aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Scalar/DFAJumpThreading.cpp
blob: 143a78f604fc9f512b8296013ba3352f71ec8b4a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
//===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Transform each threading path to effectively jump thread the DFA. For
// example, the CFG below could be transformed as follows, where the cloned
// blocks unconditionally branch to the next correct case based on what is
// identified in the analysis.
//
//          sw.bb                        sw.bb
//        /   |   \                    /   |   \
//   case1  case2  case3          case1  case2  case3
//        \   |   /                 |      |      |
//       determinator            det.2   det.3  det.1
//        br sw.bb                /        |        \
//                          sw.bb.2     sw.bb.3     sw.bb.1
//                           br case2    br case3    br case1§
//
// Definitions and Terminology:
//
// * Threading path:
//   a list of basic blocks, the exit state, and the block that determines
//   the next state, for which the following notation will be used:
//   < path of BBs that form a cycle > [ state, determinator ]
//
// * Predictable switch:
//   The switch variable is always a known constant so that all conditional
//   jumps based on switch variable can be converted to unconditional jump.
//
// * Determinator:
//   The basic block that determines the next state of the DFA.
//
// Representing the optimization in C-like pseudocode: the code pattern on the
// left could functionally be transformed to the right pattern if the switch
// condition is predictable.
//
//  X = A                       goto A
//  for (...)                   A:
//    switch (X)                  ...
//      case A                    goto B
//        X = B                 B:
//      case B                    ...
//        X = C                   goto C
//
// The pass first checks that switch variable X is decided by the control flow
// path taken in the loop; for example, in case B, the next value of X is
// decided to be C. It then enumerates through all paths in the loop and labels
// the basic blocks where the next state is decided.
//
// Using this information it creates new paths that unconditionally branch to
// the next case. This involves cloning code, so it only gets triggered if the
// amount of code duplicated is below a threshold.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/DFAJumpThreading.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <deque>

using namespace llvm;

#define DEBUG_TYPE "dfa-jump-threading"

STATISTIC(NumTransforms, "Number of transformations done");
STATISTIC(NumCloned, "Number of blocks cloned");
STATISTIC(NumPaths, "Number of individual paths threaded");

static cl::opt<bool>
    ClViewCfgBefore("dfa-jump-view-cfg-before",
                    cl::desc("View the CFG before DFA Jump Threading"),
                    cl::Hidden, cl::init(false));

static cl::opt<unsigned> MaxPathLength(
    "dfa-max-path-length",
    cl::desc("Max number of blocks searched to find a threading path"),
    cl::Hidden, cl::init(20));

static cl::opt<unsigned>
    CostThreshold("dfa-cost-threshold",
                  cl::desc("Maximum cost accepted for the transformation"),
                  cl::Hidden, cl::init(50));

namespace {

class SelectInstToUnfold {
  SelectInst *SI;
  PHINode *SIUse;

public:
  SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {}

  SelectInst *getInst() { return SI; }
  PHINode *getUse() { return SIUse; }

  explicit operator bool() const { return SI && SIUse; }
};

void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
            std::vector<SelectInstToUnfold> *NewSIsToUnfold,
            std::vector<BasicBlock *> *NewBBs);

class DFAJumpThreading {
public:
  DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT,
                   TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE)
      : AC(AC), DT(DT), TTI(TTI), ORE(ORE) {}

  bool run(Function &F);

private:
  void
  unfoldSelectInstrs(DominatorTree *DT,
                     const SmallVector<SelectInstToUnfold, 4> &SelectInsts) {
    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
    SmallVector<SelectInstToUnfold, 4> Stack;
    for (SelectInstToUnfold SIToUnfold : SelectInsts)
      Stack.push_back(SIToUnfold);

    while (!Stack.empty()) {
      SelectInstToUnfold SIToUnfold = Stack.pop_back_val();

      std::vector<SelectInstToUnfold> NewSIsToUnfold;
      std::vector<BasicBlock *> NewBBs;
      unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs);

      // Put newly discovered select instructions into the work list.
      for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold)
        Stack.push_back(NewSIToUnfold);
    }
  }

  AssumptionCache *AC;
  DominatorTree *DT;
  TargetTransformInfo *TTI;
  OptimizationRemarkEmitter *ORE;
};

class DFAJumpThreadingLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification
  DFAJumpThreadingLegacyPass() : FunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    AssumptionCache *AC =
        &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    TargetTransformInfo *TTI =
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    OptimizationRemarkEmitter *ORE =
        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    return DFAJumpThreading(AC, DT, TTI, ORE).run(F);
  }
};
} // end anonymous namespace

char DFAJumpThreadingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
                      "DFA Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
                    "DFA Jump Threading", false, false)

// Public interface to the DFA Jump Threading pass
FunctionPass *llvm::createDFAJumpThreadingPass() {
  return new DFAJumpThreadingLegacyPass();
}

namespace {

/// Create a new basic block and sink \p SIToSink into it.
void createBasicBlockAndSinkSelectInst(
    DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink,
    BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock,
    BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold,
    std::vector<BasicBlock *> *NewBBs) {
  assert(SIToSink->hasOneUse());
  assert(NewBlock);
  assert(NewBranch);
  *NewBlock = BasicBlock::Create(SI->getContext(), NewBBName,
                                 EndBlock->getParent(), EndBlock);
  NewBBs->push_back(*NewBlock);
  *NewBranch = BranchInst::Create(EndBlock, *NewBlock);
  SIToSink->moveBefore(*NewBranch);
  NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse));
  DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}});
}

/// Unfold the select instruction held in \p SIToUnfold by replacing it with
/// control flow.
///
/// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly
/// created basic blocks into \p NewBBs.
///
/// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible.
void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
            std::vector<SelectInstToUnfold> *NewSIsToUnfold,
            std::vector<BasicBlock *> *NewBBs) {
  SelectInst *SI = SIToUnfold.getInst();
  PHINode *SIUse = SIToUnfold.getUse();
  BasicBlock *StartBlock = SI->getParent();
  BasicBlock *EndBlock = SIUse->getParent();
  BranchInst *StartBlockTerm =
      dyn_cast<BranchInst>(StartBlock->getTerminator());

  assert(StartBlockTerm && StartBlockTerm->isUnconditional());
  assert(SI->hasOneUse());

  // These are the new basic blocks for the conditional branch.
  // At least one will become an actual new basic block.
  BasicBlock *TrueBlock = nullptr;
  BasicBlock *FalseBlock = nullptr;
  BranchInst *TrueBranch = nullptr;
  BranchInst *FalseBranch = nullptr;

  // Sink select instructions to be able to unfold them later.
  if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) {
    createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
                                      "si.unfold.true", &TrueBlock, &TrueBranch,
                                      NewSIsToUnfold, NewBBs);
  }
  if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) {
    createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
                                      "si.unfold.false", &FalseBlock,
                                      &FalseBranch, NewSIsToUnfold, NewBBs);
  }

  // If there was nothing to sink, then arbitrarily choose the 'false' side
  // for a new input value to the PHI.
  if (!TrueBlock && !FalseBlock) {
    FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false",
                                    EndBlock->getParent(), EndBlock);
    NewBBs->push_back(FalseBlock);
    BranchInst::Create(EndBlock, FalseBlock);
    DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}});
  }

  // Insert the real conditional branch based on the original condition.
  // If we did not create a new block for one of the 'true' or 'false' paths
  // of the condition, it means that side of the branch goes to the end block
  // directly and the path originates from the start block from the point of
  // view of the new PHI.
  BasicBlock *TT = EndBlock;
  BasicBlock *FT = EndBlock;
  if (TrueBlock && FalseBlock) {
    // A diamond.
    TT = TrueBlock;
    FT = FalseBlock;

    // Update the phi node of SI.
    SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false);
    SIUse->addIncoming(SI->getTrueValue(), TrueBlock);
    SIUse->addIncoming(SI->getFalseValue(), FalseBlock);

    // Update any other PHI nodes in EndBlock.
    for (PHINode &Phi : EndBlock->phis()) {
      if (&Phi != SIUse) {
        Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock);
        Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock);
      }
    }
  } else {
    BasicBlock *NewBlock = nullptr;
    Value *SIOp1 = SI->getTrueValue();
    Value *SIOp2 = SI->getFalseValue();

    // A triangle pointing right.
    if (!TrueBlock) {
      NewBlock = FalseBlock;
      FT = FalseBlock;
    }
    // A triangle pointing left.
    else {
      NewBlock = TrueBlock;
      TT = TrueBlock;
      std::swap(SIOp1, SIOp2);
    }

    // Update the phi node of SI.
    for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) {
      if (SIUse->getIncomingBlock(Idx) == StartBlock)
        SIUse->setIncomingValue(Idx, SIOp1);
    }
    SIUse->addIncoming(SIOp2, NewBlock);

    // Update any other PHI nodes in EndBlock.
    for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
         ++II) {
      if (Phi != SIUse)
        Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock);
    }
  }
  StartBlockTerm->eraseFromParent();
  BranchInst::Create(TT, FT, SI->getCondition(), StartBlock);
  DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT},
                     {DominatorTree::Insert, StartBlock, FT}});

  // The select is now dead.
  SI->eraseFromParent();
}

struct ClonedBlock {
  BasicBlock *BB;
  uint64_t State; ///< \p State corresponds to the next value of a switch stmnt.
};

typedef std::deque<BasicBlock *> PathType;
typedef std::vector<PathType> PathsType;
typedef SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
typedef std::vector<ClonedBlock> CloneList;

// This data structure keeps track of all blocks that have been cloned.  If two
// different ThreadingPaths clone the same block for a certain state it should
// be reused, and it can be looked up in this map.
typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap;

// This map keeps track of all the new definitions for an instruction. This
// information is needed when restoring SSA form after cloning blocks.
typedef MapVector<Instruction *, std::vector<Instruction *>> DefMap;

inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) {
  OS << "< ";
  for (const BasicBlock *BB : Path) {
    std::string BBName;
    if (BB->hasName())
      raw_string_ostream(BBName) << BB->getName();
    else
      raw_string_ostream(BBName) << BB;
    OS << BBName << " ";
  }
  OS << ">";
  return OS;
}

/// ThreadingPath is a path in the control flow of a loop that can be threaded
/// by cloning necessary basic blocks and replacing conditional branches with
/// unconditional ones. A threading path includes a list of basic blocks, the
/// exit state, and the block that determines the next state.
struct ThreadingPath {
  /// Exit value is DFA's exit state for the given path.
  uint64_t getExitValue() const { return ExitVal; }
  void setExitValue(const ConstantInt *V) {
    ExitVal = V->getZExtValue();
    IsExitValSet = true;
  }
  bool isExitValueSet() const { return IsExitValSet; }

  /// Determinator is the basic block that determines the next state of the DFA.
  const BasicBlock *getDeterminatorBB() const { return DBB; }
  void setDeterminator(const BasicBlock *BB) { DBB = BB; }

  /// Path is a list of basic blocks.
  const PathType &getPath() const { return Path; }
  void setPath(const PathType &NewPath) { Path = NewPath; }

  void print(raw_ostream &OS) const {
    OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]";
  }

private:
  PathType Path;
  uint64_t ExitVal;
  const BasicBlock *DBB = nullptr;
  bool IsExitValSet = false;
};

#ifndef NDEBUG
inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) {
  TPath.print(OS);
  return OS;
}
#endif

struct MainSwitch {
  MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) {
    if (isPredictable(SI)) {
      Instr = SI;
    } else {
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", SI)
               << "Switch instruction is not predictable.";
      });
    }
  }

  virtual ~MainSwitch() = default;

  SwitchInst *getInstr() const { return Instr; }
  const SmallVector<SelectInstToUnfold, 4> getSelectInsts() {
    return SelectInsts;
  }

private:
  /// Do a use-def chain traversal. Make sure the value of the switch variable
  /// is always a known constant. This means that all conditional jumps based on
  /// switch variable can be converted to unconditional jumps.
  bool isPredictable(const SwitchInst *SI) {
    std::deque<Instruction *> Q;
    SmallSet<Value *, 16> SeenValues;
    SelectInsts.clear();

    Value *FirstDef = SI->getOperand(0);
    auto *Inst = dyn_cast<Instruction>(FirstDef);

    // If this is a function argument or another non-instruction, then give up.
    // We are interested in loop local variables.
    if (!Inst)
      return false;

    // Require the first definition to be a PHINode
    if (!isa<PHINode>(Inst))
      return false;

    LLVM_DEBUG(dbgs() << "\tisPredictable() FirstDef: " << *Inst << "\n");

    Q.push_back(Inst);
    SeenValues.insert(FirstDef);

    while (!Q.empty()) {
      Instruction *Current = Q.front();
      Q.pop_front();

      if (auto *Phi = dyn_cast<PHINode>(Current)) {
        for (Value *Incoming : Phi->incoming_values()) {
          if (!isPredictableValue(Incoming, SeenValues))
            return false;
          addInstToQueue(Incoming, Q, SeenValues);
        }
        LLVM_DEBUG(dbgs() << "\tisPredictable() phi: " << *Phi << "\n");
      } else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) {
        if (!isValidSelectInst(SelI))
          return false;
        if (!isPredictableValue(SelI->getTrueValue(), SeenValues) ||
            !isPredictableValue(SelI->getFalseValue(), SeenValues)) {
          return false;
        }
        addInstToQueue(SelI->getTrueValue(), Q, SeenValues);
        addInstToQueue(SelI->getFalseValue(), Q, SeenValues);
        LLVM_DEBUG(dbgs() << "\tisPredictable() select: " << *SelI << "\n");
        if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back()))
          SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse));
      } else {
        // If it is neither a phi nor a select, then we give up.
        return false;
      }
    }

    return true;
  }

  bool isPredictableValue(Value *InpVal, SmallSet<Value *, 16> &SeenValues) {
    if (SeenValues.contains(InpVal))
      return true;

    if (isa<ConstantInt>(InpVal))
      return true;

    // If this is a function argument or another non-instruction, then give up.
    if (!isa<Instruction>(InpVal))
      return false;

    return true;
  }

  void addInstToQueue(Value *Val, std::deque<Instruction *> &Q,
                      SmallSet<Value *, 16> &SeenValues) {
    if (SeenValues.contains(Val))
      return;
    if (Instruction *I = dyn_cast<Instruction>(Val))
      Q.push_back(I);
    SeenValues.insert(Val);
  }

  bool isValidSelectInst(SelectInst *SI) {
    if (!SI->hasOneUse())
      return false;

    Instruction *SIUse = dyn_cast<Instruction>(SI->user_back());
    // The use of the select inst should be either a phi or another select.
    if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse)))
      return false;

    BasicBlock *SIBB = SI->getParent();

    // Currently, we can only expand select instructions in basic blocks with
    // one successor.
    BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator());
    if (!SITerm || !SITerm->isUnconditional())
      return false;

    if (isa<PHINode>(SIUse) &&
        SIBB->getSingleSuccessor() != cast<Instruction>(SIUse)->getParent())
      return false;

    // If select will not be sunk during unfolding, and it is in the same basic
    // block as another state defining select, then cannot unfold both.
    for (SelectInstToUnfold SIToUnfold : SelectInsts) {
      SelectInst *PrevSI = SIToUnfold.getInst();
      if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI &&
          PrevSI->getParent() == SI->getParent())
        return false;
    }

    return true;
  }

  SwitchInst *Instr = nullptr;
  SmallVector<SelectInstToUnfold, 4> SelectInsts;
};

struct AllSwitchPaths {
  AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE)
      : Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()),
        ORE(ORE) {}

  std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; }
  unsigned getNumThreadingPaths() { return TPaths.size(); }
  SwitchInst *getSwitchInst() { return Switch; }
  BasicBlock *getSwitchBlock() { return SwitchBlock; }

  void run() {
    VisitedBlocks Visited;
    PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1);
    StateDefMap StateDef = getStateDefMap();

    for (PathType Path : LoopPaths) {
      ThreadingPath TPath;

      const BasicBlock *PrevBB = Path.back();
      for (const BasicBlock *BB : Path) {
        if (StateDef.count(BB) != 0) {
          const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]);
          assert(Phi && "Expected a state-defining instr to be a phi node.");

          const Value *V = Phi->getIncomingValueForBlock(PrevBB);
          if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) {
            TPath.setExitValue(C);
            TPath.setDeterminator(BB);
            TPath.setPath(Path);
          }
        }

        // Switch block is the determinator, this is the final exit value.
        if (TPath.isExitValueSet() && BB == Path.front())
          break;

        PrevBB = BB;
      }

      if (TPath.isExitValueSet() && isSupported(TPath))
        TPaths.push_back(TPath);
    }
  }

private:
  // Value: an instruction that defines a switch state;
  // Key: the parent basic block of that instruction.
  typedef DenseMap<const BasicBlock *, const PHINode *> StateDefMap;

  PathsType paths(BasicBlock *BB, VisitedBlocks &Visited,
                  unsigned PathDepth) const {
    PathsType Res;

    // Stop exploring paths after visiting MaxPathLength blocks
    if (PathDepth > MaxPathLength) {
      ORE->emit([&]() {
        return OptimizationRemarkAnalysis(DEBUG_TYPE, "MaxPathLengthReached",
                                          Switch)
               << "Exploration stopped after visiting MaxPathLength="
               << ore::NV("MaxPathLength", MaxPathLength) << " blocks.";
      });
      return Res;
    }

    Visited.insert(BB);

    // Some blocks have multiple edges to the same successor, and this set
    // is used to prevent a duplicate path from being generated
    SmallSet<BasicBlock *, 4> Successors;
    for (BasicBlock *Succ : successors(BB)) {
      if (!Successors.insert(Succ).second)
        continue;

      // Found a cycle through the SwitchBlock
      if (Succ == SwitchBlock) {
        Res.push_back({BB});
        continue;
      }

      // We have encountered a cycle, do not get caught in it
      if (Visited.contains(Succ))
        continue;

      PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1);
      for (PathType Path : SuccPaths) {
        PathType NewPath(Path);
        NewPath.push_front(BB);
        Res.push_back(NewPath);
      }
    }
    // This block could now be visited again from a different predecessor. Note
    // that this will result in exponential runtime. Subpaths could possibly be
    // cached but it takes a lot of memory to store them.
    Visited.erase(BB);
    return Res;
  }

  /// Walk the use-def chain and collect all the state-defining instructions.
  StateDefMap getStateDefMap() const {
    StateDefMap Res;

    Value *FirstDef = Switch->getOperand(0);

    assert(isa<PHINode>(FirstDef) && "After select unfolding, all state "
                                     "definitions are expected to be phi "
                                     "nodes.");

    SmallVector<PHINode *, 8> Stack;
    Stack.push_back(dyn_cast<PHINode>(FirstDef));
    SmallSet<Value *, 16> SeenValues;

    while (!Stack.empty()) {
      PHINode *CurPhi = Stack.pop_back_val();

      Res[CurPhi->getParent()] = CurPhi;
      SeenValues.insert(CurPhi);

      for (Value *Incoming : CurPhi->incoming_values()) {
        if (Incoming == FirstDef || isa<ConstantInt>(Incoming) ||
            SeenValues.contains(Incoming)) {
          continue;
        }

        assert(isa<PHINode>(Incoming) && "After select unfolding, all state "
                                         "definitions are expected to be phi "
                                         "nodes.");

        Stack.push_back(cast<PHINode>(Incoming));
      }
    }

    return Res;
  }

  /// The determinator BB should precede the switch-defining BB.
  ///
  /// Otherwise, it is possible that the state defined in the determinator block
  /// defines the state for the next iteration of the loop, rather than for the
  /// current one.
  ///
  /// Currently supported paths:
  /// \code
  /// < switch bb1 determ def > [ 42, determ ]
  /// < switch_and_def bb1 determ > [ 42, determ ]
  /// < switch_and_def_and_determ bb1 > [ 42, switch_and_def_and_determ ]
  /// \endcode
  ///
  /// Unsupported paths:
  /// \code
  /// < switch bb1 def determ > [ 43, determ ]
  /// < switch_and_determ bb1 def > [ 43, switch_and_determ ]
  /// \endcode
  bool isSupported(const ThreadingPath &TPath) {
    Instruction *SwitchCondI = dyn_cast<Instruction>(Switch->getCondition());
    assert(SwitchCondI);
    if (!SwitchCondI)
      return false;

    const BasicBlock *SwitchCondDefBB = SwitchCondI->getParent();
    const BasicBlock *SwitchCondUseBB = Switch->getParent();
    const BasicBlock *DeterminatorBB = TPath.getDeterminatorBB();

    assert(
        SwitchCondUseBB == TPath.getPath().front() &&
        "The first BB in a threading path should have the switch instruction");
    if (SwitchCondUseBB != TPath.getPath().front())
      return false;

    // Make DeterminatorBB the first element in Path.
    PathType Path = TPath.getPath();
    auto ItDet = std::find(Path.begin(), Path.end(), DeterminatorBB);
    std::rotate(Path.begin(), ItDet, Path.end());

    bool IsDetBBSeen = false;
    bool IsDefBBSeen = false;
    bool IsUseBBSeen = false;
    for (BasicBlock *BB : Path) {
      if (BB == DeterminatorBB)
        IsDetBBSeen = true;
      if (BB == SwitchCondDefBB)
        IsDefBBSeen = true;
      if (BB == SwitchCondUseBB)
        IsUseBBSeen = true;
      if (IsDetBBSeen && IsUseBBSeen && !IsDefBBSeen)
        return false;
    }

    return true;
  }

  SwitchInst *Switch;
  BasicBlock *SwitchBlock;
  OptimizationRemarkEmitter *ORE;
  std::vector<ThreadingPath> TPaths;
};

struct TransformDFA {
  TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT,
               AssumptionCache *AC, TargetTransformInfo *TTI,
               OptimizationRemarkEmitter *ORE,
               SmallPtrSet<const Value *, 32> EphValues)
      : SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE),
        EphValues(EphValues) {}

  void run() {
    if (isLegalAndProfitableToTransform()) {
      createAllExitPaths();
      NumTransforms++;
    }
  }

private:
  /// This function performs both a legality check and profitability check at
  /// the same time since it is convenient to do so. It iterates through all
  /// blocks that will be cloned, and keeps track of the duplication cost. It
  /// also returns false if it is illegal to clone some required block.
  bool isLegalAndProfitableToTransform() {
    CodeMetrics Metrics;
    SwitchInst *Switch = SwitchPaths->getSwitchInst();

    // Note that DuplicateBlockMap is not being used as intended here. It is
    // just being used to ensure (BB, State) pairs are only counted once.
    DuplicateBlockMap DuplicateMap;

    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
      PathType PathBBs = TPath.getPath();
      uint64_t NextState = TPath.getExitValue();
      const BasicBlock *Determinator = TPath.getDeterminatorBB();

      // Update Metrics for the Switch block, this is always cloned
      BasicBlock *BB = SwitchPaths->getSwitchBlock();
      BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
      if (!VisitedBB) {
        Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
        DuplicateMap[BB].push_back({BB, NextState});
      }

      // If the Switch block is the Determinator, then we can continue since
      // this is the only block that is cloned and we already counted for it.
      if (PathBBs.front() == Determinator)
        continue;

      // Otherwise update Metrics for all blocks that will be cloned. If any
      // block is already cloned and would be reused, don't double count it.
      auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
      for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
        BB = *BBIt;
        VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
        if (VisitedBB)
          continue;
        Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
        DuplicateMap[BB].push_back({BB, NextState});
      }

      if (Metrics.notDuplicatable) {
        LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
                          << "non-duplicatable instructions.\n");
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NonDuplicatableInst",
                                          Switch)
                 << "Contains non-duplicatable instructions.";
        });
        return false;
      }

      if (Metrics.convergent) {
        LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
                          << "convergent instructions.\n");
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
                 << "Contains convergent instructions.";
        });
        return false;
      }
    }

    unsigned DuplicationCost = 0;

    unsigned JumpTableSize = 0;
    TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr,
                                          nullptr);
    if (JumpTableSize == 0) {
      // Factor in the number of conditional branches reduced from jump
      // threading. Assume that lowering the switch block is implemented by
      // using binary search, hence the LogBase2().
      unsigned CondBranches =
          APInt(32, Switch->getNumSuccessors()).ceilLogBase2();
      DuplicationCost = Metrics.NumInsts / CondBranches;
    } else {
      // Compared with jump tables, the DFA optimizer removes an indirect branch
      // on each loop iteration, thus making branch prediction more precise. The
      // more branch targets there are, the more likely it is for the branch
      // predictor to make a mistake, and the more benefit there is in the DFA
      // optimizer. Thus, the more branch targets there are, the lower is the
      // cost of the DFA opt.
      DuplicationCost = Metrics.NumInsts / JumpTableSize;
    }

    LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block "
                      << SwitchPaths->getSwitchBlock()->getName()
                      << " is: " << DuplicationCost << "\n\n");

    if (DuplicationCost > CostThreshold) {
      LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the "
                        << "cost threshold.\n");
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE, "NotProfitable", Switch)
               << "Duplication cost exceeds the cost threshold (cost="
               << ore::NV("Cost", DuplicationCost)
               << ", threshold=" << ore::NV("Threshold", CostThreshold) << ").";
      });
      return false;
    }

    ORE->emit([&]() {
      return OptimizationRemark(DEBUG_TYPE, "JumpThreaded", Switch)
             << "Switch statement jump-threaded.";
    });

    return true;
  }

  /// Transform each threading path to effectively jump thread the DFA.
  void createAllExitPaths() {
    DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager);

    // Move the switch block to the end of the path, since it will be duplicated
    BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock();
    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
      LLVM_DEBUG(dbgs() << TPath << "\n");
      PathType NewPath(TPath.getPath());
      NewPath.push_back(SwitchBlock);
      TPath.setPath(NewPath);
    }

    // Transform the ThreadingPaths and keep track of the cloned values
    DuplicateBlockMap DuplicateMap;
    DefMap NewDefs;

    SmallSet<BasicBlock *, 16> BlocksToClean;
    for (BasicBlock *BB : successors(SwitchBlock))
      BlocksToClean.insert(BB);

    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
      createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU);
      NumPaths++;
    }

    // After all paths are cloned, now update the last successor of the cloned
    // path so it skips over the switch statement
    for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths())
      updateLastSuccessor(TPath, DuplicateMap, &DTU);

    // For each instruction that was cloned and used outside, update its uses
    updateSSA(NewDefs);

    // Clean PHI Nodes for the newly created blocks
    for (BasicBlock *BB : BlocksToClean)
      cleanPhiNodes(BB);
  }

  /// For a specific ThreadingPath \p Path, create an exit path starting from
  /// the determinator block.
  ///
  /// To remember the correct destination, we have to duplicate blocks
  /// corresponding to each state. Also update the terminating instruction of
  /// the predecessors, and phis in the successor blocks.
  void createExitPath(DefMap &NewDefs, ThreadingPath &Path,
                      DuplicateBlockMap &DuplicateMap,
                      SmallSet<BasicBlock *, 16> &BlocksToClean,
                      DomTreeUpdater *DTU) {
    uint64_t NextState = Path.getExitValue();
    const BasicBlock *Determinator = Path.getDeterminatorBB();
    PathType PathBBs = Path.getPath();

    // Don't select the placeholder block in front
    if (PathBBs.front() == Determinator)
      PathBBs.pop_front();

    auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
    auto Prev = std::prev(DetIt);
    BasicBlock *PrevBB = *Prev;
    for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
      BasicBlock *BB = *BBIt;
      BlocksToClean.insert(BB);

      // We already cloned BB for this NextState, now just update the branch
      // and continue.
      BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap);
      if (NextBB) {
        updatePredecessor(PrevBB, BB, NextBB, DTU);
        PrevBB = NextBB;
        continue;
      }

      // Clone the BB and update the successor of Prev to jump to the new block
      BasicBlock *NewBB = cloneBlockAndUpdatePredecessor(
          BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU);
      DuplicateMap[BB].push_back({NewBB, NextState});
      BlocksToClean.insert(NewBB);
      PrevBB = NewBB;
    }
  }

  /// Restore SSA form after cloning blocks.
  ///
  /// Each cloned block creates new defs for a variable, and the uses need to be
  /// updated to reflect this. The uses may be replaced with a cloned value, or
  /// some derived phi instruction. Note that all uses of a value defined in the
  /// same block were already remapped when cloning the block.
  void updateSSA(DefMap &NewDefs) {
    SSAUpdaterBulk SSAUpdate;
    SmallVector<Use *, 16> UsesToRename;

    for (auto KV : NewDefs) {
      Instruction *I = KV.first;
      BasicBlock *BB = I->getParent();
      std::vector<Instruction *> Cloned = KV.second;

      // Scan all uses of this instruction to see if it is used outside of its
      // block, and if so, record them in UsesToRename.
      for (Use &U : I->uses()) {
        Instruction *User = cast<Instruction>(U.getUser());
        if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
          if (UserPN->getIncomingBlock(U) == BB)
            continue;
        } else if (User->getParent() == BB) {
          continue;
        }

        UsesToRename.push_back(&U);
      }

      // If there are no uses outside the block, we're done with this
      // instruction.
      if (UsesToRename.empty())
        continue;
      LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *I
                        << "\n");

      // We found a use of I outside of BB.  Rename all uses of I that are
      // outside its block to be uses of the appropriate PHI node etc.  See
      // ValuesInBlocks with the values we know.
      unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType());
      SSAUpdate.AddAvailableValue(VarNum, BB, I);
      for (Instruction *New : Cloned)
        SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New);

      while (!UsesToRename.empty())
        SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val());

      LLVM_DEBUG(dbgs() << "\n");
    }
    // SSAUpdater handles phi placement and renaming uses with the appropriate
    // value.
    SSAUpdate.RewriteAllUses(DT);
  }

  /// Clones a basic block, and adds it to the CFG.
  ///
  /// This function also includes updating phi nodes in the successors of the
  /// BB, and remapping uses that were defined locally in the cloned BB.
  BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB,
                                             uint64_t NextState,
                                             DuplicateBlockMap &DuplicateMap,
                                             DefMap &NewDefs,
                                             DomTreeUpdater *DTU) {
    ValueToValueMapTy VMap;
    BasicBlock *NewBB = CloneBasicBlock(
        BB, VMap, ".jt" + std::to_string(NextState), BB->getParent());
    NewBB->moveAfter(BB);
    NumCloned++;

    for (Instruction &I : *NewBB) {
      // Do not remap operands of PHINode in case a definition in BB is an
      // incoming value to a phi in the same block. This incoming value will
      // be renamed later while restoring SSA.
      if (isa<PHINode>(&I))
        continue;
      RemapInstruction(&I, VMap,
                       RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
      if (AssumeInst *II = dyn_cast<AssumeInst>(&I))
        AC->registerAssumption(II);
    }

    updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap);
    updatePredecessor(PrevBB, BB, NewBB, DTU);
    updateDefMap(NewDefs, VMap);

    // Add all successors to the DominatorTree
    SmallPtrSet<BasicBlock *, 4> SuccSet;
    for (auto *SuccBB : successors(NewBB)) {
      if (SuccSet.insert(SuccBB).second)
        DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}});
    }
    SuccSet.clear();
    return NewBB;
  }

  /// Update the phi nodes in BB's successors.
  ///
  /// This means creating a new incoming value from NewBB with the new
  /// instruction wherever there is an incoming value from BB.
  void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB,
                           uint64_t NextState, ValueToValueMapTy &VMap,
                           DuplicateBlockMap &DuplicateMap) {
    std::vector<BasicBlock *> BlocksToUpdate;

    // If BB is the last block in the path, we can simply update the one case
    // successor that will be reached.
    if (BB == SwitchPaths->getSwitchBlock()) {
      SwitchInst *Switch = SwitchPaths->getSwitchInst();
      BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
      BlocksToUpdate.push_back(NextCase);
      BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap);
      if (ClonedSucc)
        BlocksToUpdate.push_back(ClonedSucc);
    }
    // Otherwise update phis in all successors.
    else {
      for (BasicBlock *Succ : successors(BB)) {
        BlocksToUpdate.push_back(Succ);

        // Check if a successor has already been cloned for the particular exit
        // value. In this case if a successor was already cloned, the phi nodes
        // in the cloned block should be updated directly.
        BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap);
        if (ClonedSucc)
          BlocksToUpdate.push_back(ClonedSucc);
      }
    }

    // If there is a phi with an incoming value from BB, create a new incoming
    // value for the new predecessor ClonedBB. The value will either be the same
    // value from BB or a cloned value.
    for (BasicBlock *Succ : BlocksToUpdate) {
      for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
           ++II) {
        Value *Incoming = Phi->getIncomingValueForBlock(BB);
        if (Incoming) {
          if (isa<Constant>(Incoming)) {
            Phi->addIncoming(Incoming, ClonedBB);
            continue;
          }
          Value *ClonedVal = VMap[Incoming];
          if (ClonedVal)
            Phi->addIncoming(ClonedVal, ClonedBB);
          else
            Phi->addIncoming(Incoming, ClonedBB);
        }
      }
    }
  }

  /// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all
  /// other successors are kept as well.
  void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB,
                         BasicBlock *NewBB, DomTreeUpdater *DTU) {
    // When a path is reused, there is a chance that predecessors were already
    // updated before. Check if the predecessor needs to be updated first.
    if (!isPredecessor(OldBB, PrevBB))
      return;

    Instruction *PrevTerm = PrevBB->getTerminator();
    for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) {
      if (PrevTerm->getSuccessor(Idx) == OldBB) {
        OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true);
        PrevTerm->setSuccessor(Idx, NewBB);
      }
    }
    DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB},
                       {DominatorTree::Insert, PrevBB, NewBB}});
  }

  /// Add new value mappings to the DefMap to keep track of all new definitions
  /// for a particular instruction. These will be used while updating SSA form.
  void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) {
    SmallVector<std::pair<Instruction *, Instruction *>> NewDefsVector;
    NewDefsVector.reserve(VMap.size());

    for (auto Entry : VMap) {
      Instruction *Inst =
          dyn_cast<Instruction>(const_cast<Value *>(Entry.first));
      if (!Inst || !Entry.second || isa<BranchInst>(Inst) ||
          isa<SwitchInst>(Inst)) {
        continue;
      }

      Instruction *Cloned = dyn_cast<Instruction>(Entry.second);
      if (!Cloned)
        continue;

      NewDefsVector.push_back({Inst, Cloned});
    }

    // Sort the defs to get deterministic insertion order into NewDefs.
    sort(NewDefsVector, [](const auto &LHS, const auto &RHS) {
      if (LHS.first == RHS.first)
        return LHS.second->comesBefore(RHS.second);
      return LHS.first->comesBefore(RHS.first);
    });

    for (const auto &KV : NewDefsVector)
      NewDefs[KV.first].push_back(KV.second);
  }

  /// Update the last branch of a particular cloned path to point to the correct
  /// case successor.
  ///
  /// Note that this is an optional step and would have been done in later
  /// optimizations, but it makes the CFG significantly easier to work with.
  void updateLastSuccessor(ThreadingPath &TPath,
                           DuplicateBlockMap &DuplicateMap,
                           DomTreeUpdater *DTU) {
    uint64_t NextState = TPath.getExitValue();
    BasicBlock *BB = TPath.getPath().back();
    BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap);

    // Note multiple paths can end at the same block so check that it is not
    // updated yet
    if (!isa<SwitchInst>(LastBlock->getTerminator()))
      return;
    SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator());
    BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);

    std::vector<DominatorTree::UpdateType> DTUpdates;
    SmallPtrSet<BasicBlock *, 4> SuccSet;
    for (BasicBlock *Succ : successors(LastBlock)) {
      if (Succ != NextCase && SuccSet.insert(Succ).second)
        DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ});
    }

    Switch->eraseFromParent();
    BranchInst::Create(NextCase, LastBlock);

    DTU->applyUpdates(DTUpdates);
  }

  /// After cloning blocks, some of the phi nodes have extra incoming values
  /// that are no longer used. This function removes them.
  void cleanPhiNodes(BasicBlock *BB) {
    // If BB is no longer reachable, remove any remaining phi nodes
    if (pred_empty(BB)) {
      std::vector<PHINode *> PhiToRemove;
      for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
        PhiToRemove.push_back(Phi);
      }
      for (PHINode *PN : PhiToRemove) {
        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
        PN->eraseFromParent();
      }
      return;
    }

    // Remove any incoming values that come from an invalid predecessor
    for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
      std::vector<BasicBlock *> BlocksToRemove;
      for (BasicBlock *IncomingBB : Phi->blocks()) {
        if (!isPredecessor(BB, IncomingBB))
          BlocksToRemove.push_back(IncomingBB);
      }
      for (BasicBlock *BB : BlocksToRemove)
        Phi->removeIncomingValue(BB);
    }
  }

  /// Checks if BB was already cloned for a particular next state value. If it
  /// was then it returns this cloned block, and otherwise null.
  BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState,
                          DuplicateBlockMap &DuplicateMap) {
    CloneList ClonedBBs = DuplicateMap[BB];

    // Find an entry in the CloneList with this NextState. If it exists then
    // return the corresponding BB
    auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) {
      return C.State == NextState;
    });
    return It != ClonedBBs.end() ? (*It).BB : nullptr;
  }

  /// Helper to get the successor corresponding to a particular case value for
  /// a switch statement.
  BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) {
    BasicBlock *NextCase = nullptr;
    for (auto Case : Switch->cases()) {
      if (Case.getCaseValue()->getZExtValue() == NextState) {
        NextCase = Case.getCaseSuccessor();
        break;
      }
    }
    if (!NextCase)
      NextCase = Switch->getDefaultDest();
    return NextCase;
  }

  /// Returns true if IncomingBB is a predecessor of BB.
  bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) {
    return llvm::find(predecessors(BB), IncomingBB) != pred_end(BB);
  }

  AllSwitchPaths *SwitchPaths;
  DominatorTree *DT;
  AssumptionCache *AC;
  TargetTransformInfo *TTI;
  OptimizationRemarkEmitter *ORE;
  SmallPtrSet<const Value *, 32> EphValues;
  std::vector<ThreadingPath> TPaths;
};

bool DFAJumpThreading::run(Function &F) {
  LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n");

  if (F.hasOptSize()) {
    LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n");
    return false;
  }

  if (ClViewCfgBefore)
    F.viewCFG();

  SmallVector<AllSwitchPaths, 2> ThreadableLoops;
  bool MadeChanges = false;

  for (BasicBlock &BB : F) {
    auto *SI = dyn_cast<SwitchInst>(BB.getTerminator());
    if (!SI)
      continue;

    LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName()
                      << " is predictable\n");
    MainSwitch Switch(SI, ORE);

    if (!Switch.getInstr())
      continue;

    LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a "
                      << "candidate for jump threading\n");
    LLVM_DEBUG(SI->dump());

    unfoldSelectInstrs(DT, Switch.getSelectInsts());
    if (!Switch.getSelectInsts().empty())
      MadeChanges = true;

    AllSwitchPaths SwitchPaths(&Switch, ORE);
    SwitchPaths.run();

    if (SwitchPaths.getNumThreadingPaths() > 0) {
      ThreadableLoops.push_back(SwitchPaths);

      // For the time being limit this optimization to occurring once in a
      // function since it can change the CFG significantly. This is not a
      // strict requirement but it can cause buggy behavior if there is an
      // overlap of blocks in different opportunities. There is a lot of room to
      // experiment with catching more opportunities here.
      break;
    }
  }

  SmallPtrSet<const Value *, 32> EphValues;
  if (ThreadableLoops.size() > 0)
    CodeMetrics::collectEphemeralValues(&F, AC, EphValues);

  for (AllSwitchPaths SwitchPaths : ThreadableLoops) {
    TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues);
    Transform.run();
    MadeChanges = true;
  }

#ifdef EXPENSIVE_CHECKS
  assert(DT->verify(DominatorTree::VerificationLevel::Full));
  verifyFunction(F, &dbgs());
#endif

  return MadeChanges;
}

} // end anonymous namespace

/// Integrate with the new Pass Manager
PreservedAnalyses DFAJumpThreadingPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
  OptimizationRemarkEmitter ORE(&F);

  if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}