1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
|
//===------- LoopBoundSplit.cpp - Split Loop Bound --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopBoundSplit.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#define DEBUG_TYPE "loop-bound-split"
namespace llvm {
using namespace PatternMatch;
namespace {
struct ConditionInfo {
/// Branch instruction with this condition
BranchInst *BI;
/// ICmp instruction with this condition
ICmpInst *ICmp;
/// Preciate info
ICmpInst::Predicate Pred;
/// AddRec llvm value
Value *AddRecValue;
/// Non PHI AddRec llvm value
Value *NonPHIAddRecValue;
/// Bound llvm value
Value *BoundValue;
/// AddRec SCEV
const SCEVAddRecExpr *AddRecSCEV;
/// Bound SCEV
const SCEV *BoundSCEV;
ConditionInfo()
: BI(nullptr), ICmp(nullptr), Pred(ICmpInst::BAD_ICMP_PREDICATE),
AddRecValue(nullptr), BoundValue(nullptr), AddRecSCEV(nullptr),
BoundSCEV(nullptr) {}
};
} // namespace
static void analyzeICmp(ScalarEvolution &SE, ICmpInst *ICmp,
ConditionInfo &Cond, const Loop &L) {
Cond.ICmp = ICmp;
if (match(ICmp, m_ICmp(Cond.Pred, m_Value(Cond.AddRecValue),
m_Value(Cond.BoundValue)))) {
const SCEV *AddRecSCEV = SE.getSCEV(Cond.AddRecValue);
const SCEV *BoundSCEV = SE.getSCEV(Cond.BoundValue);
const SCEVAddRecExpr *LHSAddRecSCEV = dyn_cast<SCEVAddRecExpr>(AddRecSCEV);
const SCEVAddRecExpr *RHSAddRecSCEV = dyn_cast<SCEVAddRecExpr>(BoundSCEV);
// Locate AddRec in LHSSCEV and Bound in RHSSCEV.
if (!LHSAddRecSCEV && RHSAddRecSCEV) {
std::swap(Cond.AddRecValue, Cond.BoundValue);
std::swap(AddRecSCEV, BoundSCEV);
Cond.Pred = ICmpInst::getSwappedPredicate(Cond.Pred);
}
Cond.AddRecSCEV = dyn_cast<SCEVAddRecExpr>(AddRecSCEV);
Cond.BoundSCEV = BoundSCEV;
Cond.NonPHIAddRecValue = Cond.AddRecValue;
// If the Cond.AddRecValue is PHI node, update Cond.NonPHIAddRecValue with
// value from backedge.
if (Cond.AddRecSCEV && isa<PHINode>(Cond.AddRecValue)) {
PHINode *PN = cast<PHINode>(Cond.AddRecValue);
Cond.NonPHIAddRecValue = PN->getIncomingValueForBlock(L.getLoopLatch());
}
}
}
static bool calculateUpperBound(const Loop &L, ScalarEvolution &SE,
ConditionInfo &Cond, bool IsExitCond) {
if (IsExitCond) {
const SCEV *ExitCount = SE.getExitCount(&L, Cond.ICmp->getParent());
if (isa<SCEVCouldNotCompute>(ExitCount))
return false;
Cond.BoundSCEV = ExitCount;
return true;
}
// For non-exit condtion, if pred is LT, keep existing bound.
if (Cond.Pred == ICmpInst::ICMP_SLT || Cond.Pred == ICmpInst::ICMP_ULT)
return true;
// For non-exit condition, if pre is LE, try to convert it to LT.
// Range Range
// AddRec <= Bound --> AddRec < Bound + 1
if (Cond.Pred != ICmpInst::ICMP_ULE && Cond.Pred != ICmpInst::ICMP_SLE)
return false;
if (IntegerType *BoundSCEVIntType =
dyn_cast<IntegerType>(Cond.BoundSCEV->getType())) {
unsigned BitWidth = BoundSCEVIntType->getBitWidth();
APInt Max = ICmpInst::isSigned(Cond.Pred)
? APInt::getSignedMaxValue(BitWidth)
: APInt::getMaxValue(BitWidth);
const SCEV *MaxSCEV = SE.getConstant(Max);
// Check Bound < INT_MAX
ICmpInst::Predicate Pred =
ICmpInst::isSigned(Cond.Pred) ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
if (SE.isKnownPredicate(Pred, Cond.BoundSCEV, MaxSCEV)) {
const SCEV *BoundPlusOneSCEV =
SE.getAddExpr(Cond.BoundSCEV, SE.getOne(BoundSCEVIntType));
Cond.BoundSCEV = BoundPlusOneSCEV;
Cond.Pred = Pred;
return true;
}
}
// ToDo: Support ICMP_NE/EQ.
return false;
}
static bool hasProcessableCondition(const Loop &L, ScalarEvolution &SE,
ICmpInst *ICmp, ConditionInfo &Cond,
bool IsExitCond) {
analyzeICmp(SE, ICmp, Cond, L);
// The BoundSCEV should be evaluated at loop entry.
if (!SE.isAvailableAtLoopEntry(Cond.BoundSCEV, &L))
return false;
// Allowed AddRec as induction variable.
if (!Cond.AddRecSCEV)
return false;
if (!Cond.AddRecSCEV->isAffine())
return false;
const SCEV *StepRecSCEV = Cond.AddRecSCEV->getStepRecurrence(SE);
// Allowed constant step.
if (!isa<SCEVConstant>(StepRecSCEV))
return false;
ConstantInt *StepCI = cast<SCEVConstant>(StepRecSCEV)->getValue();
// Allowed positive step for now.
// TODO: Support negative step.
if (StepCI->isNegative() || StepCI->isZero())
return false;
// Calculate upper bound.
if (!calculateUpperBound(L, SE, Cond, IsExitCond))
return false;
return true;
}
static bool isProcessableCondBI(const ScalarEvolution &SE,
const BranchInst *BI) {
BasicBlock *TrueSucc = nullptr;
BasicBlock *FalseSucc = nullptr;
ICmpInst::Predicate Pred;
Value *LHS, *RHS;
if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
return false;
if (!SE.isSCEVable(LHS->getType()))
return false;
assert(SE.isSCEVable(RHS->getType()) && "Expected RHS's type is SCEVable");
if (TrueSucc == FalseSucc)
return false;
return true;
}
static bool canSplitLoopBound(const Loop &L, const DominatorTree &DT,
ScalarEvolution &SE, ConditionInfo &Cond) {
// Skip function with optsize.
if (L.getHeader()->getParent()->hasOptSize())
return false;
// Split only innermost loop.
if (!L.isInnermost())
return false;
// Check loop is in simplified form.
if (!L.isLoopSimplifyForm())
return false;
// Check loop is in LCSSA form.
if (!L.isLCSSAForm(DT))
return false;
// Skip loop that cannot be cloned.
if (!L.isSafeToClone())
return false;
BasicBlock *ExitingBB = L.getExitingBlock();
// Assumed only one exiting block.
if (!ExitingBB)
return false;
BranchInst *ExitingBI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
if (!ExitingBI)
return false;
// Allowed only conditional branch with ICmp.
if (!isProcessableCondBI(SE, ExitingBI))
return false;
// Check the condition is processable.
ICmpInst *ICmp = cast<ICmpInst>(ExitingBI->getCondition());
if (!hasProcessableCondition(L, SE, ICmp, Cond, /*IsExitCond*/ true))
return false;
Cond.BI = ExitingBI;
return true;
}
static bool isProfitableToTransform(const Loop &L, const BranchInst *BI) {
// If the conditional branch splits a loop into two halves, we could
// generally say it is profitable.
//
// ToDo: Add more profitable cases here.
// Check this branch causes diamond CFG.
BasicBlock *Succ0 = BI->getSuccessor(0);
BasicBlock *Succ1 = BI->getSuccessor(1);
BasicBlock *Succ0Succ = Succ0->getSingleSuccessor();
BasicBlock *Succ1Succ = Succ1->getSingleSuccessor();
if (!Succ0Succ || !Succ1Succ || Succ0Succ != Succ1Succ)
return false;
// ToDo: Calculate each successor's instruction cost.
return true;
}
static BranchInst *findSplitCandidate(const Loop &L, ScalarEvolution &SE,
ConditionInfo &ExitingCond,
ConditionInfo &SplitCandidateCond) {
for (auto *BB : L.blocks()) {
// Skip condition of backedge.
if (L.getLoopLatch() == BB)
continue;
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI)
continue;
// Check conditional branch with ICmp.
if (!isProcessableCondBI(SE, BI))
continue;
// Skip loop invariant condition.
if (L.isLoopInvariant(BI->getCondition()))
continue;
// Check the condition is processable.
ICmpInst *ICmp = cast<ICmpInst>(BI->getCondition());
if (!hasProcessableCondition(L, SE, ICmp, SplitCandidateCond,
/*IsExitCond*/ false))
continue;
if (ExitingCond.BoundSCEV->getType() !=
SplitCandidateCond.BoundSCEV->getType())
continue;
// After transformation, we assume the split condition of the pre-loop is
// always true. In order to guarantee it, we need to check the start value
// of the split cond AddRec satisfies the split condition.
if (!SE.isLoopEntryGuardedByCond(&L, SplitCandidateCond.Pred,
SplitCandidateCond.AddRecSCEV->getStart(),
SplitCandidateCond.BoundSCEV))
continue;
SplitCandidateCond.BI = BI;
return BI;
}
return nullptr;
}
static bool splitLoopBound(Loop &L, DominatorTree &DT, LoopInfo &LI,
ScalarEvolution &SE, LPMUpdater &U) {
ConditionInfo SplitCandidateCond;
ConditionInfo ExitingCond;
// Check we can split this loop's bound.
if (!canSplitLoopBound(L, DT, SE, ExitingCond))
return false;
if (!findSplitCandidate(L, SE, ExitingCond, SplitCandidateCond))
return false;
if (!isProfitableToTransform(L, SplitCandidateCond.BI))
return false;
// Now, we have a split candidate. Let's build a form as below.
// +--------------------+
// | preheader |
// | set up newbound |
// +--------------------+
// | /----------------\
// +--------v----v------+ |
// | header |---\ |
// | with true condition| | |
// +--------------------+ | |
// | | |
// +--------v-----------+ | |
// | if.then.BB | | |
// +--------------------+ | |
// | | |
// +--------v-----------<---/ |
// | latch >----------/
// | with newbound |
// +--------------------+
// |
// +--------v-----------+
// | preheader2 |--------------\
// | if (AddRec i != | |
// | org bound) | |
// +--------------------+ |
// | /----------------\ |
// +--------v----v------+ | |
// | header2 |---\ | |
// | conditional branch | | | |
// |with false condition| | | |
// +--------------------+ | | |
// | | | |
// +--------v-----------+ | | |
// | if.then.BB2 | | | |
// +--------------------+ | | |
// | | | |
// +--------v-----------<---/ | |
// | latch2 >----------/ |
// | with org bound | |
// +--------v-----------+ |
// | |
// | +---------------+ |
// +--> exit <-------/
// +---------------+
// Let's create post loop.
SmallVector<BasicBlock *, 8> PostLoopBlocks;
Loop *PostLoop;
ValueToValueMapTy VMap;
BasicBlock *PreHeader = L.getLoopPreheader();
BasicBlock *SplitLoopPH = SplitEdge(PreHeader, L.getHeader(), &DT, &LI);
PostLoop = cloneLoopWithPreheader(L.getExitBlock(), SplitLoopPH, &L, VMap,
".split", &LI, &DT, PostLoopBlocks);
remapInstructionsInBlocks(PostLoopBlocks, VMap);
BasicBlock *PostLoopPreHeader = PostLoop->getLoopPreheader();
IRBuilder<> Builder(&PostLoopPreHeader->front());
// Update phi nodes in header of post-loop.
bool isExitingLatch =
(L.getExitingBlock() == L.getLoopLatch()) ? true : false;
Value *ExitingCondLCSSAPhi = nullptr;
for (PHINode &PN : L.getHeader()->phis()) {
// Create LCSSA phi node in preheader of post-loop.
PHINode *LCSSAPhi =
Builder.CreatePHI(PN.getType(), 1, PN.getName() + ".lcssa");
LCSSAPhi->setDebugLoc(PN.getDebugLoc());
// If the exiting block is loop latch, the phi does not have the update at
// last iteration. In this case, update lcssa phi with value from backedge.
LCSSAPhi->addIncoming(
isExitingLatch ? PN.getIncomingValueForBlock(L.getLoopLatch()) : &PN,
L.getExitingBlock());
// Update the start value of phi node in post-loop with the LCSSA phi node.
PHINode *PostLoopPN = cast<PHINode>(VMap[&PN]);
PostLoopPN->setIncomingValueForBlock(PostLoopPreHeader, LCSSAPhi);
// Find PHI with exiting condition from pre-loop. The PHI should be
// SCEVAddRecExpr and have same incoming value from backedge with
// ExitingCond.
if (!SE.isSCEVable(PN.getType()))
continue;
const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
if (PhiSCEV && ExitingCond.NonPHIAddRecValue ==
PN.getIncomingValueForBlock(L.getLoopLatch()))
ExitingCondLCSSAPhi = LCSSAPhi;
}
// Add conditional branch to check we can skip post-loop in its preheader.
Instruction *OrigBI = PostLoopPreHeader->getTerminator();
ICmpInst::Predicate Pred = ICmpInst::ICMP_NE;
Value *Cond =
Builder.CreateICmp(Pred, ExitingCondLCSSAPhi, ExitingCond.BoundValue);
Builder.CreateCondBr(Cond, PostLoop->getHeader(), PostLoop->getExitBlock());
OrigBI->eraseFromParent();
// Create new loop bound and add it into preheader of pre-loop.
const SCEV *NewBoundSCEV = ExitingCond.BoundSCEV;
const SCEV *SplitBoundSCEV = SplitCandidateCond.BoundSCEV;
NewBoundSCEV = ICmpInst::isSigned(ExitingCond.Pred)
? SE.getSMinExpr(NewBoundSCEV, SplitBoundSCEV)
: SE.getUMinExpr(NewBoundSCEV, SplitBoundSCEV);
SCEVExpander Expander(
SE, L.getHeader()->getParent()->getParent()->getDataLayout(), "split");
Instruction *InsertPt = SplitLoopPH->getTerminator();
Value *NewBoundValue =
Expander.expandCodeFor(NewBoundSCEV, NewBoundSCEV->getType(), InsertPt);
NewBoundValue->setName("new.bound");
// Replace exiting bound value of pre-loop NewBound.
ExitingCond.ICmp->setOperand(1, NewBoundValue);
// Replace SplitCandidateCond.BI's condition of pre-loop by True.
LLVMContext &Context = PreHeader->getContext();
SplitCandidateCond.BI->setCondition(ConstantInt::getTrue(Context));
// Replace cloned SplitCandidateCond.BI's condition in post-loop by False.
BranchInst *ClonedSplitCandidateBI =
cast<BranchInst>(VMap[SplitCandidateCond.BI]);
ClonedSplitCandidateBI->setCondition(ConstantInt::getFalse(Context));
// Replace exit branch target of pre-loop by post-loop's preheader.
if (L.getExitBlock() == ExitingCond.BI->getSuccessor(0))
ExitingCond.BI->setSuccessor(0, PostLoopPreHeader);
else
ExitingCond.BI->setSuccessor(1, PostLoopPreHeader);
// Update phi node in exit block of post-loop.
Builder.SetInsertPoint(&PostLoopPreHeader->front());
for (PHINode &PN : PostLoop->getExitBlock()->phis()) {
for (auto i : seq<int>(0, PN.getNumOperands())) {
// Check incoming block is pre-loop's exiting block.
if (PN.getIncomingBlock(i) == L.getExitingBlock()) {
Value *IncomingValue = PN.getIncomingValue(i);
// Create LCSSA phi node for incoming value.
PHINode *LCSSAPhi =
Builder.CreatePHI(PN.getType(), 1, PN.getName() + ".lcssa");
LCSSAPhi->setDebugLoc(PN.getDebugLoc());
LCSSAPhi->addIncoming(IncomingValue, PN.getIncomingBlock(i));
// Replace pre-loop's exiting block by post-loop's preheader.
PN.setIncomingBlock(i, PostLoopPreHeader);
// Replace incoming value by LCSSAPhi.
PN.setIncomingValue(i, LCSSAPhi);
// Add a new incoming value with post-loop's exiting block.
PN.addIncoming(VMap[IncomingValue], PostLoop->getExitingBlock());
}
}
}
// Update dominator tree.
DT.changeImmediateDominator(PostLoopPreHeader, L.getExitingBlock());
DT.changeImmediateDominator(PostLoop->getExitBlock(), PostLoopPreHeader);
// Invalidate cached SE information.
SE.forgetLoop(&L);
// Canonicalize loops.
simplifyLoop(&L, &DT, &LI, &SE, nullptr, nullptr, true);
simplifyLoop(PostLoop, &DT, &LI, &SE, nullptr, nullptr, true);
// Add new post-loop to loop pass manager.
U.addSiblingLoops(PostLoop);
return true;
}
PreservedAnalyses LoopBoundSplitPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
Function &F = *L.getHeader()->getParent();
(void)F;
LLVM_DEBUG(dbgs() << "Spliting bound of loop in " << F.getName() << ": " << L
<< "\n");
if (!splitLoopBound(L, AR.DT, AR.LI, AR.SE, U))
return PreservedAnalyses::all();
assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
AR.LI.verify(AR.DT);
return getLoopPassPreservedAnalyses();
}
} // end namespace llvm
|