aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Scalar/LICM.cpp
blob: 6372ce19f8eecad34f0042ece0fc2f6333ae21d0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion, attempting to remove as much
// code from the body of a loop as possible.  It does this by either hoisting
// code into the preheader block, or by sinking code to the exit blocks if it is
// safe.  This pass also promotes must-aliased memory locations in the loop to
// live in registers, thus hoisting and sinking "invariant" loads and stores.
//
// Hoisting operations out of loops is a canonicalization transform.  It
// enables and simplifies subsequent optimizations in the middle-end.
// Rematerialization of hoisted instructions to reduce register pressure is the
// responsibility of the back-end, which has more accurate information about
// register pressure and also handles other optimizations than LICM that
// increase live-ranges.
//
// This pass uses alias analysis for two purposes:
//
//  1. Moving loop invariant loads and calls out of loops.  If we can determine
//     that a load or call inside of a loop never aliases anything stored to,
//     we can hoist it or sink it like any other instruction.
//  2. Scalar Promotion of Memory - If there is a store instruction inside of
//     the loop, we try to move the store to happen AFTER the loop instead of
//     inside of the loop.  This can only happen if a few conditions are true:
//       A. The pointer stored through is loop invariant
//       B. There are no stores or loads in the loop which _may_ alias the
//          pointer.  There are no calls in the loop which mod/ref the pointer.
//     If these conditions are true, we can promote the loads and stores in the
//     loop of the pointer to use a temporary alloca'd variable.  We then use
//     the SSAUpdater to construct the appropriate SSA form for the value.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <utility>
using namespace llvm;

#define DEBUG_TYPE "licm"

STATISTIC(NumCreatedBlocks, "Number of blocks created");
STATISTIC(NumClonedBranches, "Number of branches cloned");
STATISTIC(NumSunk, "Number of instructions sunk out of loop");
STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
STATISTIC(NumPromoted, "Number of memory locations promoted to registers");

/// Memory promotion is enabled by default.
static cl::opt<bool>
    DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
                     cl::desc("Disable memory promotion in LICM pass"));

static cl::opt<bool> ControlFlowHoisting(
    "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
    cl::desc("Enable control flow (and PHI) hoisting in LICM"));

static cl::opt<uint32_t> MaxNumUsesTraversed(
    "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
    cl::desc("Max num uses visited for identifying load "
             "invariance in loop using invariant start (default = 8)"));

// Experimental option to allow imprecision in LICM in pathological cases, in
// exchange for faster compile. This is to be removed if MemorySSA starts to
// address the same issue. This flag applies only when LICM uses MemorySSA
// instead on AliasSetTracker. LICM calls MemorySSAWalker's
// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
// which may not be precise, since optimizeUses is capped. The result is
// correct, but we may not get as "far up" as possible to get which access is
// clobbering the one queried.
cl::opt<unsigned> llvm::SetLicmMssaOptCap(
    "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
    cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
             "for faster compile. Caps the MemorySSA clobbering calls."));

// Experimentally, memory promotion carries less importance than sinking and
// hoisting. Limit when we do promotion when using MemorySSA, in order to save
// compile time.
cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
    "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
    cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
             "effect. When MSSA in LICM is enabled, then this is the maximum "
             "number of accesses allowed to be present in a loop in order to "
             "enable memory promotion."));

static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
                                  const LoopSafetyInfo *SafetyInfo,
                                  TargetTransformInfo *TTI, bool &FreeInLoop,
                                  bool LoopNestMode);
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
                  OptimizationRemarkEmitter *ORE);
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
                 BlockFrequencyInfo *BFI, const Loop *CurLoop,
                 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
                 OptimizationRemarkEmitter *ORE);
static bool isSafeToExecuteUnconditionally(
    Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
    const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
    OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
    bool AllowSpeculation);
static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
                                     AliasSetTracker *CurAST, Loop *CurLoop,
                                     AAResults *AA);
static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
                                             Loop *CurLoop, Instruction &I,
                                             SinkAndHoistLICMFlags &Flags);
static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
                                              MemoryUse &MU);
static Instruction *cloneInstructionInExitBlock(
    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);

static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
                             MemorySSAUpdater *MSSAU);

static void moveInstructionBefore(Instruction &I, Instruction &Dest,
                                  ICFLoopSafetyInfo &SafetyInfo,
                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE);

static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
                                function_ref<void(Instruction *)> Fn);
static SmallVector<SmallSetVector<Value *, 8>, 0>
collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);

namespace {
struct LoopInvariantCodeMotion {
  bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
                 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
                 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
                 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);

  LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
                          unsigned LicmMssaNoAccForPromotionCap,
                          bool LicmAllowSpeculation)
      : LicmMssaOptCap(LicmMssaOptCap),
        LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
        LicmAllowSpeculation(LicmAllowSpeculation) {}

private:
  unsigned LicmMssaOptCap;
  unsigned LicmMssaNoAccForPromotionCap;
  bool LicmAllowSpeculation;
};

struct LegacyLICMPass : public LoopPass {
  static char ID; // Pass identification, replacement for typeid
  LegacyLICMPass(
      unsigned LicmMssaOptCap = SetLicmMssaOptCap,
      unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
      bool LicmAllowSpeculation = true)
      : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                           LicmAllowSpeculation) {
    initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;

    LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
                      << L->getHeader()->getNameOrAsOperand() << "\n");

    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
    bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
    BlockFrequencyInfo *BFI =
        hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
                       : nullptr;
    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
    // pass. Function analyses need to be preserved across loop transformations
    // but ORE cannot be preserved (see comment before the pass definition).
    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
    return LICM.runOnLoop(
        L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
        &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
        &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
            *L->getHeader()->getParent()),
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
            *L->getHeader()->getParent()),
        SE ? &SE->getSE() : nullptr, MSSA, &ORE);
  }

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG...
  ///
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addPreserved<MemorySSAWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    getLoopAnalysisUsage(AU);
    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
    AU.addPreserved<LazyBlockFrequencyInfoPass>();
    AU.addPreserved<LazyBranchProbabilityInfoPass>();
  }

private:
  LoopInvariantCodeMotion LICM;
};
} // namespace

PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
  if (!AR.MSSA)
    report_fatal_error("LICM requires MemorySSA (loop-mssa)");

  // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
  // pass.  Function analyses need to be preserved across loop transformations
  // but ORE cannot be preserved (see comment before the pass definition).
  OptimizationRemarkEmitter ORE(L.getHeader()->getParent());

  LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                               LicmAllowSpeculation);
  if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
                      &AR.SE, AR.MSSA, &ORE))
    return PreservedAnalyses::all();

  auto PA = getLoopPassPreservedAnalyses();

  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LoopAnalysis>();
  PA.preserve<MemorySSAAnalysis>();

  return PA;
}

PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
                                 LoopStandardAnalysisResults &AR,
                                 LPMUpdater &) {
  if (!AR.MSSA)
    report_fatal_error("LNICM requires MemorySSA (loop-mssa)");

  // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
  // pass.  Function analyses need to be preserved across loop transformations
  // but ORE cannot be preserved (see comment before the pass definition).
  OptimizationRemarkEmitter ORE(LN.getParent());

  LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                               LicmAllowSpeculation);

  Loop &OutermostLoop = LN.getOutermostLoop();
  bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
                                &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);

  if (!Changed)
    return PreservedAnalyses::all();

  auto PA = getLoopPassPreservedAnalyses();

  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LoopAnalysis>();
  PA.preserve<MemorySSAAnalysis>();

  return PA;
}

char LegacyLICMPass::ID = 0;
INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
                    false)

Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
                           unsigned LicmMssaNoAccForPromotionCap,
                           bool LicmAllowSpeculation) {
  return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                            LicmAllowSpeculation);
}

llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
                                                   MemorySSA *MSSA)
    : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
                            IsSink, L, MSSA) {}

llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
    unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
    Loop *L, MemorySSA *MSSA)
    : LicmMssaOptCap(LicmMssaOptCap),
      LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
      IsSink(IsSink) {
  assert(((L != nullptr) == (MSSA != nullptr)) &&
         "Unexpected values for SinkAndHoistLICMFlags");
  if (!MSSA)
    return;

  unsigned AccessCapCount = 0;
  for (auto *BB : L->getBlocks())
    if (const auto *Accesses = MSSA->getBlockAccesses(BB))
      for (const auto &MA : *Accesses) {
        (void)MA;
        ++AccessCapCount;
        if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
          NoOfMemAccTooLarge = true;
          return;
        }
      }
}

/// Hoist expressions out of the specified loop. Note, alias info for inner
/// loop is not preserved so it is not a good idea to run LICM multiple
/// times on one loop.
bool LoopInvariantCodeMotion::runOnLoop(
    Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
    BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
    ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
    bool LoopNestMode) {
  bool Changed = false;

  assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");

  // If this loop has metadata indicating that LICM is not to be performed then
  // just exit.
  if (hasDisableLICMTransformsHint(L)) {
    return false;
  }

  // Don't sink stores from loops with coroutine suspend instructions.
  // LICM would sink instructions into the default destination of
  // the coroutine switch. The default destination of the switch is to
  // handle the case where the coroutine is suspended, by which point the
  // coroutine frame may have been destroyed. No instruction can be sunk there.
  // FIXME: This would unfortunately hurt the performance of coroutines, however
  // there is currently no general solution for this. Similar issues could also
  // potentially happen in other passes where instructions are being moved
  // across that edge.
  bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
    return llvm::any_of(*BB, [](Instruction &I) {
      IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
      return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
    });
  });

  MemorySSAUpdater MSSAU(MSSA);
  SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                              /*IsSink=*/true, L, MSSA);

  // Get the preheader block to move instructions into...
  BasicBlock *Preheader = L->getLoopPreheader();

  // Compute loop safety information.
  ICFLoopSafetyInfo SafetyInfo;
  SafetyInfo.computeLoopSafetyInfo(L);

  // We want to visit all of the instructions in this loop... that are not parts
  // of our subloops (they have already had their invariants hoisted out of
  // their loop, into this loop, so there is no need to process the BODIES of
  // the subloops).
  //
  // Traverse the body of the loop in depth first order on the dominator tree so
  // that we are guaranteed to see definitions before we see uses.  This allows
  // us to sink instructions in one pass, without iteration.  After sinking
  // instructions, we perform another pass to hoist them out of the loop.
  if (L->hasDedicatedExits())
    Changed |= LoopNestMode
                   ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
                                           DT, BFI, TLI, TTI, L, &MSSAU,
                                           &SafetyInfo, Flags, ORE)
                   : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
                                TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE);
  Flags.setIsSink(false);
  if (Preheader)
    Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
                           &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
                           LicmAllowSpeculation);

  // Now that all loop invariants have been removed from the loop, promote any
  // memory references to scalars that we can.
  // Don't sink stores from loops without dedicated block exits. Exits
  // containing indirect branches are not transformed by loop simplify,
  // make sure we catch that. An additional load may be generated in the
  // preheader for SSA updater, so also avoid sinking when no preheader
  // is available.
  if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
      !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
    // Figure out the loop exits and their insertion points
    SmallVector<BasicBlock *, 8> ExitBlocks;
    L->getUniqueExitBlocks(ExitBlocks);

    // We can't insert into a catchswitch.
    bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
      return isa<CatchSwitchInst>(Exit->getTerminator());
    });

    if (!HasCatchSwitch) {
      SmallVector<Instruction *, 8> InsertPts;
      SmallVector<MemoryAccess *, 8> MSSAInsertPts;
      InsertPts.reserve(ExitBlocks.size());
      MSSAInsertPts.reserve(ExitBlocks.size());
      for (BasicBlock *ExitBlock : ExitBlocks) {
        InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
        MSSAInsertPts.push_back(nullptr);
      }

      PredIteratorCache PIC;

      // Promoting one set of accesses may make the pointers for another set
      // loop invariant, so run this in a loop (with the MaybePromotable set
      // decreasing in size over time).
      bool Promoted = false;
      bool LocalPromoted;
      do {
        LocalPromoted = false;
        for (const SmallSetVector<Value *, 8> &PointerMustAliases :
             collectPromotionCandidates(MSSA, AA, L)) {
          LocalPromoted |= promoteLoopAccessesToScalars(
              PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
              DT, TLI, L, &MSSAU, &SafetyInfo, ORE, LicmAllowSpeculation);
        }
        Promoted |= LocalPromoted;
      } while (LocalPromoted);

      // Once we have promoted values across the loop body we have to
      // recursively reform LCSSA as any nested loop may now have values defined
      // within the loop used in the outer loop.
      // FIXME: This is really heavy handed. It would be a bit better to use an
      // SSAUpdater strategy during promotion that was LCSSA aware and reformed
      // it as it went.
      if (Promoted)
        formLCSSARecursively(*L, *DT, LI, SE);

      Changed |= Promoted;
    }
  }

  // Check that neither this loop nor its parent have had LCSSA broken. LICM is
  // specifically moving instructions across the loop boundary and so it is
  // especially in need of basic functional correctness checking here.
  assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
  assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
         "Parent loop not left in LCSSA form after LICM!");

  if (VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  if (Changed && SE)
    SE->forgetLoopDispositions(L);
  return Changed;
}

/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in reverse depth
/// first order w.r.t the DominatorTree.  This allows us to visit uses before
/// definitions, allowing us to sink a loop body in one pass without iteration.
///
bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
                      DominatorTree *DT, BlockFrequencyInfo *BFI,
                      TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
                      Loop *CurLoop, MemorySSAUpdater *MSSAU,
                      ICFLoopSafetyInfo *SafetyInfo,
                      SinkAndHoistLICMFlags &Flags,
                      OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {

  // Verify inputs.
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
         CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
         "Unexpected input to sinkRegion.");

  // We want to visit children before parents. We will enque all the parents
  // before their children in the worklist and process the worklist in reverse
  // order.
  SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);

  bool Changed = false;
  for (DomTreeNode *DTN : reverse(Worklist)) {
    BasicBlock *BB = DTN->getBlock();
    // Only need to process the contents of this block if it is not part of a
    // subloop (which would already have been processed).
    if (inSubLoop(BB, CurLoop, LI))
      continue;

    for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
      Instruction &I = *--II;

      // The instruction is not used in the loop if it is dead.  In this case,
      // we just delete it instead of sinking it.
      if (isInstructionTriviallyDead(&I, TLI)) {
        LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
        salvageKnowledge(&I);
        salvageDebugInfo(I);
        ++II;
        eraseInstruction(I, *SafetyInfo, MSSAU);
        Changed = true;
        continue;
      }

      // Check to see if we can sink this instruction to the exit blocks
      // of the loop.  We can do this if the all users of the instruction are
      // outside of the loop.  In this case, it doesn't even matter if the
      // operands of the instruction are loop invariant.
      //
      bool FreeInLoop = false;
      bool LoopNestMode = OutermostLoop != nullptr;
      if (!I.mayHaveSideEffects() &&
          isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
                                SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
          canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true,
                             &Flags, ORE)) {
        if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
          if (!FreeInLoop) {
            ++II;
            salvageDebugInfo(I);
            eraseInstruction(I, *SafetyInfo, MSSAU);
          }
          Changed = true;
        }
      }
    }
  }
  if (VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  return Changed;
}

bool llvm::sinkRegionForLoopNest(
    DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
    BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
    Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
    SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {

  bool Changed = false;
  SmallPriorityWorklist<Loop *, 4> Worklist;
  Worklist.insert(CurLoop);
  appendLoopsToWorklist(*CurLoop, Worklist);
  while (!Worklist.empty()) {
    Loop *L = Worklist.pop_back_val();
    Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
                          TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
  }
  return Changed;
}

namespace {
// This is a helper class for hoistRegion to make it able to hoist control flow
// in order to be able to hoist phis. The way this works is that we initially
// start hoisting to the loop preheader, and when we see a loop invariant branch
// we make note of this. When we then come to hoist an instruction that's
// conditional on such a branch we duplicate the branch and the relevant control
// flow, then hoist the instruction into the block corresponding to its original
// block in the duplicated control flow.
class ControlFlowHoister {
private:
  // Information about the loop we are hoisting from
  LoopInfo *LI;
  DominatorTree *DT;
  Loop *CurLoop;
  MemorySSAUpdater *MSSAU;

  // A map of blocks in the loop to the block their instructions will be hoisted
  // to.
  DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;

  // The branches that we can hoist, mapped to the block that marks a
  // convergence point of their control flow.
  DenseMap<BranchInst *, BasicBlock *> HoistableBranches;

public:
  ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
                     MemorySSAUpdater *MSSAU)
      : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}

  void registerPossiblyHoistableBranch(BranchInst *BI) {
    // We can only hoist conditional branches with loop invariant operands.
    if (!ControlFlowHoisting || !BI->isConditional() ||
        !CurLoop->hasLoopInvariantOperands(BI))
      return;

    // The branch destinations need to be in the loop, and we don't gain
    // anything by duplicating conditional branches with duplicate successors,
    // as it's essentially the same as an unconditional branch.
    BasicBlock *TrueDest = BI->getSuccessor(0);
    BasicBlock *FalseDest = BI->getSuccessor(1);
    if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
        TrueDest == FalseDest)
      return;

    // We can hoist BI if one branch destination is the successor of the other,
    // or both have common successor which we check by seeing if the
    // intersection of their successors is non-empty.
    // TODO: This could be expanded to allowing branches where both ends
    // eventually converge to a single block.
    SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
    TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
    FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
    BasicBlock *CommonSucc = nullptr;
    if (TrueDestSucc.count(FalseDest)) {
      CommonSucc = FalseDest;
    } else if (FalseDestSucc.count(TrueDest)) {
      CommonSucc = TrueDest;
    } else {
      set_intersect(TrueDestSucc, FalseDestSucc);
      // If there's one common successor use that.
      if (TrueDestSucc.size() == 1)
        CommonSucc = *TrueDestSucc.begin();
      // If there's more than one pick whichever appears first in the block list
      // (we can't use the value returned by TrueDestSucc.begin() as it's
      // unpredicatable which element gets returned).
      else if (!TrueDestSucc.empty()) {
        Function *F = TrueDest->getParent();
        auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
        auto It = llvm::find_if(*F, IsSucc);
        assert(It != F->end() && "Could not find successor in function");
        CommonSucc = &*It;
      }
    }
    // The common successor has to be dominated by the branch, as otherwise
    // there will be some other path to the successor that will not be
    // controlled by this branch so any phi we hoist would be controlled by the
    // wrong condition. This also takes care of avoiding hoisting of loop back
    // edges.
    // TODO: In some cases this could be relaxed if the successor is dominated
    // by another block that's been hoisted and we can guarantee that the
    // control flow has been replicated exactly.
    if (CommonSucc && DT->dominates(BI, CommonSucc))
      HoistableBranches[BI] = CommonSucc;
  }

  bool canHoistPHI(PHINode *PN) {
    // The phi must have loop invariant operands.
    if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
      return false;
    // We can hoist phis if the block they are in is the target of hoistable
    // branches which cover all of the predecessors of the block.
    SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
    BasicBlock *BB = PN->getParent();
    for (BasicBlock *PredBB : predecessors(BB))
      PredecessorBlocks.insert(PredBB);
    // If we have less predecessor blocks than predecessors then the phi will
    // have more than one incoming value for the same block which we can't
    // handle.
    // TODO: This could be handled be erasing some of the duplicate incoming
    // values.
    if (PredecessorBlocks.size() != pred_size(BB))
      return false;
    for (auto &Pair : HoistableBranches) {
      if (Pair.second == BB) {
        // Which blocks are predecessors via this branch depends on if the
        // branch is triangle-like or diamond-like.
        if (Pair.first->getSuccessor(0) == BB) {
          PredecessorBlocks.erase(Pair.first->getParent());
          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
        } else if (Pair.first->getSuccessor(1) == BB) {
          PredecessorBlocks.erase(Pair.first->getParent());
          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
        } else {
          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
        }
      }
    }
    // PredecessorBlocks will now be empty if for every predecessor of BB we
    // found a hoistable branch source.
    return PredecessorBlocks.empty();
  }

  BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
    if (!ControlFlowHoisting)
      return CurLoop->getLoopPreheader();
    // If BB has already been hoisted, return that
    if (HoistDestinationMap.count(BB))
      return HoistDestinationMap[BB];

    // Check if this block is conditional based on a pending branch
    auto HasBBAsSuccessor =
        [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
          return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
                                       Pair.first->getSuccessor(1) == BB);
        };
    auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);

    // If not involved in a pending branch, hoist to preheader
    BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
    if (It == HoistableBranches.end()) {
      LLVM_DEBUG(dbgs() << "LICM using "
                        << InitialPreheader->getNameOrAsOperand()
                        << " as hoist destination for "
                        << BB->getNameOrAsOperand() << "\n");
      HoistDestinationMap[BB] = InitialPreheader;
      return InitialPreheader;
    }
    BranchInst *BI = It->first;
    assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
               HoistableBranches.end() &&
           "BB is expected to be the target of at most one branch");

    LLVMContext &C = BB->getContext();
    BasicBlock *TrueDest = BI->getSuccessor(0);
    BasicBlock *FalseDest = BI->getSuccessor(1);
    BasicBlock *CommonSucc = HoistableBranches[BI];
    BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());

    // Create hoisted versions of blocks that currently don't have them
    auto CreateHoistedBlock = [&](BasicBlock *Orig) {
      if (HoistDestinationMap.count(Orig))
        return HoistDestinationMap[Orig];
      BasicBlock *New =
          BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
      HoistDestinationMap[Orig] = New;
      DT->addNewBlock(New, HoistTarget);
      if (CurLoop->getParentLoop())
        CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
      ++NumCreatedBlocks;
      LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
                        << " as hoist destination for " << Orig->getName()
                        << "\n");
      return New;
    };
    BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
    BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
    BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);

    // Link up these blocks with branches.
    if (!HoistCommonSucc->getTerminator()) {
      // The new common successor we've generated will branch to whatever that
      // hoist target branched to.
      BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
      assert(TargetSucc && "Expected hoist target to have a single successor");
      HoistCommonSucc->moveBefore(TargetSucc);
      BranchInst::Create(TargetSucc, HoistCommonSucc);
    }
    if (!HoistTrueDest->getTerminator()) {
      HoistTrueDest->moveBefore(HoistCommonSucc);
      BranchInst::Create(HoistCommonSucc, HoistTrueDest);
    }
    if (!HoistFalseDest->getTerminator()) {
      HoistFalseDest->moveBefore(HoistCommonSucc);
      BranchInst::Create(HoistCommonSucc, HoistFalseDest);
    }

    // If BI is being cloned to what was originally the preheader then
    // HoistCommonSucc will now be the new preheader.
    if (HoistTarget == InitialPreheader) {
      // Phis in the loop header now need to use the new preheader.
      InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
      MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
          HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
      // The new preheader dominates the loop header.
      DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
      DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
      DT->changeImmediateDominator(HeaderNode, PreheaderNode);
      // The preheader hoist destination is now the new preheader, with the
      // exception of the hoist destination of this branch.
      for (auto &Pair : HoistDestinationMap)
        if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
          Pair.second = HoistCommonSucc;
    }

    // Now finally clone BI.
    ReplaceInstWithInst(
        HoistTarget->getTerminator(),
        BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
    ++NumClonedBranches;

    assert(CurLoop->getLoopPreheader() &&
           "Hoisting blocks should not have destroyed preheader");
    return HoistDestinationMap[BB];
  }
};
} // namespace

/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in depth first
/// order w.r.t the DominatorTree.  This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
///
bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
                       DominatorTree *DT, BlockFrequencyInfo *BFI,
                       TargetLibraryInfo *TLI, Loop *CurLoop,
                       MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
                       ICFLoopSafetyInfo *SafetyInfo,
                       SinkAndHoistLICMFlags &Flags,
                       OptimizationRemarkEmitter *ORE, bool LoopNestMode,
                       bool AllowSpeculation) {
  // Verify inputs.
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
         CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
         "Unexpected input to hoistRegion.");

  ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);

  // Keep track of instructions that have been hoisted, as they may need to be
  // re-hoisted if they end up not dominating all of their uses.
  SmallVector<Instruction *, 16> HoistedInstructions;

  // For PHI hoisting to work we need to hoist blocks before their successors.
  // We can do this by iterating through the blocks in the loop in reverse
  // post-order.
  LoopBlocksRPO Worklist(CurLoop);
  Worklist.perform(LI);
  bool Changed = false;
  for (BasicBlock *BB : Worklist) {
    // Only need to process the contents of this block if it is not part of a
    // subloop (which would already have been processed).
    if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
      continue;

    for (Instruction &I : llvm::make_early_inc_range(*BB)) {
      // Try constant folding this instruction.  If all the operands are
      // constants, it is technically hoistable, but it would be better to
      // just fold it.
      if (Constant *C = ConstantFoldInstruction(
              &I, I.getModule()->getDataLayout(), TLI)) {
        LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
                          << '\n');
        // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
        I.replaceAllUsesWith(C);
        if (isInstructionTriviallyDead(&I, TLI))
          eraseInstruction(I, *SafetyInfo, MSSAU);
        Changed = true;
        continue;
      }

      // Try hoisting the instruction out to the preheader.  We can only do
      // this if all of the operands of the instruction are loop invariant and
      // if it is safe to hoist the instruction. We also check block frequency
      // to make sure instruction only gets hoisted into colder blocks.
      // TODO: It may be safe to hoist if we are hoisting to a conditional block
      // and we have accurately duplicated the control flow from the loop header
      // to that block.
      if (CurLoop->hasLoopInvariantOperands(&I) &&
          canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU,
                             true, &Flags, ORE) &&
          isSafeToExecuteUnconditionally(
              I, DT, TLI, CurLoop, SafetyInfo, ORE,
              CurLoop->getLoopPreheader()->getTerminator(), AllowSpeculation)) {
        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
              MSSAU, SE, ORE);
        HoistedInstructions.push_back(&I);
        Changed = true;
        continue;
      }

      // Attempt to remove floating point division out of the loop by
      // converting it to a reciprocal multiplication.
      if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
          CurLoop->isLoopInvariant(I.getOperand(1))) {
        auto Divisor = I.getOperand(1);
        auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
        auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
        ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
        SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
        ReciprocalDivisor->insertBefore(&I);

        auto Product =
            BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
        Product->setFastMathFlags(I.getFastMathFlags());
        SafetyInfo->insertInstructionTo(Product, I.getParent());
        Product->insertAfter(&I);
        I.replaceAllUsesWith(Product);
        eraseInstruction(I, *SafetyInfo, MSSAU);

        hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
              SafetyInfo, MSSAU, SE, ORE);
        HoistedInstructions.push_back(ReciprocalDivisor);
        Changed = true;
        continue;
      }

      auto IsInvariantStart = [&](Instruction &I) {
        using namespace PatternMatch;
        return I.use_empty() &&
               match(&I, m_Intrinsic<Intrinsic::invariant_start>());
      };
      auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
        return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
               SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
      };
      if ((IsInvariantStart(I) || isGuard(&I)) &&
          CurLoop->hasLoopInvariantOperands(&I) &&
          MustExecuteWithoutWritesBefore(I)) {
        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
              MSSAU, SE, ORE);
        HoistedInstructions.push_back(&I);
        Changed = true;
        continue;
      }

      if (PHINode *PN = dyn_cast<PHINode>(&I)) {
        if (CFH.canHoistPHI(PN)) {
          // Redirect incoming blocks first to ensure that we create hoisted
          // versions of those blocks before we hoist the phi.
          for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
            PN->setIncomingBlock(
                i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
          hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
                MSSAU, SE, ORE);
          assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
          Changed = true;
          continue;
        }
      }

      // Remember possibly hoistable branches so we can actually hoist them
      // later if needed.
      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
        CFH.registerPossiblyHoistableBranch(BI);
    }
  }

  // If we hoisted instructions to a conditional block they may not dominate
  // their uses that weren't hoisted (such as phis where some operands are not
  // loop invariant). If so make them unconditional by moving them to their
  // immediate dominator. We iterate through the instructions in reverse order
  // which ensures that when we rehoist an instruction we rehoist its operands,
  // and also keep track of where in the block we are rehoisting to to make sure
  // that we rehoist instructions before the instructions that use them.
  Instruction *HoistPoint = nullptr;
  if (ControlFlowHoisting) {
    for (Instruction *I : reverse(HoistedInstructions)) {
      if (!llvm::all_of(I->uses(),
                        [&](Use &U) { return DT->dominates(I, U); })) {
        BasicBlock *Dominator =
            DT->getNode(I->getParent())->getIDom()->getBlock();
        if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
          if (HoistPoint)
            assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
                   "New hoist point expected to dominate old hoist point");
          HoistPoint = Dominator->getTerminator();
        }
        LLVM_DEBUG(dbgs() << "LICM rehoisting to "
                          << HoistPoint->getParent()->getNameOrAsOperand()
                          << ": " << *I << "\n");
        moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
        HoistPoint = I;
        Changed = true;
      }
    }
  }
  if (VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

    // Now that we've finished hoisting make sure that LI and DT are still
    // valid.
#ifdef EXPENSIVE_CHECKS
  if (Changed) {
    assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
           "Dominator tree verification failed");
    LI->verify(*DT);
  }
#endif

  return Changed;
}

// Return true if LI is invariant within scope of the loop. LI is invariant if
// CurLoop is dominated by an invariant.start representing the same memory
// location and size as the memory location LI loads from, and also the
// invariant.start has no uses.
static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
                                  Loop *CurLoop) {
  Value *Addr = LI->getOperand(0);
  const DataLayout &DL = LI->getModule()->getDataLayout();
  const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());

  // It is not currently possible for clang to generate an invariant.start
  // intrinsic with scalable vector types because we don't support thread local
  // sizeless types and we don't permit sizeless types in structs or classes.
  // Furthermore, even if support is added for this in future the intrinsic
  // itself is defined to have a size of -1 for variable sized objects. This
  // makes it impossible to verify if the intrinsic envelops our region of
  // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
  // types would have a -1 parameter, but the former is clearly double the size
  // of the latter.
  if (LocSizeInBits.isScalable())
    return false;

  // if the type is i8 addrspace(x)*, we know this is the type of
  // llvm.invariant.start operand
  auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
                                     LI->getPointerAddressSpace());
  unsigned BitcastsVisited = 0;
  // Look through bitcasts until we reach the i8* type (this is invariant.start
  // operand type).
  while (Addr->getType() != PtrInt8Ty) {
    auto *BC = dyn_cast<BitCastInst>(Addr);
    // Avoid traversing high number of bitcast uses.
    if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
      return false;
    Addr = BC->getOperand(0);
  }
  // If we've ended up at a global/constant, bail. We shouldn't be looking at
  // uselists for non-local Values in a loop pass.
  if (isa<Constant>(Addr))
    return false;

  unsigned UsesVisited = 0;
  // Traverse all uses of the load operand value, to see if invariant.start is
  // one of the uses, and whether it dominates the load instruction.
  for (auto *U : Addr->users()) {
    // Avoid traversing for Load operand with high number of users.
    if (++UsesVisited > MaxNumUsesTraversed)
      return false;
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
    // If there are escaping uses of invariant.start instruction, the load maybe
    // non-invariant.
    if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
        !II->use_empty())
      continue;
    ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
    // The intrinsic supports having a -1 argument for variable sized objects
    // so we should check for that here.
    if (InvariantSize->isNegative())
      continue;
    uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
    // Confirm the invariant.start location size contains the load operand size
    // in bits. Also, the invariant.start should dominate the load, and we
    // should not hoist the load out of a loop that contains this dominating
    // invariant.start.
    if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
        DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
      return true;
  }

  return false;
}

namespace {
/// Return true if-and-only-if we know how to (mechanically) both hoist and
/// sink a given instruction out of a loop.  Does not address legality
/// concerns such as aliasing or speculation safety.
bool isHoistableAndSinkableInst(Instruction &I) {
  // Only these instructions are hoistable/sinkable.
  return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
          isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
          isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
          isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
          isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
          isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
          isa<InsertValueInst>(I) || isa<FreezeInst>(I));
}
/// Return true if all of the alias sets within this AST are known not to
/// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
                const Loop *L) {
  if (CurAST) {
    for (AliasSet &AS : *CurAST) {
      if (!AS.isForwardingAliasSet() && AS.isMod()) {
        return false;
      }
    }
    return true;
  } else { /*MSSAU*/
    for (auto *BB : L->getBlocks())
      if (MSSAU->getMemorySSA()->getBlockDefs(BB))
        return false;
    return true;
  }
}

/// Return true if I is the only Instruction with a MemoryAccess in L.
bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
                        const MemorySSAUpdater *MSSAU) {
  for (auto *BB : L->getBlocks())
    if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
      int NotAPhi = 0;
      for (const auto &Acc : *Accs) {
        if (isa<MemoryPhi>(&Acc))
          continue;
        const auto *MUD = cast<MemoryUseOrDef>(&Acc);
        if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
          return false;
      }
    }
  return true;
}
}

bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
                              Loop *CurLoop, AliasSetTracker *CurAST,
                              MemorySSAUpdater *MSSAU,
                              bool TargetExecutesOncePerLoop,
                              SinkAndHoistLICMFlags *Flags,
                              OptimizationRemarkEmitter *ORE) {
  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
         "Either AliasSetTracker or MemorySSA should be initialized.");

  // If we don't understand the instruction, bail early.
  if (!isHoistableAndSinkableInst(I))
    return false;

  MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
  if (MSSA)
    assert(Flags != nullptr && "Flags cannot be null.");

  // Loads have extra constraints we have to verify before we can hoist them.
  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    if (!LI->isUnordered())
      return false; // Don't sink/hoist volatile or ordered atomic loads!

    // Loads from constant memory are always safe to move, even if they end up
    // in the same alias set as something that ends up being modified.
    if (AA->pointsToConstantMemory(LI->getOperand(0)))
      return true;
    if (LI->hasMetadata(LLVMContext::MD_invariant_load))
      return true;

    if (LI->isAtomic() && !TargetExecutesOncePerLoop)
      return false; // Don't risk duplicating unordered loads

    // This checks for an invariant.start dominating the load.
    if (isLoadInvariantInLoop(LI, DT, CurLoop))
      return true;

    bool Invalidated;
    if (CurAST)
      Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
                                             CurLoop, AA);
    else
      Invalidated = pointerInvalidatedByLoopWithMSSA(
          MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
    // Check loop-invariant address because this may also be a sinkable load
    // whose address is not necessarily loop-invariant.
    if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
               << "failed to move load with loop-invariant address "
                  "because the loop may invalidate its value";
      });

    return !Invalidated;
  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
    // Don't sink or hoist dbg info; it's legal, but not useful.
    if (isa<DbgInfoIntrinsic>(I))
      return false;

    // Don't sink calls which can throw.
    if (CI->mayThrow())
      return false;

    // Convergent attribute has been used on operations that involve
    // inter-thread communication which results are implicitly affected by the
    // enclosing control flows. It is not safe to hoist or sink such operations
    // across control flow.
    if (CI->isConvergent())
      return false;

    using namespace PatternMatch;
    if (match(CI, m_Intrinsic<Intrinsic::assume>()))
      // Assumes don't actually alias anything or throw
      return true;

    if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
      // Widenable conditions don't actually alias anything or throw
      return true;

    // Handle simple cases by querying alias analysis.
    FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
    if (Behavior == FMRB_DoesNotAccessMemory)
      return true;
    if (AAResults::onlyReadsMemory(Behavior)) {
      // A readonly argmemonly function only reads from memory pointed to by
      // it's arguments with arbitrary offsets.  If we can prove there are no
      // writes to this memory in the loop, we can hoist or sink.
      if (AAResults::onlyAccessesArgPointees(Behavior)) {
        // TODO: expand to writeable arguments
        for (Value *Op : CI->args())
          if (Op->getType()->isPointerTy()) {
            bool Invalidated;
            if (CurAST)
              Invalidated = pointerInvalidatedByLoop(
                  MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
            else
              Invalidated = pointerInvalidatedByLoopWithMSSA(
                  MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
                  *Flags);
            if (Invalidated)
              return false;
          }
        return true;
      }

      // If this call only reads from memory and there are no writes to memory
      // in the loop, we can hoist or sink the call as appropriate.
      if (isReadOnly(CurAST, MSSAU, CurLoop))
        return true;
    }

    // FIXME: This should use mod/ref information to see if we can hoist or
    // sink the call.

    return false;
  } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
    // Fences alias (most) everything to provide ordering.  For the moment,
    // just give up if there are any other memory operations in the loop.
    if (CurAST) {
      auto Begin = CurAST->begin();
      assert(Begin != CurAST->end() && "must contain FI");
      if (std::next(Begin) != CurAST->end())
        // constant memory for instance, TODO: handle better
        return false;
      auto *UniqueI = Begin->getUniqueInstruction();
      if (!UniqueI)
        // other memory op, give up
        return false;
      (void)FI; // suppress unused variable warning
      assert(UniqueI == FI && "AS must contain FI");
      return true;
    } else // MSSAU
      return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
  } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
    if (!SI->isUnordered())
      return false; // Don't sink/hoist volatile or ordered atomic store!

    // We can only hoist a store that we can prove writes a value which is not
    // read or overwritten within the loop.  For those cases, we fallback to
    // load store promotion instead.  TODO: We can extend this to cases where
    // there is exactly one write to the location and that write dominates an
    // arbitrary number of reads in the loop.
    if (CurAST) {
      auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));

      if (AS.isRef() || !AS.isMustAlias())
        // Quick exit test, handled by the full path below as well.
        return false;
      auto *UniqueI = AS.getUniqueInstruction();
      if (!UniqueI)
        // other memory op, give up
        return false;
      assert(UniqueI == SI && "AS must contain SI");
      return true;
    } else { // MSSAU
      if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
        return true;
      // If there are more accesses than the Promotion cap or no "quota" to
      // check clobber, then give up as we're not walking a list that long.
      if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
        return false;
      // If there are interfering Uses (i.e. their defining access is in the
      // loop), or ordered loads (stored as Defs!), don't move this store.
      // Could do better here, but this is conservatively correct.
      // TODO: Cache set of Uses on the first walk in runOnLoop, update when
      // moving accesses. Can also extend to dominating uses.
      auto *SIMD = MSSA->getMemoryAccess(SI);
      for (auto *BB : CurLoop->getBlocks())
        if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
          for (const auto &MA : *Accesses)
            if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
              auto *MD = MU->getDefiningAccess();
              if (!MSSA->isLiveOnEntryDef(MD) &&
                  CurLoop->contains(MD->getBlock()))
                return false;
              // Disable hoisting past potentially interfering loads. Optimized
              // Uses may point to an access outside the loop, as getClobbering
              // checks the previous iteration when walking the backedge.
              // FIXME: More precise: no Uses that alias SI.
              if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
                return false;
            } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
              if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
                (void)LI; // Silence warning.
                assert(!LI->isUnordered() && "Expected unordered load");
                return false;
              }
              // Any call, while it may not be clobbering SI, it may be a use.
              if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
                // Check if the call may read from the memory location written
                // to by SI. Check CI's attributes and arguments; the number of
                // such checks performed is limited above by NoOfMemAccTooLarge.
                ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
                if (isModOrRefSet(MRI))
                  return false;
              }
            }
        }
      auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
      Flags->incrementClobberingCalls();
      // If there are no clobbering Defs in the loop, store is safe to hoist.
      return MSSA->isLiveOnEntryDef(Source) ||
             !CurLoop->contains(Source->getBlock());
    }
  }

  assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");

  // We've established mechanical ability and aliasing, it's up to the caller
  // to check fault safety
  return true;
}

/// Returns true if a PHINode is a trivially replaceable with an
/// Instruction.
/// This is true when all incoming values are that instruction.
/// This pattern occurs most often with LCSSA PHI nodes.
///
static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
  for (const Value *IncValue : PN.incoming_values())
    if (IncValue != &I)
      return false;

  return true;
}

/// Return true if the instruction is free in the loop.
static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
                         const TargetTransformInfo *TTI) {

  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
    if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
        TargetTransformInfo::TCC_Free)
      return false;
    // For a GEP, we cannot simply use getUserCost because currently it
    // optimistically assumes that a GEP will fold into addressing mode
    // regardless of its users.
    const BasicBlock *BB = GEP->getParent();
    for (const User *U : GEP->users()) {
      const Instruction *UI = cast<Instruction>(U);
      if (CurLoop->contains(UI) &&
          (BB != UI->getParent() ||
           (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
        return false;
    }
    return true;
  } else
    return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
           TargetTransformInfo::TCC_Free;
}

/// Return true if the only users of this instruction are outside of
/// the loop. If this is true, we can sink the instruction to the exit
/// blocks of the loop.
///
/// We also return true if the instruction could be folded away in lowering.
/// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
                                  const LoopSafetyInfo *SafetyInfo,
                                  TargetTransformInfo *TTI, bool &FreeInLoop,
                                  bool LoopNestMode) {
  const auto &BlockColors = SafetyInfo->getBlockColors();
  bool IsFree = isFreeInLoop(I, CurLoop, TTI);
  for (const User *U : I.users()) {
    const Instruction *UI = cast<Instruction>(U);
    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
      const BasicBlock *BB = PN->getParent();
      // We cannot sink uses in catchswitches.
      if (isa<CatchSwitchInst>(BB->getTerminator()))
        return false;

      // We need to sink a callsite to a unique funclet.  Avoid sinking if the
      // phi use is too muddled.
      if (isa<CallInst>(I))
        if (!BlockColors.empty() &&
            BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
          return false;

      if (LoopNestMode) {
        while (isa<PHINode>(UI) && UI->hasOneUser() &&
               UI->getNumOperands() == 1) {
          if (!CurLoop->contains(UI))
            break;
          UI = cast<Instruction>(UI->user_back());
        }
      }
    }

    if (CurLoop->contains(UI)) {
      if (IsFree) {
        FreeInLoop = true;
        continue;
      }
      return false;
    }
  }
  return true;
}

static Instruction *cloneInstructionInExitBlock(
    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
  Instruction *New;
  if (auto *CI = dyn_cast<CallInst>(&I)) {
    const auto &BlockColors = SafetyInfo->getBlockColors();

    // Sinking call-sites need to be handled differently from other
    // instructions.  The cloned call-site needs a funclet bundle operand
    // appropriate for its location in the CFG.
    SmallVector<OperandBundleDef, 1> OpBundles;
    for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
         BundleIdx != BundleEnd; ++BundleIdx) {
      OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
      if (Bundle.getTagID() == LLVMContext::OB_funclet)
        continue;

      OpBundles.emplace_back(Bundle);
    }

    if (!BlockColors.empty()) {
      const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
      assert(CV.size() == 1 && "non-unique color for exit block!");
      BasicBlock *BBColor = CV.front();
      Instruction *EHPad = BBColor->getFirstNonPHI();
      if (EHPad->isEHPad())
        OpBundles.emplace_back("funclet", EHPad);
    }

    New = CallInst::Create(CI, OpBundles);
  } else {
    New = I.clone();
  }

  ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
  if (!I.getName().empty())
    New->setName(I.getName() + ".le");

  if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
    // Create a new MemoryAccess and let MemorySSA set its defining access.
    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
        New, nullptr, New->getParent(), MemorySSA::Beginning);
    if (NewMemAcc) {
      if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
        MSSAU->insertDef(MemDef, /*RenameUses=*/true);
      else {
        auto *MemUse = cast<MemoryUse>(NewMemAcc);
        MSSAU->insertUse(MemUse, /*RenameUses=*/true);
      }
    }
  }

  // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that
  // this is particularly cheap because we can rip off the PHI node that we're
  // replacing for the number and blocks of the predecessors.
  // OPT: If this shows up in a profile, we can instead finish sinking all
  // invariant instructions, and then walk their operands to re-establish
  // LCSSA. That will eliminate creating PHI nodes just to nuke them when
  // sinking bottom-up.
  for (Use &Op : New->operands())
    if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
      auto *OInst = cast<Instruction>(Op.get());
      PHINode *OpPN =
        PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
                        OInst->getName() + ".lcssa", &ExitBlock.front());
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
        OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
      Op = OpPN;
    }
  return New;
}

static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
                             MemorySSAUpdater *MSSAU) {
  if (MSSAU)
    MSSAU->removeMemoryAccess(&I);
  SafetyInfo.removeInstruction(&I);
  I.eraseFromParent();
}

static void moveInstructionBefore(Instruction &I, Instruction &Dest,
                                  ICFLoopSafetyInfo &SafetyInfo,
                                  MemorySSAUpdater *MSSAU,
                                  ScalarEvolution *SE) {
  SafetyInfo.removeInstruction(&I);
  SafetyInfo.insertInstructionTo(&I, Dest.getParent());
  I.moveBefore(&Dest);
  if (MSSAU)
    if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
            MSSAU->getMemorySSA()->getMemoryAccess(&I)))
      MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
                         MemorySSA::BeforeTerminator);
  if (SE)
    SE->forgetValue(&I);
}

static Instruction *sinkThroughTriviallyReplaceablePHI(
    PHINode *TPN, Instruction *I, LoopInfo *LI,
    SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
    const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
    MemorySSAUpdater *MSSAU) {
  assert(isTriviallyReplaceablePHI(*TPN, *I) &&
         "Expect only trivially replaceable PHI");
  BasicBlock *ExitBlock = TPN->getParent();
  Instruction *New;
  auto It = SunkCopies.find(ExitBlock);
  if (It != SunkCopies.end())
    New = It->second;
  else
    New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
        *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
  return New;
}

static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
  BasicBlock *BB = PN->getParent();
  if (!BB->canSplitPredecessors())
    return false;
  // It's not impossible to split EHPad blocks, but if BlockColors already exist
  // it require updating BlockColors for all offspring blocks accordingly. By
  // skipping such corner case, we can make updating BlockColors after splitting
  // predecessor fairly simple.
  if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
    return false;
  for (BasicBlock *BBPred : predecessors(BB)) {
    if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
        isa<CallBrInst>(BBPred->getTerminator()))
      return false;
  }
  return true;
}

static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
                                        LoopInfo *LI, const Loop *CurLoop,
                                        LoopSafetyInfo *SafetyInfo,
                                        MemorySSAUpdater *MSSAU) {
#ifndef NDEBUG
  SmallVector<BasicBlock *, 32> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
                                             ExitBlocks.end());
#endif
  BasicBlock *ExitBB = PN->getParent();
  assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");

  // Split predecessors of the loop exit to make instructions in the loop are
  // exposed to exit blocks through trivially replaceable PHIs while keeping the
  // loop in the canonical form where each predecessor of each exit block should
  // be contained within the loop. For example, this will convert the loop below
  // from
  //
  // LB1:
  //   %v1 =
  //   br %LE, %LB2
  // LB2:
  //   %v2 =
  //   br %LE, %LB1
  // LE:
  //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
  //
  // to
  //
  // LB1:
  //   %v1 =
  //   br %LE.split, %LB2
  // LB2:
  //   %v2 =
  //   br %LE.split2, %LB1
  // LE.split:
  //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
  //   br %LE
  // LE.split2:
  //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
  //   br %LE
  // LE:
  //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
  //
  const auto &BlockColors = SafetyInfo->getBlockColors();
  SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
  while (!PredBBs.empty()) {
    BasicBlock *PredBB = *PredBBs.begin();
    assert(CurLoop->contains(PredBB) &&
           "Expect all predecessors are in the loop");
    if (PN->getBasicBlockIndex(PredBB) >= 0) {
      BasicBlock *NewPred = SplitBlockPredecessors(
          ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
      // Since we do not allow splitting EH-block with BlockColors in
      // canSplitPredecessors(), we can simply assign predecessor's color to
      // the new block.
      if (!BlockColors.empty())
        // Grab a reference to the ColorVector to be inserted before getting the
        // reference to the vector we are copying because inserting the new
        // element in BlockColors might cause the map to be reallocated.
        SafetyInfo->copyColors(NewPred, PredBB);
    }
    PredBBs.remove(PredBB);
  }
}

/// When an instruction is found to only be used outside of the loop, this
/// function moves it to the exit blocks and patches up SSA form as needed.
/// This method is guaranteed to remove the original instruction from its
/// position, and may either delete it or move it to outside of the loop.
///
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
                 BlockFrequencyInfo *BFI, const Loop *CurLoop,
                 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
                 OptimizationRemarkEmitter *ORE) {
  bool Changed = false;
  LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");

  // Iterate over users to be ready for actual sinking. Replace users via
  // unreachable blocks with undef and make all user PHIs trivially replaceable.
  SmallPtrSet<Instruction *, 8> VisitedUsers;
  for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
    auto *User = cast<Instruction>(*UI);
    Use &U = UI.getUse();
    ++UI;

    if (VisitedUsers.count(User) || CurLoop->contains(User))
      continue;

    if (!DT->isReachableFromEntry(User->getParent())) {
      U = UndefValue::get(I.getType());
      Changed = true;
      continue;
    }

    // The user must be a PHI node.
    PHINode *PN = cast<PHINode>(User);

    // Surprisingly, instructions can be used outside of loops without any
    // exits.  This can only happen in PHI nodes if the incoming block is
    // unreachable.
    BasicBlock *BB = PN->getIncomingBlock(U);
    if (!DT->isReachableFromEntry(BB)) {
      U = UndefValue::get(I.getType());
      Changed = true;
      continue;
    }

    VisitedUsers.insert(PN);
    if (isTriviallyReplaceablePHI(*PN, I))
      continue;

    if (!canSplitPredecessors(PN, SafetyInfo))
      return Changed;

    // Split predecessors of the PHI so that we can make users trivially
    // replaceable.
    splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);

    // Should rebuild the iterators, as they may be invalidated by
    // splitPredecessorsOfLoopExit().
    UI = I.user_begin();
    UE = I.user_end();
  }

  if (VisitedUsers.empty())
    return Changed;

  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
           << "sinking " << ore::NV("Inst", &I);
  });
  if (isa<LoadInst>(I))
    ++NumMovedLoads;
  else if (isa<CallInst>(I))
    ++NumMovedCalls;
  ++NumSunk;

#ifndef NDEBUG
  SmallVector<BasicBlock *, 32> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
                                             ExitBlocks.end());
#endif

  // Clones of this instruction. Don't create more than one per exit block!
  SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;

  // If this instruction is only used outside of the loop, then all users are
  // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
  // the instruction.
  // First check if I is worth sinking for all uses. Sink only when it is worth
  // across all uses.
  SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
  for (auto *UI : Users) {
    auto *User = cast<Instruction>(UI);

    if (CurLoop->contains(User))
      continue;

    PHINode *PN = cast<PHINode>(User);
    assert(ExitBlockSet.count(PN->getParent()) &&
           "The LCSSA PHI is not in an exit block!");

    // The PHI must be trivially replaceable.
    Instruction *New = sinkThroughTriviallyReplaceablePHI(
        PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
    PN->replaceAllUsesWith(New);
    eraseInstruction(*PN, *SafetyInfo, nullptr);
    Changed = true;
  }
  return Changed;
}

/// When an instruction is found to only use loop invariant operands that
/// is safe to hoist, this instruction is called to do the dirty work.
///
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
                  OptimizationRemarkEmitter *ORE) {
  LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
                    << I << "\n");
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
                                                         << ore::NV("Inst", &I);
  });

  // Metadata can be dependent on conditions we are hoisting above.
  // Conservatively strip all metadata on the instruction unless we were
  // guaranteed to execute I if we entered the loop, in which case the metadata
  // is valid in the loop preheader.
  // Similarly, If I is a call and it is not guaranteed to execute in the loop,
  // then moving to the preheader means we should strip attributes on the call
  // that can cause UB since we may be hoisting above conditions that allowed
  // inferring those attributes. They may not be valid at the preheader.
  if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
      // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
      // time in isGuaranteedToExecute if we don't actually have anything to
      // drop.  It is a compile time optimization, not required for correctness.
      !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
    I.dropUndefImplyingAttrsAndUnknownMetadata();

  if (isa<PHINode>(I))
    // Move the new node to the end of the phi list in the destination block.
    moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
  else
    // Move the new node to the destination block, before its terminator.
    moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);

  I.updateLocationAfterHoist();

  if (isa<LoadInst>(I))
    ++NumMovedLoads;
  else if (isa<CallInst>(I))
    ++NumMovedCalls;
  ++NumHoisted;
}

/// Only sink or hoist an instruction if it is not a trapping instruction,
/// or if the instruction is known not to trap when moved to the preheader.
/// or if it is a trapping instruction and is guaranteed to execute.
static bool isSafeToExecuteUnconditionally(
    Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
    const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
    OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
    bool AllowSpeculation) {
  if (AllowSpeculation && isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
    return true;

  bool GuaranteedToExecute =
      SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);

  if (!GuaranteedToExecute) {
    auto *LI = dyn_cast<LoadInst>(&Inst);
    if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
               << "failed to hoist load with loop-invariant address "
                  "because load is conditionally executed";
      });
  }

  return GuaranteedToExecute;
}

namespace {
class LoopPromoter : public LoadAndStorePromoter {
  Value *SomePtr; // Designated pointer to store to.
  const SmallSetVector<Value *, 8> &PointerMustAliases;
  SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
  SmallVectorImpl<Instruction *> &LoopInsertPts;
  SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
  PredIteratorCache &PredCache;
  MemorySSAUpdater *MSSAU;
  LoopInfo &LI;
  DebugLoc DL;
  Align Alignment;
  bool UnorderedAtomic;
  AAMDNodes AATags;
  ICFLoopSafetyInfo &SafetyInfo;
  bool CanInsertStoresInExitBlocks;

  // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi
  // (if legal) if doing so would add an out-of-loop use to an instruction
  // defined in-loop.
  Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
    if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
      return V;

    Instruction *I = cast<Instruction>(V);
    // We need to create an LCSSA PHI node for the incoming value and
    // store that.
    PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
                                  I->getName() + ".lcssa", &BB->front());
    for (BasicBlock *Pred : PredCache.get(BB))
      PN->addIncoming(I, Pred);
    return PN;
  }

public:
  LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
               const SmallSetVector<Value *, 8> &PMA,
               SmallVectorImpl<BasicBlock *> &LEB,
               SmallVectorImpl<Instruction *> &LIP,
               SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
               MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl,
               Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
               ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
      : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
        LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
        PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
        Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
        SafetyInfo(SafetyInfo),
        CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks) {}

  bool isInstInList(Instruction *I,
                    const SmallVectorImpl<Instruction *> &) const override {
    Value *Ptr;
    if (LoadInst *LI = dyn_cast<LoadInst>(I))
      Ptr = LI->getOperand(0);
    else
      Ptr = cast<StoreInst>(I)->getPointerOperand();
    return PointerMustAliases.count(Ptr);
  }

  void insertStoresInLoopExitBlocks() {
    // Insert stores after in the loop exit blocks.  Each exit block gets a
    // store of the live-out values that feed them.  Since we've already told
    // the SSA updater about the defs in the loop and the preheader
    // definition, it is all set and we can start using it.
    for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
      BasicBlock *ExitBlock = LoopExitBlocks[i];
      Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
      LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
      Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
      Instruction *InsertPos = LoopInsertPts[i];
      StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
      if (UnorderedAtomic)
        NewSI->setOrdering(AtomicOrdering::Unordered);
      NewSI->setAlignment(Alignment);
      NewSI->setDebugLoc(DL);
      if (AATags)
        NewSI->setAAMetadata(AATags);

      MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
      MemoryAccess *NewMemAcc;
      if (!MSSAInsertPoint) {
        NewMemAcc = MSSAU->createMemoryAccessInBB(
            NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
      } else {
        NewMemAcc =
            MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
      }
      MSSAInsertPts[i] = NewMemAcc;
      MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
      // FIXME: true for safety, false may still be correct.
    }
  }

  void doExtraRewritesBeforeFinalDeletion() override {
    if (CanInsertStoresInExitBlocks)
      insertStoresInLoopExitBlocks();
  }

  void instructionDeleted(Instruction *I) const override {
    SafetyInfo.removeInstruction(I);
    MSSAU->removeMemoryAccess(I);
  }

  bool shouldDelete(Instruction *I) const override {
    if (isa<StoreInst>(I))
      return CanInsertStoresInExitBlocks;
    return true;
  }
};

bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
                                 DominatorTree *DT) {
  // We can perform the captured-before check against any instruction in the
  // loop header, as the loop header is reachable from any instruction inside
  // the loop.
  // TODO: ReturnCaptures=true shouldn't be necessary here.
  return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
                                     /* StoreCaptures */ true,
                                     L->getHeader()->getTerminator(), DT);
}

/// Return true if we can prove that a caller cannot inspect the object if an
/// unwind occurs inside the loop.
bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
                                DominatorTree *DT) {
  bool RequiresNoCaptureBeforeUnwind;
  if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
    return false;

  return !RequiresNoCaptureBeforeUnwind ||
         isNotCapturedBeforeOrInLoop(Object, L, DT);
}

} // namespace

/// Try to promote memory values to scalars by sinking stores out of the
/// loop and moving loads to before the loop.  We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant.
///
bool llvm::promoteLoopAccessesToScalars(
    const SmallSetVector<Value *, 8> &PointerMustAliases,
    SmallVectorImpl<BasicBlock *> &ExitBlocks,
    SmallVectorImpl<Instruction *> &InsertPts,
    SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
    LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
    Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
    OptimizationRemarkEmitter *ORE, bool AllowSpeculation) {
  // Verify inputs.
  assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
         SafetyInfo != nullptr &&
         "Unexpected Input to promoteLoopAccessesToScalars");

  Value *SomePtr = *PointerMustAliases.begin();
  BasicBlock *Preheader = CurLoop->getLoopPreheader();

  // It is not safe to promote a load/store from the loop if the load/store is
  // conditional.  For example, turning:
  //
  //    for () { if (c) *P += 1; }
  //
  // into:
  //
  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
  //
  // is not safe, because *P may only be valid to access if 'c' is true.
  //
  // The safety property divides into two parts:
  // p1) The memory may not be dereferenceable on entry to the loop.  In this
  //    case, we can't insert the required load in the preheader.
  // p2) The memory model does not allow us to insert a store along any dynamic
  //    path which did not originally have one.
  //
  // If at least one store is guaranteed to execute, both properties are
  // satisfied, and promotion is legal.
  //
  // This, however, is not a necessary condition. Even if no store/load is
  // guaranteed to execute, we can still establish these properties.
  // We can establish (p1) by proving that hoisting the load into the preheader
  // is safe (i.e. proving dereferenceability on all paths through the loop). We
  // can use any access within the alias set to prove dereferenceability,
  // since they're all must alias.
  //
  // There are two ways establish (p2):
  // a) Prove the location is thread-local. In this case the memory model
  // requirement does not apply, and stores are safe to insert.
  // b) Prove a store dominates every exit block. In this case, if an exit
  // blocks is reached, the original dynamic path would have taken us through
  // the store, so inserting a store into the exit block is safe. Note that this
  // is different from the store being guaranteed to execute. For instance,
  // if an exception is thrown on the first iteration of the loop, the original
  // store is never executed, but the exit blocks are not executed either.

  bool DereferenceableInPH = false;
  bool SafeToInsertStore = false;
  bool FoundLoadToPromote = false;

  SmallVector<Instruction *, 64> LoopUses;

  // We start with an alignment of one and try to find instructions that allow
  // us to prove better alignment.
  Align Alignment;
  // Keep track of which types of access we see
  bool SawUnorderedAtomic = false;
  bool SawNotAtomic = false;
  AAMDNodes AATags;

  const DataLayout &MDL = Preheader->getModule()->getDataLayout();

  bool IsKnownThreadLocalObject = false;
  if (SafetyInfo->anyBlockMayThrow()) {
    // If a loop can throw, we have to insert a store along each unwind edge.
    // That said, we can't actually make the unwind edge explicit. Therefore,
    // we have to prove that the store is dead along the unwind edge.  We do
    // this by proving that the caller can't have a reference to the object
    // after return and thus can't possibly load from the object.
    Value *Object = getUnderlyingObject(SomePtr);
    if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
      return false;
    // Subtlety: Alloca's aren't visible to callers, but *are* potentially
    // visible to other threads if captured and used during their lifetimes.
    IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
  }

  // Check that all accesses to pointers in the aliass set use the same type.
  // We cannot (yet) promote a memory location that is loaded and stored in
  // different sizes.  While we are at it, collect alignment and AA info.
  Type *AccessTy = nullptr;
  for (Value *ASIV : PointerMustAliases) {
    for (User *U : ASIV->users()) {
      // Ignore instructions that are outside the loop.
      Instruction *UI = dyn_cast<Instruction>(U);
      if (!UI || !CurLoop->contains(UI))
        continue;

      // If there is an non-load/store instruction in the loop, we can't promote
      // it.
      if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
        if (!Load->isUnordered())
          return false;

        SawUnorderedAtomic |= Load->isAtomic();
        SawNotAtomic |= !Load->isAtomic();
        FoundLoadToPromote = true;

        Align InstAlignment = Load->getAlign();

        // Note that proving a load safe to speculate requires proving
        // sufficient alignment at the target location.  Proving it guaranteed
        // to execute does as well.  Thus we can increase our guaranteed
        // alignment as well.
        if (!DereferenceableInPH || (InstAlignment > Alignment))
          if (isSafeToExecuteUnconditionally(
                  *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
                  Preheader->getTerminator(), AllowSpeculation)) {
            DereferenceableInPH = true;
            Alignment = std::max(Alignment, InstAlignment);
          }
      } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
        // Stores *of* the pointer are not interesting, only stores *to* the
        // pointer.
        if (UI->getOperand(1) != ASIV)
          continue;
        if (!Store->isUnordered())
          return false;

        SawUnorderedAtomic |= Store->isAtomic();
        SawNotAtomic |= !Store->isAtomic();

        // If the store is guaranteed to execute, both properties are satisfied.
        // We may want to check if a store is guaranteed to execute even if we
        // already know that promotion is safe, since it may have higher
        // alignment than any other guaranteed stores, in which case we can
        // raise the alignment on the promoted store.
        Align InstAlignment = Store->getAlign();

        if (!DereferenceableInPH || !SafeToInsertStore ||
            (InstAlignment > Alignment)) {
          if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
            DereferenceableInPH = true;
            SafeToInsertStore = true;
            Alignment = std::max(Alignment, InstAlignment);
          }
        }

        // If a store dominates all exit blocks, it is safe to sink.
        // As explained above, if an exit block was executed, a dominating
        // store must have been executed at least once, so we are not
        // introducing stores on paths that did not have them.
        // Note that this only looks at explicit exit blocks. If we ever
        // start sinking stores into unwind edges (see above), this will break.
        if (!SafeToInsertStore)
          SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
            return DT->dominates(Store->getParent(), Exit);
          });

        // If the store is not guaranteed to execute, we may still get
        // deref info through it.
        if (!DereferenceableInPH) {
          DereferenceableInPH = isDereferenceableAndAlignedPointer(
              Store->getPointerOperand(), Store->getValueOperand()->getType(),
              Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
        }
      } else
        return false; // Not a load or store.

      if (!AccessTy)
        AccessTy = getLoadStoreType(UI);
      else if (AccessTy != getLoadStoreType(UI))
        return false;

      // Merge the AA tags.
      if (LoopUses.empty()) {
        // On the first load/store, just take its AA tags.
        AATags = UI->getAAMetadata();
      } else if (AATags) {
        AATags = AATags.merge(UI->getAAMetadata());
      }

      LoopUses.push_back(UI);
    }
  }

  // If we found both an unordered atomic instruction and a non-atomic memory
  // access, bail.  We can't blindly promote non-atomic to atomic since we
  // might not be able to lower the result.  We can't downgrade since that
  // would violate memory model.  Also, align 0 is an error for atomics.
  if (SawUnorderedAtomic && SawNotAtomic)
    return false;

  // If we're inserting an atomic load in the preheader, we must be able to
  // lower it.  We're only guaranteed to be able to lower naturally aligned
  // atomics.
  if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
    return false;

  // If we couldn't prove we can hoist the load, bail.
  if (!DereferenceableInPH)
    return false;

  // We know we can hoist the load, but don't have a guaranteed store.
  // Check whether the location is thread-local. If it is, then we can insert
  // stores along paths which originally didn't have them without violating the
  // memory model.
  if (!SafeToInsertStore) {
    if (IsKnownThreadLocalObject)
      SafeToInsertStore = true;
    else {
      Value *Object = getUnderlyingObject(SomePtr);
      SafeToInsertStore =
          (isNoAliasCall(Object) || isa<AllocaInst>(Object)) &&
          isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
    }
  }

  // If we've still failed to prove we can sink the store, hoist the load
  // only, if possible.
  if (!SafeToInsertStore && !FoundLoadToPromote)
    // If we cannot hoist the load either, give up.
    return false;

  // Lets do the promotion!
  if (SafeToInsertStore)
    LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
                      << '\n');
  else
    LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
                      << '\n');

  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
                              LoopUses[0])
           << "Moving accesses to memory location out of the loop";
  });
  ++NumPromoted;

  // Look at all the loop uses, and try to merge their locations.
  std::vector<const DILocation *> LoopUsesLocs;
  for (auto U : LoopUses)
    LoopUsesLocs.push_back(U->getDebugLoc().get());
  auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));

  // We use the SSAUpdater interface to insert phi nodes as required.
  SmallVector<PHINode *, 16> NewPHIs;
  SSAUpdater SSA(&NewPHIs);
  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
                        InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
                        Alignment, SawUnorderedAtomic, AATags, *SafetyInfo,
                        SafeToInsertStore);

  // Set up the preheader to have a definition of the value.  It is the live-out
  // value from the preheader that uses in the loop will use.
  LoadInst *PreheaderLoad = new LoadInst(
      AccessTy, SomePtr, SomePtr->getName() + ".promoted",
      Preheader->getTerminator());
  if (SawUnorderedAtomic)
    PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
  PreheaderLoad->setAlignment(Alignment);
  PreheaderLoad->setDebugLoc(DebugLoc());
  if (AATags)
    PreheaderLoad->setAAMetadata(AATags);
  SSA.AddAvailableValue(Preheader, PreheaderLoad);

  MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
      PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
  MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
  MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);

  if (VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  // Rewrite all the loads in the loop and remember all the definitions from
  // stores in the loop.
  Promoter.run(LoopUses);

  if (VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
  if (PreheaderLoad->use_empty())
    eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);

  return true;
}

static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
                                function_ref<void(Instruction *)> Fn) {
  for (const BasicBlock *BB : L->blocks())
    if (const auto *Accesses = MSSA->getBlockAccesses(BB))
      for (const auto &Access : *Accesses)
        if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
          Fn(MUD->getMemoryInst());
}

static SmallVector<SmallSetVector<Value *, 8>, 0>
collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
  AliasSetTracker AST(*AA);

  auto IsPotentiallyPromotable = [L](const Instruction *I) {
    if (const auto *SI = dyn_cast<StoreInst>(I))
      return L->isLoopInvariant(SI->getPointerOperand());
    if (const auto *LI = dyn_cast<LoadInst>(I))
      return L->isLoopInvariant(LI->getPointerOperand());
    return false;
  };

  // Populate AST with potentially promotable accesses and remove them from
  // MaybePromotable, so they will not be checked again on the next iteration.
  SmallPtrSet<Value *, 16> AttemptingPromotion;
  foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
    if (IsPotentiallyPromotable(I)) {
      AttemptingPromotion.insert(I);
      AST.add(I);
    }
  });

  // We're only interested in must-alias sets that contain a mod.
  SmallVector<const AliasSet *, 8> Sets;
  for (AliasSet &AS : AST)
    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
      Sets.push_back(&AS);

  if (Sets.empty())
    return {}; // Nothing to promote...

  // Discard any sets for which there is an aliasing non-promotable access.
  foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
    if (AttemptingPromotion.contains(I))
      return;

    llvm::erase_if(Sets, [&](const AliasSet *AS) {
      return AS->aliasesUnknownInst(I, *AA);
    });
  });

  SmallVector<SmallSetVector<Value *, 8>, 0> Result;
  for (const AliasSet *Set : Sets) {
    SmallSetVector<Value *, 8> PointerMustAliases;
    for (const auto &ASI : *Set)
      PointerMustAliases.insert(ASI.getValue());
    Result.push_back(std::move(PointerMustAliases));
  }

  return Result;
}

static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
                                     AliasSetTracker *CurAST, Loop *CurLoop,
                                     AAResults *AA) {
  return CurAST->getAliasSetFor(MemLoc).isMod();
}

bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
                                      Loop *CurLoop, Instruction &I,
                                      SinkAndHoistLICMFlags &Flags) {
  // For hoisting, use the walker to determine safety
  if (!Flags.getIsSink()) {
    MemoryAccess *Source;
    // See declaration of SetLicmMssaOptCap for usage details.
    if (Flags.tooManyClobberingCalls())
      Source = MU->getDefiningAccess();
    else {
      Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
      Flags.incrementClobberingCalls();
    }
    return !MSSA->isLiveOnEntryDef(Source) &&
           CurLoop->contains(Source->getBlock());
  }

  // For sinking, we'd need to check all Defs below this use. The getClobbering
  // call will look on the backedge of the loop, but will check aliasing with
  // the instructions on the previous iteration.
  // For example:
  // for (i ... )
  //   load a[i] ( Use (LoE)
  //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
  //   i++;
  // The load sees no clobbering inside the loop, as the backedge alias check
  // does phi translation, and will check aliasing against store a[i-1].
  // However sinking the load outside the loop, below the store is incorrect.

  // For now, only sink if there are no Defs in the loop, and the existing ones
  // precede the use and are in the same block.
  // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
  // needs PostDominatorTreeAnalysis.
  // FIXME: More precise: no Defs that alias this Use.
  if (Flags.tooManyMemoryAccesses())
    return true;
  for (auto *BB : CurLoop->getBlocks())
    if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
      return true;
  // When sinking, the source block may not be part of the loop so check it.
  if (!CurLoop->contains(&I))
    return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);

  return false;
}

bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
                                       MemoryUse &MU) {
  if (const auto *Accesses = MSSA.getBlockDefs(&BB))
    for (const auto &MA : *Accesses)
      if (const auto *MD = dyn_cast<MemoryDef>(&MA))
        if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
          return true;
  return false;
}

/// Little predicate that returns true if the specified basic block is in
/// a subloop of the current one, not the current one itself.
///
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
  assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
  return LI->getLoopFor(BB) != CurLoop;
}