             "expressed as widenable branches to deoptimize blocks"),
    cl::init(true));

namespace {
/// Represents an induction variable check:
///   icmp Pred, <induction variable>, <loop invariant limit>
struct LoopICmp {
  ICmpInst::Predicate Pred;
  const SCEVAddRecExpr *IV;
  const SCEV *Limit;
  LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
           const SCEV *Limit)
    : Pred(Pred), IV(IV), Limit(Limit) {}
  LoopICmp() {}
  void dump() {
    dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
           << ", Limit = " << *Limit << "\n";
  }
};

class LoopPredication {
  AliasAnalysis *AA;
  DominatorTree *DT;
  ScalarEvolution *SE;
  LoopInfo *LI;
  MemorySSAUpdater *MSSAU;

  Loop *L;
  const DataLayout *DL;
  BasicBlock *Preheader;
  LoopICmp LatchCheck;

  bool isSupportedStep(const SCEV* Step);
  Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
  Optional<LoopICmp> parseLoopLatchICmp();

  /// Return an insertion point suitable for inserting a safe to speculate
  /// instruction whose only user will be 'User' which has operands 'Ops'.  A
  /// trivial result would be the at the User itself, but we try to return a
  /// loop invariant location if possible.
  Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
  /// Same as above, *except* that this uses the SCEV definition of invariant
  /// which is that an expression *can be made* invariant via SCEVExpander.
  /// Thus, this version is only suitable for finding an insert point to be be
  /// passed to SCEVExpander!
  Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);

  /// Return true if the value is known to produce a single fixed value across
  /// all iterations on which it executes.  Note that this does not imply
  /// speculation safety.  That must be established separately.
  bool isLoopInvariantValue(const SCEV* S);

  Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
                     ICmpInst::Predicate Pred, const SCEV *LHS,
                     const SCEV *RHS);

  Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
                                        Instruction *Guard);
  Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
                                                        LoopICmp RangeCheck,
                                                        SCEVExpander &Expander,
                                                        Instruction *Guard);
  Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
                                                        LoopICmp RangeCheck,
                                                        SCEVExpander &Expander,
                                                        Instruction *Guard);
  unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
                         SCEVExpander &Expander, Instruction *Guard);
  bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
  bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
  // If the loop always exits through another block in the loop, we should not
  // predicate based on the latch check. For example, the latch check can be a
  // very coarse grained check and there can be more fine grained exit checks
  // within the loop.
  bool isLoopProfitableToPredicate();

  bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);

public:
  LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
                  LoopInfo *LI, MemorySSAUpdater *MSSAU)
      : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
  bool runOnLoop(Loop *L);
};

class LoopPredicationLegacyPass : public LoopPass {
public:
  static char ID;
  LoopPredicationLegacyPass() : LoopPass(ID) {
    initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
    getLoopAnalysisUsage(AU);
    AU.addPreserved<MemorySSAWrapperPass>();
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
    std::unique_ptr<MemorySSAUpdater> MSSAU;
    if (MSSAWP)
      MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
    return LP.runOnLoop(L);
  }
};

char LoopPredicationLegacyPass::ID = 0;
} // end namespace

INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
                      "Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
                    "Loop predication", false, false)

Pass *llvm::createLoopPredicationPass() {
  return new LoopPredicationLegacyPass();
}

PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
                                           LoopStandardAnalysisResults &AR,
                                           LPMUpdater &U) {
  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (AR.MSSA)
    MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
  LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
                     MSSAU ? MSSAU.get() : nullptr);
  if (!LP.runOnLoop(&L))
    return PreservedAnalyses::all();

  auto PA = getLoopPassPreservedAnalyses();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}

Optional<LoopICmp>
LoopPredication::parseLoopICmp(ICmpInst *ICI) {
  auto Pred = ICI->getPredicate();
  auto *LHS = ICI->getOperand(0);
  auto *RHS = ICI->getOperand(1);

  const SCEV *LHSS = SE->getSCEV(LHS);
  if (isa<SCEVCouldNotCompute>(LHSS))
    return None;
  const SCEV *RHSS = SE->getSCEV(RHS);
  if (isa<SCEVCouldNotCompute>(RHSS))
    return None;

  // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
  if (SE->isLoopInvariant(LHSS, L)) {
    std::swap(LHS, RHS);
    std::swap(LHSS, RHSS);
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
  if (!AR || AR->getLoop() != L)
    return None;

  return LoopICmp(Pred, AR, RHSS);
}

Value *LoopPredication::expandCheck(SCEVExpander &Expander,
                                    Instruction *Guard,
                                    ICmpInst::Predicate Pred, const SCEV *LHS,
                                    const SCEV *RHS) {
  Type *Ty = LHS->getType();
  assert(Ty == RHS->getType() && "expandCheck operands have different types?");

  if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
    IRBuilder<> Builder(Guard);
    if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
      return Builder.getTrue();
    if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
                                     LHS, RHS))
      return Builder.getFalse();
  }

  Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
  Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
  IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
  return Builder.CreateICmp(Pred, LHSV, RHSV);
}


// Returns true if its safe to truncate the IV to RangeCheckType.
// When the IV type is wider than the range operand type, we can still do loop
// predication, by generating SCEVs for the range and latch that are of the
// same type. We achieve this by generating a SCEV truncate expression for the
// latch IV. This is done iff truncation of the IV is a safe operation,
// without loss of information.
// Another way to achieve this is by generating a wider type SCEV for the
// range check operand, however, this needs a more involved check that
// operands do not overflow. This can lead to loss of information when the
// range operand is of the form: add i32 %offset, %iv. We need to prove that
// sext(x + y) is same as sext(x) + sext(y).
// This function returns true if we can safely represent the IV type in
// the RangeCheckType without loss of information.
static bool isSafeToTruncateWideIVType(const DataLayout &DL,
                                       ScalarEvolution &SE,
                                       const LoopICmp LatchCheck,
                                       Type *RangeCheckType) {
  if (!EnableIVTruncation)
    return false;
  assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
             DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
         "Expected latch check IV type to be larger than range check operand "
         "type!");
  // The start and end values of the IV should be known. This is to guarantee
  // that truncating the wide type will not lose information.
  auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
  auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
  if (!Limit || !Start)
    return false;
  // This check makes sure that the IV does not change sign during loop
  // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
  // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
  // IV wraps around, and the truncation of the IV would lose the range of
  // iterations between 2^32 and 2^64.
  if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
    return false;
  // The active bits should be less than the bits in the RangeCheckType. This
  // guarantees that truncating the latch check to RangeCheckType is a safe
  // operation.
  auto RangeCheckTypeBitSize =
      DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
  return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
         Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
}


// Return an LoopICmp describing a latch check equivlent to LatchCheck but with
// the requested type if safe to do so.  May involve the use of a new IV.
static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
                                                 ScalarEvolution &SE,
                                                 const LoopICmp LatchCheck,
                                                 Type *RangeCheckType) {

  auto *LatchType = LatchCheck.IV->getType();
  if (RangeCheckType == LatchType)
    return LatchCheck;
  // For now, bail out if latch type is narrower than range type.
  if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
      DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
    return None;
  if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
    return None;
  // We can now safely identify the truncated version of the IV and limit for
  // RangeCheckType.
  LoopICmp NewLatchCheck;
  NewLatchCheck.Pred = LatchCheck.Pred;
  NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
      SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
  if (!NewLatchCheck.IV)
    return None;
  NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
  LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
                    << "can be represented as range check type:"
                    << *RangeCheckType << "\n");
  LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
  LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
  return NewLatchCheck;
}

bool LoopPredication::isSupportedStep(const SCEV* Step) {
  return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
}

Instruction *LoopPredication::findInsertPt(Instruction *Use,
                                           ArrayRef<Value*> Ops) {
  for (Value *Op : Ops)
    if (!L->isLoopInvariant(Op))
      return Use;
  return Preheader->getTerminator();
}

Instruction *LoopPredication::findInsertPt(Instruction *Use,
                                           ArrayRef<const SCEV*> Ops) {
  // Subtlety: SCEV considers things to be invariant if the value produced is
  // the same across iterations.  This is not the same as being able to
  // evaluate outside the loop, which is what we actually need here.
  for (const SCEV *Op : Ops)
    if (!SE->isLoopInvariant(Op, L) ||
        !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
      return Use;
  return Preheader->getTerminator();
}

bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
  // Handling expressions which produce invariant results, but *haven't* yet
  // been removed from the loop serves two important purposes.
  // 1) Most importantly, it resolves a pass ordering cycle which would
  // otherwise need us to iteration licm, loop-predication, and either
  // loop-unswitch or loop-peeling to make progress on examples with lots of
  // predicable range checks in a row.  (Since, in the general case,  we can't
  // hoist the length checks until the dominating checks have been discharged
  // as we can't prove doing so is safe.)
  // 2) As a nice side effect, this exposes the value of peeling or unswitching
  // much more obviously in the IR.  Otherwise, the cost modeling for other
  // transforms would end up needing to duplicate all of this logic to model a
  // check which becomes predictable based on a modeled peel or unswitch.
  //
  // The cost of doing so in the worst case is an extra fill from the stack  in
  // the loop to materialize the loop invariant test value instead of checking
  // against the original IV which is presumable in a register inside the loop.
  // Such cases are presumably rare, and hint at missing oppurtunities for
  // other passes.

  if (SE->isLoopInvariant(S, L))
    // Note: This the SCEV variant, so the original Value* may be within the
    // loop even though SCEV has proven it is loop invariant.
    return true;

  // Handle a particular important case which SCEV doesn't yet know about which
  // shows up in range checks on arrays with immutable lengths.
  // TODO: This should be sunk inside SCEV.
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
    if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
      if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
        if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
            LI->hasMetadata(LLVMContext::MD_invariant_load))
          return true;
  return false;
}

Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
    LoopICmp LatchCheck, LoopICmp RangeCheck,
    SCEVExpander &Expander, Instruction *Guard) {
  auto *Ty = RangeCheck.IV->getType();
  // Generate the widened condition for the forward loop:
  //   guardStart u< guardLimit &&
  //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
  // where <pred> depends on the latch condition predicate. See the file
  // header comment for the reasoning.
  // guardLimit - guardStart + latchStart - 1
  const SCEV *GuardStart = RangeCheck.IV->getStart();
  const SCEV *GuardLimit = RangeCheck.Limit;
  const SCEV *LatchStart = LatchCheck.IV->getStart();
  const SCEV *LatchLimit = LatchCheck.Limit;
  // Subtlety: We need all the values to be *invariant* across all iterations,
  // but we only need to check expansion safety for those which *aren't*
  // already guaranteed to dominate the guard.
  if (!isLoopInvariantValue(GuardStart) ||
      !isLoopInvariantValue(GuardLimit) ||
      !isLoopInvariantValue(LatchStart) ||
      !isLoopInvariantValue(LatchLimit)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }
  if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
      !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }

  // guardLimit - guardStart + latchStart - 1
  const SCEV *RHS =
      SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
                     SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
  auto LimitCheckPred =
      ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);

  LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
  LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
  LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");

  auto *LimitCheck =
      expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
  auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
                                          GuardStart, GuardLimit);
  IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
  return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}

Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
    LoopICmp LatchCheck, LoopICmp RangeCheck,
    SCEVExpander &Expander, Instruction *Guard) {
  auto *Ty = RangeCheck.IV->getType();
  const SCEV *GuardStart = RangeCheck.IV->getStart();
  const SCEV *GuardLimit = RangeCheck.Limit;
  const SCEV *LatchStart = LatchCheck.IV->getStart();
  const SCEV *LatchLimit = LatchCheck.Limit;
  // Subtlety: We need all the values to be *invariant* across all iterations,
  // but we only need to check expansion safety for those which *aren't*
  // already guaranteed to dominate the guard.
  if (!isLoopInvariantValue(GuardStart) ||
      !isLoopInvariantValue(GuardLimit) ||
      !isLoopInvariantValue(LatchStart) ||
      !isLoopInvariantValue(LatchLimit)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }
  if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
      !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }
  // The decrement of the latch check IV should be the same as the
  // rangeCheckIV.
  auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
  if (RangeCheck.IV != PostDecLatchCheckIV) {
    LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
                      << *PostDecLatchCheckIV
                      << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
    return None;
  }

  // Generate the widened condition for CountDownLoop:
  // guardStart u< guardLimit &&
  // latchLimit <pred> 1.
  // See the header comment for reasoning of the checks.
  auto LimitCheckPred =
      ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
  auto *FirstIterationCheck = expandCheck(Expander, Guard,
                                          ICmpInst::ICMP_ULT,
                                          GuardStart, GuardLimit);
  auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
                                 SE->getOne(Ty));
  IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
  return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}

static void normalizePredicate(ScalarEvolution *SE, Loop *L,
                               LoopICmp& RC) {
  // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
  // ULT/UGE form for ease of handling by our caller.
  if (ICmpInst::isEquality(RC.Pred) &&
      RC.IV->getStepRecurrence(*SE)->isOne() &&
      SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
    RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
      ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
}


/// If ICI can be widened to a loop invariant condition emits the loop
/// invariant condition in the loop preheader and return it, otherwise
/// returns None.
Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
                                                       SCEVExpander &Expander,
                                                       Instruction *Guard) {
  LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
  LLVM_DEBUG(ICI->dump());

  // parseLoopStructure guarantees that the latch condition is:
  //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
  // We are looking for the range checks of the form:
  //   i u< guardLimit
  auto RangeCheck = parseLoopICmp(ICI);
  if (!RangeCheck) {
    LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
    return None;
  }
  LLVM_DEBUG(dbgs() << "Guard check:\n");
  LLVM_DEBUG(RangeCheck->dump());
  if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
    LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
                      << RangeCheck->Pred << ")!\n");
    return None;
  }
  auto *RangeCheckIV = RangeCheck->IV;
  if (!RangeCheckIV->isAffine()) {
    LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
    return None;
  }
  auto *Step = RangeCheckIV->getStepRecurrence(*SE);
  // We cannot just compare with latch IV step because the latch and range IVs
  // may have different types.
  if (!isSupportedStep(Step)) {
    LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
    return None;
  }
  auto *Ty = RangeCheckIV->getType();
  auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
  if (!CurrLatchCheckOpt) {
    LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
                         "corresponding to range type: "
                      << *Ty << "\n");
    return None;
  }

  LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
  // At this point, the range and latch step should have the same type, but need
  // not have the same value (we support both 1 and -1 steps).
  assert(Step->getType() ==
             CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
         "Range and latch steps should be of same type!");
  if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
    LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
    return None;
  }

  if (Step->isOne())
    return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
                                               Expander, Guard);
  else {
    assert(Step->isAllOnesValue() && "Step should be -1!");
    return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
                                               Expander, Guard);
  }
}

unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
                                        Value *Condition,
                                        SCEVExpander &Expander,
                                        Instruction *Guard) {
  unsigned NumWidened = 0;
  // The guard condition is expected to be in form of:
  //   cond1 && cond2 && cond3 ...
  // Iterate over subconditions looking for icmp conditions which can be
  // widened across loop iterations. Widening these conditions remember the
  // resulting list of subconditions in Checks vector.
  SmallVector<Value *, 4> Worklist(1, Condition);
  SmallPtrSet<Value *, 4> Visited;
  Value *WideableCond = nullptr;
  do {
    Value *Condition = Worklist.pop_back_val();
    if (!Visited.insert(Condition).second)
      continue;

    Value *LHS, *RHS;
    using namespace llvm::PatternMatch;
    if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
      Worklist.push_back(LHS);
      Worklist.push_back(RHS);
      continue;
    }

    if (match(Condition,
              m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
      // Pick any, we don't care which
      WideableCond = Condition;
      continue;
    }

    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
      if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
                                                   Guard)) {
        Checks.push_back(NewRangeCheck.getValue());
        NumWidened++;
        continue;
      }
    }

    // Save the condition as is if we can't widen it
    Checks.push_back(Condition);
  } while (!Worklist.empty());
  // At the moment, our matching logic for wideable conditions implicitly
  // assumes we preserve the form: (br (and Cond, WC())).  FIXME
  // Note that if there were multiple calls to wideable condition in the
  // traversal, we only need to keep one, and which one is arbitrary.
  if (WideableCond)
    Checks.push_back(WideableCond);
  return NumWidened;
}

bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
                                           SCEVExpander &Expander) {
  LLVM_DEBUG(dbgs() << "Processing guard:\n");
  LLVM_DEBUG(Guard->dump());

  TotalConsidered++;
  SmallVector<Value *, 4> Checks;
  unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
                                      Guard);
  if (NumWidened == 0)
    return false;

  TotalWidened += NumWidened;

  // Emit the new guard condition
  IRBuilder<> Builder(findInsertPt(Guard, Checks));
  Value *AllChecks = Builder.CreateAnd(Checks);
  auto *OldCond = Guard->getOperand(0);
  Guard->setOperand(0, AllChecks);
  RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);

  LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
  return true;
}

bool LoopPredication::widenWidenableBranchGuardConditions(
    BranchInst *BI, SCEVExpander &Expander) {
  assert(isGuardAsWidenableBranch(BI) && "Must be!");
  LLVM_DEBUG(dbgs() << "Processing guard:\n");
  LLVM_DEBUG(BI->dump());

  TotalConsidered++;
  SmallVector<Value *, 4> Checks;
  unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
                                      Expander, BI);
  if (NumWidened == 0)
    return false;

  TotalWidened += NumWidened;

  // Emit the new guard condition
  IRBuilder<> Builder(findInsertPt(BI, Checks));
  Value *AllChecks = Builder.CreateAnd(Checks);
  auto *OldCond = BI->getCondition();
  BI->setCondition(AllChecks);
  RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
  assert(isGuardAsWidenableBranch(BI) &&
         "Stopped being a guard after transform?");

  LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
  return true;
}

Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
  using namespace PatternMatch;

  BasicBlock *LoopLatch = L->getLoopLatch();
  if (!LoopLatch) {
    LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
    return None;
  }

  auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
  if (!BI || !BI->isConditional()) {
    LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
    return None;
  }
  BasicBlock *TrueDest = BI->getSuccessor(0);
  assert(
      (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
      "One of the latch's destinations must be the header");

  auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
  if (!ICI) {
    LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
    return None;
  }
  auto Result = parseLoopICmp(ICI);
  if (!Result) {
    LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
    return None;
  }

  if (TrueDest != L->getHeader())
    Result->Pred = ICmpInst::getInversePredicate(Result->Pred);

  // Check affine first, so if it's not we don't try to compute the step
  // recurrence.
  if (!Result->IV->isAffine()) {
    LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
    return None;
  }

  auto *Step = Result->IV->getStepRecurrence(*SE);
  if (!isSupportedStep(Step)) {
    LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
    return None;
  }

  auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
    if (Step->isOne()) {
      return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
             Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
    } else {
      assert(Step->isAllOnesValue() && "Step should be -1!");
      return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
             Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
    }
  };

  normalizePredicate(SE, L, *Result);
  if (IsUnsupportedPredicate(Step, Result->Pred)) {
    LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
                      << ")!\n");
    return None;
  }

  return Result;
}


bool LoopPredication::isLoopProfitableToPredicate() {
  if (SkipProfitabilityChecks)
    return true;

  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
  L->getExitEdges(ExitEdges);
  // If there is only one exiting edge in the loop, it is always profitable to
  // predicate the loop.
  if (ExitEdges.size() == 1)
    return true;

  // Calculate the exiting probabilities of all exiting edges from the loop,
  // starting with the LatchExitProbability.
  // Heuristic for profitability: If any of the exiting blocks' probability of
  // exiting the loop is larger than exiting through the latch block, it's not
  // profitable to predicate the loop.
  auto *LatchBlock = L->getLoopLatch();
  assert(LatchBlock && "Should have a single latch at this point!");
  auto *LatchTerm = LatchBlock->getTerminator();
  assert(LatchTerm->getNumSuccessors() == 2 &&
         "expected to be an exiting block with 2 succs!");
  unsigned LatchBrExitIdx =
      LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
  // We compute branch probabilities without BPI. We do not rely on BPI since
  // Loop predication is usually run in an LPM and BPI is only preserved
  // lossily within loop pass managers, while BPI has an inherent notion of
  // being complete for an entire function.

  // If the latch exits into a deoptimize or an unreachable block, do not
  // predicate on that latch check.
  auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
  if (isa<UnreachableInst>(LatchTerm) ||
      LatchExitBlock->getTerminatingDeoptimizeCall())
    return false;

  auto IsValidProfileData = [](MDNode *ProfileData, const Instruction *Term) {
    if (!ProfileData || !ProfileData->getOperand(0))
      return false;
    if (MDString *MDS = dyn_cast<MDString>(ProfileData->getOperand(0)))
      if (!MDS->getString().equals("branch_weights"))
        return false;
    if (ProfileData->getNumOperands() != 1 + Term->getNumSuccessors())
      return false;
    return true;
  };
  MDNode *LatchProfileData = LatchTerm->getMetadata(LLVMContext::MD_prof);
  // Latch terminator has no valid profile data, so nothing to check
  // profitability on.
  if (!IsValidProfileData(LatchProfileData, LatchTerm))
    return true;

  auto ComputeBranchProbability =
      [&](const BasicBlock *ExitingBlock,
          const BasicBlock *ExitBlock) -> BranchProbability {
    auto *Term = ExitingBlock->getTerminator();
    MDNode *ProfileData = Term->getMetadata(LLVMContext::MD_prof);
    unsigned NumSucc = Term->getNumSuccessors();
    if (IsValidProfileData(ProfileData, Term)) {
      uint64_t Numerator = 0, Denominator = 0, ProfVal = 0;
      for (unsigned i = 0; i < NumSucc; i++) {
        ConstantInt *CI =
            mdconst::extract<ConstantInt>(ProfileData->getOperand(i + 1));
        ProfVal = CI->getValue().getZExtValue();
        if (Term->getSuccessor(i) == ExitBlock)
          Numerator += ProfVal;
        Denominator += ProfVal;
      }
      return BranchProbability::getBranchProbability(Numerator, Denominator);
    } else {
      assert(LatchBlock != ExitingBlock &&
             "Latch term should always have profile data!");
      // No profile data, so we choose the weight as 1/num_of_succ(Src)
      return BranchProbability::getBranchProbability(1, NumSucc);
    }
  };

  BranchProbability LatchExitProbability =
      ComputeBranchProbability(LatchBlock, LatchExitBlock);

  // Protect against degenerate inputs provided by the user. Providing a value
  // less than one, can invert the definition of profitable loop predication.
  float ScaleFactor = LatchExitProbabilityScale;
  if (ScaleFactor < 1) {
    LLVM_DEBUG(
        dbgs()
        << "Ignored user setting for loop-predication-latch-probability-scale: "
        << LatchExitProbabilityScale << "\n");
    LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
    ScaleFactor = 1.0;
  }
  const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;

  for (const auto &ExitEdge : ExitEdges) {
    BranchProbability ExitingBlockProbability =
        ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
    // Some exiting edge has higher probability than the latch exiting edge.
    // No longer profitable to predicate.
    if (ExitingBlockProbability > LatchProbabilityThreshold)
      return false;
  }

  // We have concluded that the most probable way to exit from the
  // loop is through the latch (or there's no profile information and all
  // exits are equally likely).
  return true;
}

/// If we can (cheaply) find a widenable branch which controls entry into the
/// loop, return it.
static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
  // Walk back through any unconditional executed blocks and see if we can find
  // a widenable condition which seems to control execution of this loop.  Note
  // that we predict that maythrow calls are likely untaken and thus that it's
  // profitable to widen a branch before a maythrow call with a condition
  // afterwards even though that may cause the slow path to run in a case where
  // it wouldn't have otherwise.
  BasicBlock *BB = L->getLoopPreheader();
  if (!BB)
    return nullptr;
  do {
    if (BasicBlock *Pred = BB->getSinglePredecessor())
      if (BB == Pred->getSingleSuccessor()) {
        BB = Pred;
        continue;
      }
    break;
  } while (true);

  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    auto *Term = Pred->getTerminator();

    Value *Cond, *WC;
    BasicBlock *IfTrueBB, *IfFalseBB;
    if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
        IfTrueBB == BB)
      return cast<BranchInst>(Term);
  }
  return nullptr;
}

/// Return the minimum of all analyzeable exit counts.  This is an upper bound
/// on the actual exit count.  If there are not at least two analyzeable exits,
/// returns SCEVCouldNotCompute.
static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
                                                       DominatorTree &DT,
                                                       Loop *L) {
  SmallVector<BasicBlock *, 16> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  SmallVector<const SCEV *, 4> ExitCounts;
  for (BasicBlock *ExitingBB : ExitingBlocks) {
    const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
    if (isa<SCEVCouldNotCompute>(ExitCount))
      continue;
    assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
           "We should only have known counts for exiting blocks that "
           "dominate latch!");
    ExitCounts.push_back(ExitCount);
  }
  if (ExitCounts.size() < 2)
    return SE.getCouldNotCompute();
  return SE.getUMinFromMismatchedTypes(ExitCounts);
}

/// This implements an analogous, but entirely distinct transform from the main
/// loop predication transform.  This one is phrased in terms of using a
/// widenable branch *outside* the loop to allow us to simplify loop exits in a
/// following loop.  This is close in spirit to the IndVarSimplify transform
/// of the same name, but is materially different widening loosens legality
/// sharply.
bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
  // The transformation performed here aims to widen a widenable condition
  // above the loop such that all analyzeable exit leading to deopt are dead.
  // It assumes that the latch is the dominant exit for profitability and that
  // exits branching to deoptimizing blocks are rarely taken. It relies on the
  // semantics of widenable expressions for legality. (i.e. being able to fall
  // down the widenable path spuriously allows us to ignore exit order,
  // unanalyzeable exits, side effects, exceptional exits, and other challenges
  // which restrict the applicability of the non-WC based version of this
  // transform in IndVarSimplify.)
  //
  // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
  // imply flags on the expression being hoisted and inserting new uses (flags
  // are only correct for current uses).  The result is that we may be
  // inserting a branch on the value which can be either poison or undef.  In
  // this case, the branch can legally go either way; we just need to avoid
  // introducing UB.  This is achieved through the use of the freeze
  // instruction.

  SmallVector<BasicBlock *, 16> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  if (ExitingBlocks.empty())
    return false; // Nothing to do.

  auto *Latch = L->getLoopLatch();
  if (!Latch)
    return false;

  auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
  if (!WidenableBR)
    return false;

  const SCEV *LatchEC = SE->getExitCount(L, Latch);
  if (isa<SCEVCouldNotCompute>(LatchEC))
    return false; // profitability - want hot exit in analyzeable set

  // At this point, we have found an analyzeable latch, and a widenable
  // condition above the loop.  If we have a widenable exit within the loop
  // (for which we can't compute exit counts), drop the ability to further
  // widen so that we gain ability to analyze it's exit count and perform this
  // transform.  TODO: It'd be nice to know for sure the exit became
  // analyzeable after dropping widenability.
  bool ChangedLoop = false;

  for (auto *ExitingBB : ExitingBlocks) {
    if (LI->getLoopFor(ExitingBB) != L)
      continue;

    auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
    if (!BI)
      continue;

    Use *Cond, *WC;
    BasicBlock *IfTrueBB, *IfFalseBB;
    if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
        L->contains(IfTrueBB)) {
      WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
      ChangedLoop = true;
    }
  }
  if (ChangedLoop)
    SE->forgetLoop(L);

  // The use of umin(all analyzeable exits) instead of latch is subtle, but
  // important for profitability.  We may have a loop which hasn't been fully
  // canonicalized just yet.  If the exit we chose to widen is provably never
  // taken, we want the widened form to *also* be provably never taken.  We
  // can't guarantee this as a current unanalyzeable exit may later become
  // analyzeable, but we can at least avoid the obvious cases.
  const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
  if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
      !SE->isLoopInvariant(MinEC, L) ||
      !isSafeToExpandAt(MinEC, WidenableBR, *SE))
    return ChangedLoop;

  // Subtlety: We need to avoid inserting additional uses of the WC.  We know
  // that it can only have one transitive use at the moment, and thus moving
  // that use to just before the branch and inserting code before it and then
  // modifying the operand is legal.
  auto *IP = cast<Instruction>(WidenableBR->getCondition());
  // Here we unconditionally modify the IR, so after this point we should return
  // only `true`!
  IP->moveBefore(WidenableBR);
  if (MSSAU)
    if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
       MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
                          MemorySSA::BeforeTerminator);
  Rewriter.setInsertPoint(IP);
  IRBuilder<> B(IP);

  bool InvalidateLoop = false;
  Value *MinECV = nullptr; // lazily generated if needed
  for (BasicBlock *ExitingBB : ExitingBlocks) {
    // If our exiting block exits multiple loops, we can only rewrite the
    // innermost one.  Otherwise, we're changing how many times the innermost
    // loop runs before it exits.
    if (LI->getLoopFor(ExitingBB) != L)
      continue;

    // Can't rewrite non-branch yet.
    auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
    if (!BI)
      continue;

    // If already constant, nothing to do.
    if (isa<Constant>(BI->getCondition()))
      continue;

    const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
    if (isa<SCEVCouldNotCompute>(ExitCount) ||
        ExitCount->getType()->isPointerTy() ||
        !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
      continue;

    const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
    BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
    if (!ExitBB->getPostdominatingDeoptimizeCall())
      continue;

    /// Here we can be fairly sure that executing this exit will most likely
    /// lead to executing llvm.experimental.deoptimize.
    /// This is a profitability heuristic, not a legality constraint.

    // If we found a widenable exit condition, do two things:
    // 1) fold the widened exit test into the widenable condition
    // 2) fold the branch to untaken - avoids infinite looping

    Value *ECV = Rewriter.expandCodeFor(ExitCount);
    if (!MinECV)
      MinECV = Rewriter.expandCodeFor(MinEC);
    Value *RHS = MinECV;
    if (ECV->getType() != RHS->getType()) {
      Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
      ECV = B.CreateZExt(ECV, WiderTy);
      RHS = B.CreateZExt(RHS, WiderTy);
    }
    assert(!Latch || DT->dominates(ExitingBB, Latch));
    Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
    // Freeze poison or undef to an arbitrary bit pattern to ensure we can
    // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
    // context.
    NewCond = B.CreateFreeze(NewCond);

    widenWidenableBranch(WidenableBR, NewCond);

    Value *OldCond = BI->getCondition();
    BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
    InvalidateLoop = true;
  }

  if (InvalidateLoop)
    // We just mutated a bunch of loop exits changing there exit counts
    // widely.  We need to force recomputation of the exit counts given these
    // changes.  Note that all of the inserted exits are never taken, and
    // should be removed next time the CFG is modified.
    SE->forgetLoop(L);

  // Always return `true` since we have moved the WidenableBR's condition.
  return true;
}

bool LoopPredication::runOnLoop(Loop *Loop) {
  L = Loop;

  LLVM_DEBUG(dbgs() << "Analyzing ");
  LLVM_DEBUG(L->dump());

  Module *M = L->getHeader()->getModule();

  // There is nothing to do if the module doesn't use guards
  auto *GuardDecl =
      M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
  bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
  auto *WCDecl = M->getFunction(
      Intrinsic::getName(Intrinsic::experimental_widenable_condition));
  bool HasWidenableConditions =
      PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
  if (!HasIntrinsicGuards && !HasWidenableConditions)
    return false;

  DL = &M->getDataLayout();

  Preheader = L->getLoopPreheader();
  if (!Preheader)
    return false;

  auto LatchCheckOpt = parseLoopLatchICmp();
  if (!LatchCheckOpt)
    return false;
  LatchCheck = *LatchCheckOpt;

  LLVM_DEBUG(dbgs() << "Latch check:\n");
  LLVM_DEBUG(LatchCheck.dump());

  if (!isLoopProfitableToPredicate()) {
    LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
    return false;
  }
  // Collect all the guards into a vector and process later, so as not
  // to invalidate the instruction iterator.
  SmallVector<IntrinsicInst *, 4> Guards;
  SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
  for (const auto BB : L->blocks()) {
    for (auto &I : *BB)
      if (isGuard(&I))
        Guards.push_back(cast<IntrinsicInst>(&I));
    if (PredicateWidenableBranchGuards &&
        isGuardAsWidenableBranch(BB->getTerminator()))
      GuardsAsWidenableBranches.push_back(
          cast<BranchInst>(BB->getTerminator()));
  }

  SCEVExpander Expander(*SE, *DL, "loop-predication");
  bool Changed = false;
  for (auto *Guard : Guards)
    Changed |= widenGuardConditions(Guard, Expander);
  for (auto *Guard : GuardsAsWidenableBranches)
    Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
  Changed |= predicateLoopExits(L, Expander);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  return Changed;
}