aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Instrumentation/AddressSanitizer.cpp
blob: 8f94172a6402daafaeac30ebed07d7c4d4776363 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
//===- AddressSanitizer.cpp - memory error detector -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address basic correctness
// checker.
// Details of the algorithm:
//  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
//
// FIXME: This sanitizer does not yet handle scalable vectors
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iomanip>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>

using namespace llvm;

#define DEBUG_TYPE "asan"

static const uint64_t kDefaultShadowScale = 3;
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
static const uint64_t kDynamicShadowSentinel =
    std::numeric_limits<uint64_t>::max();
static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
static const uint64_t kEmscriptenShadowOffset = 0;

// The shadow memory space is dynamically allocated.
static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;

static const size_t kMinStackMallocSize = 1 << 6;   // 64B
static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;

const char kAsanModuleCtorName[] = "asan.module_ctor";
const char kAsanModuleDtorName[] = "asan.module_dtor";
static const uint64_t kAsanCtorAndDtorPriority = 1;
// On Emscripten, the system needs more than one priorities for constructors.
static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
const char kAsanReportErrorTemplate[] = "__asan_report_";
const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
const char kAsanUnregisterImageGlobalsName[] =
    "__asan_unregister_image_globals";
const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
const char kAsanInitName[] = "__asan_init";
const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
static const int kMaxAsanStackMallocSizeClass = 10;
const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
const char kAsanStackMallocAlwaysNameTemplate[] =
    "__asan_stack_malloc_always_";
const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
const char kAsanGenPrefix[] = "___asan_gen_";
const char kODRGenPrefix[] = "__odr_asan_gen_";
const char kSanCovGenPrefix[] = "__sancov_gen_";
const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";

// ASan version script has __asan_* wildcard. Triple underscore prevents a
// linker (gold) warning about attempting to export a local symbol.
const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";

const char kAsanOptionDetectUseAfterReturn[] =
    "__asan_option_detect_stack_use_after_return";

const char kAsanShadowMemoryDynamicAddress[] =
    "__asan_shadow_memory_dynamic_address";

const char kAsanAllocaPoison[] = "__asan_alloca_poison";
const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";

const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";

// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;

static const uint64_t kAllocaRzSize = 32;

// ASanAccessInfo implementation constants.
constexpr size_t kCompileKernelShift = 0;
constexpr size_t kCompileKernelMask = 0x1;
constexpr size_t kAccessSizeIndexShift = 1;
constexpr size_t kAccessSizeIndexMask = 0xf;
constexpr size_t kIsWriteShift = 5;
constexpr size_t kIsWriteMask = 0x1;

// Command-line flags.

static cl::opt<bool> ClEnableKasan(
    "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
    cl::Hidden, cl::init(false));

static cl::opt<bool> ClRecover(
    "asan-recover",
    cl::desc("Enable recovery mode (continue-after-error)."),
    cl::Hidden, cl::init(false));

static cl::opt<bool> ClInsertVersionCheck(
    "asan-guard-against-version-mismatch",
    cl::desc("Guard against compiler/runtime version mismatch."),
    cl::Hidden, cl::init(true));

// This flag may need to be replaced with -f[no-]asan-reads.
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
                                       cl::desc("instrument read instructions"),
                                       cl::Hidden, cl::init(true));

static cl::opt<bool> ClInstrumentWrites(
    "asan-instrument-writes", cl::desc("instrument write instructions"),
    cl::Hidden, cl::init(true));

static cl::opt<bool>
    ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false),
                     cl::Hidden, cl::desc("Use Stack Safety analysis results"),
                     cl::Optional);

static cl::opt<bool> ClInstrumentAtomics(
    "asan-instrument-atomics",
    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
    cl::init(true));

static cl::opt<bool>
    ClInstrumentByval("asan-instrument-byval",
                      cl::desc("instrument byval call arguments"), cl::Hidden,
                      cl::init(true));

static cl::opt<bool> ClAlwaysSlowPath(
    "asan-always-slow-path",
    cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
    cl::init(false));

static cl::opt<bool> ClForceDynamicShadow(
    "asan-force-dynamic-shadow",
    cl::desc("Load shadow address into a local variable for each function"),
    cl::Hidden, cl::init(false));

static cl::opt<bool>
    ClWithIfunc("asan-with-ifunc",
                cl::desc("Access dynamic shadow through an ifunc global on "
                         "platforms that support this"),
                cl::Hidden, cl::init(true));

static cl::opt<bool> ClWithIfuncSuppressRemat(
    "asan-with-ifunc-suppress-remat",
    cl::desc("Suppress rematerialization of dynamic shadow address by passing "
             "it through inline asm in prologue."),
    cl::Hidden, cl::init(true));

// This flag limits the number of instructions to be instrumented
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
// set it to 10000.
static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
    "asan-max-ins-per-bb", cl::init(10000),
    cl::desc("maximal number of instructions to instrument in any given BB"),
    cl::Hidden);

// This flag may need to be replaced with -f[no]asan-stack.
static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
                             cl::Hidden, cl::init(true));
static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
    "asan-max-inline-poisoning-size",
    cl::desc(
        "Inline shadow poisoning for blocks up to the given size in bytes."),
    cl::Hidden, cl::init(64));

static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
    "asan-use-after-return",
    cl::desc("Sets the mode of detection for stack-use-after-return."),
    cl::values(
        clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
                   "Never detect stack use after return."),
        clEnumValN(
            AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
            "Detect stack use after return if "
            "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
        clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
                   "Always detect stack use after return.")),
    cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));

static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
                                        cl::desc("Create redzones for byval "
                                                 "arguments (extra copy "
                                                 "required)"), cl::Hidden,
                                        cl::init(true));

static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
                                     cl::desc("Check stack-use-after-scope"),
                                     cl::Hidden, cl::init(false));

// This flag may need to be replaced with -f[no]asan-globals.
static cl::opt<bool> ClGlobals("asan-globals",
                               cl::desc("Handle global objects"), cl::Hidden,
                               cl::init(true));

static cl::opt<bool> ClInitializers("asan-initialization-order",
                                    cl::desc("Handle C++ initializer order"),
                                    cl::Hidden, cl::init(true));

static cl::opt<bool> ClInvalidPointerPairs(
    "asan-detect-invalid-pointer-pair",
    cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
    cl::init(false));

static cl::opt<bool> ClInvalidPointerCmp(
    "asan-detect-invalid-pointer-cmp",
    cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
    cl::init(false));

static cl::opt<bool> ClInvalidPointerSub(
    "asan-detect-invalid-pointer-sub",
    cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
    cl::init(false));

static cl::opt<unsigned> ClRealignStack(
    "asan-realign-stack",
    cl::desc("Realign stack to the value of this flag (power of two)"),
    cl::Hidden, cl::init(32));

static cl::opt<int> ClInstrumentationWithCallsThreshold(
    "asan-instrumentation-with-call-threshold",
    cl::desc(
        "If the function being instrumented contains more than "
        "this number of memory accesses, use callbacks instead of "
        "inline checks (-1 means never use callbacks)."),
    cl::Hidden, cl::init(7000));

static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
    "asan-memory-access-callback-prefix",
    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
    cl::init("__asan_"));

static cl::opt<bool>
    ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
                               cl::desc("instrument dynamic allocas"),
                               cl::Hidden, cl::init(true));

static cl::opt<bool> ClSkipPromotableAllocas(
    "asan-skip-promotable-allocas",
    cl::desc("Do not instrument promotable allocas"), cl::Hidden,
    cl::init(true));

// These flags allow to change the shadow mapping.
// The shadow mapping looks like
//    Shadow = (Mem >> scale) + offset

static cl::opt<int> ClMappingScale("asan-mapping-scale",
                                   cl::desc("scale of asan shadow mapping"),
                                   cl::Hidden, cl::init(0));

static cl::opt<uint64_t>
    ClMappingOffset("asan-mapping-offset",
                    cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
                    cl::Hidden, cl::init(0));

// Optimization flags. Not user visible, used mostly for testing
// and benchmarking the tool.

static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
                           cl::Hidden, cl::init(true));

static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
                                         cl::desc("Optimize callbacks"),
                                         cl::Hidden, cl::init(false));

static cl::opt<bool> ClOptSameTemp(
    "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
    cl::Hidden, cl::init(true));

static cl::opt<bool> ClOptGlobals("asan-opt-globals",
                                  cl::desc("Don't instrument scalar globals"),
                                  cl::Hidden, cl::init(true));

static cl::opt<bool> ClOptStack(
    "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
    cl::Hidden, cl::init(false));

static cl::opt<bool> ClDynamicAllocaStack(
    "asan-stack-dynamic-alloca",
    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
    cl::init(true));

static cl::opt<uint32_t> ClForceExperiment(
    "asan-force-experiment",
    cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
    cl::init(0));

static cl::opt<bool>
    ClUsePrivateAlias("asan-use-private-alias",
                      cl::desc("Use private aliases for global variables"),
                      cl::Hidden, cl::init(false));

static cl::opt<bool>
    ClUseOdrIndicator("asan-use-odr-indicator",
                      cl::desc("Use odr indicators to improve ODR reporting"),
                      cl::Hidden, cl::init(false));

static cl::opt<bool>
    ClUseGlobalsGC("asan-globals-live-support",
                   cl::desc("Use linker features to support dead "
                            "code stripping of globals"),
                   cl::Hidden, cl::init(true));

// This is on by default even though there is a bug in gold:
// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
static cl::opt<bool>
    ClWithComdat("asan-with-comdat",
                 cl::desc("Place ASan constructors in comdat sections"),
                 cl::Hidden, cl::init(true));

static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
    "asan-destructor-kind",
    cl::desc("Sets the ASan destructor kind. The default is to use the value "
             "provided to the pass constructor"),
    cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
               clEnumValN(AsanDtorKind::Global, "global",
                          "Use global destructors")),
    cl::init(AsanDtorKind::Invalid), cl::Hidden);

// Debug flags.

static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
                            cl::init(0));

static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
                                 cl::Hidden, cl::init(0));

static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
                                        cl::desc("Debug func"));

static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
                               cl::Hidden, cl::init(-1));

static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
                               cl::Hidden, cl::init(-1));

STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
STATISTIC(NumOptimizedAccessesToGlobalVar,
          "Number of optimized accesses to global vars");
STATISTIC(NumOptimizedAccessesToStackVar,
          "Number of optimized accesses to stack vars");

namespace {

/// This struct defines the shadow mapping using the rule:
///   shadow = (mem >> Scale) ADD-or-OR Offset.
/// If InGlobal is true, then
///   extern char __asan_shadow[];
///   shadow = (mem >> Scale) + &__asan_shadow
struct ShadowMapping {
  int Scale;
  uint64_t Offset;
  bool OrShadowOffset;
  bool InGlobal;
};

} // end anonymous namespace

static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
                                      bool IsKasan) {
  bool IsAndroid = TargetTriple.isAndroid();
  bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
  bool IsMacOS = TargetTriple.isMacOSX();
  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
  bool IsNetBSD = TargetTriple.isOSNetBSD();
  bool IsPS4CPU = TargetTriple.isPS4CPU();
  bool IsLinux = TargetTriple.isOSLinux();
  bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
                 TargetTriple.getArch() == Triple::ppc64le;
  bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
  bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
  bool IsMIPS32 = TargetTriple.isMIPS32();
  bool IsMIPS64 = TargetTriple.isMIPS64();
  bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
  bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
  bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
  bool IsWindows = TargetTriple.isOSWindows();
  bool IsFuchsia = TargetTriple.isOSFuchsia();
  bool IsEmscripten = TargetTriple.isOSEmscripten();
  bool IsAMDGPU = TargetTriple.isAMDGPU();

  ShadowMapping Mapping;

  Mapping.Scale = kDefaultShadowScale;
  if (ClMappingScale.getNumOccurrences() > 0) {
    Mapping.Scale = ClMappingScale;
  }

  if (LongSize == 32) {
    if (IsAndroid)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsMIPS32)
      Mapping.Offset = kMIPS32_ShadowOffset32;
    else if (IsFreeBSD)
      Mapping.Offset = kFreeBSD_ShadowOffset32;
    else if (IsNetBSD)
      Mapping.Offset = kNetBSD_ShadowOffset32;
    else if (IsIOS)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsWindows)
      Mapping.Offset = kWindowsShadowOffset32;
    else if (IsEmscripten)
      Mapping.Offset = kEmscriptenShadowOffset;
    else
      Mapping.Offset = kDefaultShadowOffset32;
  } else {  // LongSize == 64
    // Fuchsia is always PIE, which means that the beginning of the address
    // space is always available.
    if (IsFuchsia)
      Mapping.Offset = 0;
    else if (IsPPC64)
      Mapping.Offset = kPPC64_ShadowOffset64;
    else if (IsSystemZ)
      Mapping.Offset = kSystemZ_ShadowOffset64;
    else if (IsFreeBSD && !IsMIPS64) {
      if (IsKasan)
        Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
      else
        Mapping.Offset = kFreeBSD_ShadowOffset64;
    } else if (IsNetBSD) {
      if (IsKasan)
        Mapping.Offset = kNetBSDKasan_ShadowOffset64;
      else
        Mapping.Offset = kNetBSD_ShadowOffset64;
    } else if (IsPS4CPU)
      Mapping.Offset = kPS4CPU_ShadowOffset64;
    else if (IsLinux && IsX86_64) {
      if (IsKasan)
        Mapping.Offset = kLinuxKasan_ShadowOffset64;
      else
        Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
                          (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
    } else if (IsWindows && IsX86_64) {
      Mapping.Offset = kWindowsShadowOffset64;
    } else if (IsMIPS64)
      Mapping.Offset = kMIPS64_ShadowOffset64;
    else if (IsIOS)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsMacOS && IsAArch64)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsAArch64)
      Mapping.Offset = kAArch64_ShadowOffset64;
    else if (IsRISCV64)
      Mapping.Offset = kRISCV64_ShadowOffset64;
    else if (IsAMDGPU)
      Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
                        (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
    else
      Mapping.Offset = kDefaultShadowOffset64;
  }

  if (ClForceDynamicShadow) {
    Mapping.Offset = kDynamicShadowSentinel;
  }

  if (ClMappingOffset.getNumOccurrences() > 0) {
    Mapping.Offset = ClMappingOffset;
  }

  // OR-ing shadow offset if more efficient (at least on x86) if the offset
  // is a power of two, but on ppc64 we have to use add since the shadow
  // offset is not necessary 1/8-th of the address space.  On SystemZ,
  // we could OR the constant in a single instruction, but it's more
  // efficient to load it once and use indexed addressing.
  Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
                           !IsRISCV64 &&
                           !(Mapping.Offset & (Mapping.Offset - 1)) &&
                           Mapping.Offset != kDynamicShadowSentinel;
  bool IsAndroidWithIfuncSupport =
      IsAndroid && !TargetTriple.isAndroidVersionLT(21);
  Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;

  return Mapping;
}

namespace llvm {
void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
                               bool IsKasan, uint64_t *ShadowBase,
                               int *MappingScale, bool *OrShadowOffset) {
  auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
  *ShadowBase = Mapping.Offset;
  *MappingScale = Mapping.Scale;
  *OrShadowOffset = Mapping.OrShadowOffset;
}

ASanAccessInfo::ASanAccessInfo(int32_t Packed)
    : Packed(Packed),
      AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
      IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
      CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}

ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
                               uint8_t AccessSizeIndex)
    : Packed((IsWrite << kIsWriteShift) +
             (CompileKernel << kCompileKernelShift) +
             (AccessSizeIndex << kAccessSizeIndexShift)),
      AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
      CompileKernel(CompileKernel) {}

} // namespace llvm

static uint64_t getRedzoneSizeForScale(int MappingScale) {
  // Redzone used for stack and globals is at least 32 bytes.
  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
  return std::max(32U, 1U << MappingScale);
}

static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
  if (TargetTriple.isOSEmscripten()) {
    return kAsanEmscriptenCtorAndDtorPriority;
  } else {
    return kAsanCtorAndDtorPriority;
  }
}

namespace {

/// Module analysis for getting various metadata about the module.
class ASanGlobalsMetadataWrapperPass : public ModulePass {
public:
  static char ID;

  ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
    initializeASanGlobalsMetadataWrapperPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    GlobalsMD = GlobalsMetadata(M);
    return false;
  }

  StringRef getPassName() const override {
    return "ASanGlobalsMetadataWrapperPass";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }

  GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }

private:
  GlobalsMetadata GlobalsMD;
};

char ASanGlobalsMetadataWrapperPass::ID = 0;

/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer {
  AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
                   const StackSafetyGlobalInfo *SSGI,
                   bool CompileKernel = false, bool Recover = false,
                   bool UseAfterScope = false,
                   AsanDetectStackUseAfterReturnMode UseAfterReturn =
                       AsanDetectStackUseAfterReturnMode::Runtime)
      : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
                                                            : CompileKernel),
        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
        UseAfterScope(UseAfterScope || ClUseAfterScope),
        UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
                                                            : UseAfterReturn),
        GlobalsMD(*GlobalsMD), SSGI(SSGI) {
    C = &(M.getContext());
    LongSize = M.getDataLayout().getPointerSizeInBits();
    IntptrTy = Type::getIntNTy(*C, LongSize);
    Int8PtrTy = Type::getInt8PtrTy(*C);
    Int32Ty = Type::getInt32Ty(*C);
    TargetTriple = Triple(M.getTargetTriple());

    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);

    assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
  }

  uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
    uint64_t ArraySize = 1;
    if (AI.isArrayAllocation()) {
      const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
      assert(CI && "non-constant array size");
      ArraySize = CI->getZExtValue();
    }
    Type *Ty = AI.getAllocatedType();
    uint64_t SizeInBytes =
        AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
    return SizeInBytes * ArraySize;
  }

  /// Check if we want (and can) handle this alloca.
  bool isInterestingAlloca(const AllocaInst &AI);

  bool ignoreAccess(Instruction *Inst, Value *Ptr);
  void getInterestingMemoryOperands(
      Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);

  void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
                     InterestingMemoryOperand &O, bool UseCalls,
                     const DataLayout &DL);
  void instrumentPointerComparisonOrSubtraction(Instruction *I);
  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
                         Value *Addr, uint32_t TypeSize, bool IsWrite,
                         Value *SizeArgument, bool UseCalls, uint32_t Exp);
  Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
                                       Instruction *InsertBefore, Value *Addr,
                                       uint32_t TypeSize, bool IsWrite,
                                       Value *SizeArgument);
  void instrumentUnusualSizeOrAlignment(Instruction *I,
                                        Instruction *InsertBefore, Value *Addr,
                                        uint32_t TypeSize, bool IsWrite,
                                        Value *SizeArgument, bool UseCalls,
                                        uint32_t Exp);
  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
                           Value *ShadowValue, uint32_t TypeSize);
  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
                                 bool IsWrite, size_t AccessSizeIndex,
                                 Value *SizeArgument, uint32_t Exp);
  void instrumentMemIntrinsic(MemIntrinsic *MI);
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
  bool suppressInstrumentationSiteForDebug(int &Instrumented);
  bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
  bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
  void markEscapedLocalAllocas(Function &F);

private:
  friend struct FunctionStackPoisoner;

  void initializeCallbacks(Module &M);

  bool LooksLikeCodeInBug11395(Instruction *I);
  bool GlobalIsLinkerInitialized(GlobalVariable *G);
  bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
                    uint64_t TypeSize) const;

  /// Helper to cleanup per-function state.
  struct FunctionStateRAII {
    AddressSanitizer *Pass;

    FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
      assert(Pass->ProcessedAllocas.empty() &&
             "last pass forgot to clear cache");
      assert(!Pass->LocalDynamicShadow);
    }

    ~FunctionStateRAII() {
      Pass->LocalDynamicShadow = nullptr;
      Pass->ProcessedAllocas.clear();
    }
  };

  LLVMContext *C;
  Triple TargetTriple;
  int LongSize;
  bool CompileKernel;
  bool Recover;
  bool UseAfterScope;
  AsanDetectStackUseAfterReturnMode UseAfterReturn;
  Type *IntptrTy;
  Type *Int8PtrTy;
  Type *Int32Ty;
  ShadowMapping Mapping;
  FunctionCallee AsanHandleNoReturnFunc;
  FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
  Constant *AsanShadowGlobal;

  // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
  FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
  FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];

  // These arrays is indexed by AccessIsWrite and Experiment.
  FunctionCallee AsanErrorCallbackSized[2][2];
  FunctionCallee AsanMemoryAccessCallbackSized[2][2];

  FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
  Value *LocalDynamicShadow = nullptr;
  const GlobalsMetadata &GlobalsMD;
  const StackSafetyGlobalInfo *SSGI;
  DenseMap<const AllocaInst *, bool> ProcessedAllocas;

  FunctionCallee AMDGPUAddressShared;
  FunctionCallee AMDGPUAddressPrivate;
};

class AddressSanitizerLegacyPass : public FunctionPass {
public:
  static char ID;

  explicit AddressSanitizerLegacyPass(
      bool CompileKernel = false, bool Recover = false,
      bool UseAfterScope = false,
      AsanDetectStackUseAfterReturnMode UseAfterReturn =
          AsanDetectStackUseAfterReturnMode::Runtime)
      : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
        UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {
    initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "AddressSanitizerFunctionPass";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ASanGlobalsMetadataWrapperPass>();
    if (ClUseStackSafety)
      AU.addRequired<StackSafetyGlobalInfoWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    GlobalsMetadata &GlobalsMD =
        getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
    const StackSafetyGlobalInfo *const SSGI =
        ClUseStackSafety
            ? &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult()
            : nullptr;
    const TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    AddressSanitizer ASan(*F.getParent(), &GlobalsMD, SSGI, CompileKernel,
                          Recover, UseAfterScope, UseAfterReturn);
    return ASan.instrumentFunction(F, TLI);
  }

private:
  bool CompileKernel;
  bool Recover;
  bool UseAfterScope;
  AsanDetectStackUseAfterReturnMode UseAfterReturn;
};

class ModuleAddressSanitizer {
public:
  ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
                         bool CompileKernel = false, bool Recover = false,
                         bool UseGlobalsGC = true, bool UseOdrIndicator = false,
                         AsanDtorKind DestructorKind = AsanDtorKind::Global)
      : GlobalsMD(*GlobalsMD),
        CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
                                                            : CompileKernel),
        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
        UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
        // Enable aliases as they should have no downside with ODR indicators.
        UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
        UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
        // Not a typo: ClWithComdat is almost completely pointless without
        // ClUseGlobalsGC (because then it only works on modules without
        // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
        // and both suffer from gold PR19002 for which UseGlobalsGC constructor
        // argument is designed as workaround. Therefore, disable both
        // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
        // do globals-gc.
        UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
        DestructorKind(DestructorKind) {
    C = &(M.getContext());
    int LongSize = M.getDataLayout().getPointerSizeInBits();
    IntptrTy = Type::getIntNTy(*C, LongSize);
    TargetTriple = Triple(M.getTargetTriple());
    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);

    if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
      this->DestructorKind = ClOverrideDestructorKind;
    assert(this->DestructorKind != AsanDtorKind::Invalid);
  }

  bool instrumentModule(Module &);

private:
  void initializeCallbacks(Module &M);

  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
  void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
                             ArrayRef<GlobalVariable *> ExtendedGlobals,
                             ArrayRef<Constant *> MetadataInitializers);
  void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
                            ArrayRef<GlobalVariable *> ExtendedGlobals,
                            ArrayRef<Constant *> MetadataInitializers,
                            const std::string &UniqueModuleId);
  void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
                              ArrayRef<GlobalVariable *> ExtendedGlobals,
                              ArrayRef<Constant *> MetadataInitializers);
  void
  InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
                                     ArrayRef<GlobalVariable *> ExtendedGlobals,
                                     ArrayRef<Constant *> MetadataInitializers);

  GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
                                       StringRef OriginalName);
  void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
                                  StringRef InternalSuffix);
  Instruction *CreateAsanModuleDtor(Module &M);

  const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
  bool shouldInstrumentGlobal(GlobalVariable *G) const;
  bool ShouldUseMachOGlobalsSection() const;
  StringRef getGlobalMetadataSection() const;
  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
  uint64_t getMinRedzoneSizeForGlobal() const {
    return getRedzoneSizeForScale(Mapping.Scale);
  }
  uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
  int GetAsanVersion(const Module &M) const;

  const GlobalsMetadata &GlobalsMD;
  bool CompileKernel;
  bool Recover;
  bool UseGlobalsGC;
  bool UsePrivateAlias;
  bool UseOdrIndicator;
  bool UseCtorComdat;
  AsanDtorKind DestructorKind;
  Type *IntptrTy;
  LLVMContext *C;
  Triple TargetTriple;
  ShadowMapping Mapping;
  FunctionCallee AsanPoisonGlobals;
  FunctionCallee AsanUnpoisonGlobals;
  FunctionCallee AsanRegisterGlobals;
  FunctionCallee AsanUnregisterGlobals;
  FunctionCallee AsanRegisterImageGlobals;
  FunctionCallee AsanUnregisterImageGlobals;
  FunctionCallee AsanRegisterElfGlobals;
  FunctionCallee AsanUnregisterElfGlobals;

  Function *AsanCtorFunction = nullptr;
  Function *AsanDtorFunction = nullptr;
};

class ModuleAddressSanitizerLegacyPass : public ModulePass {
public:
  static char ID;

  explicit ModuleAddressSanitizerLegacyPass(
      bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
      bool UseOdrIndicator = false,
      AsanDtorKind DestructorKind = AsanDtorKind::Global)
      : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
        UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
        DestructorKind(DestructorKind) {
    initializeModuleAddressSanitizerLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "ModuleAddressSanitizer"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ASanGlobalsMetadataWrapperPass>();
  }

  bool runOnModule(Module &M) override {
    GlobalsMetadata &GlobalsMD =
        getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
    ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
                                      UseGlobalGC, UseOdrIndicator,
                                      DestructorKind);
    return ASanModule.instrumentModule(M);
  }

private:
  bool CompileKernel;
  bool Recover;
  bool UseGlobalGC;
  bool UseOdrIndicator;
  AsanDtorKind DestructorKind;
};

// Stack poisoning does not play well with exception handling.
// When an exception is thrown, we essentially bypass the code
// that unpoisones the stack. This is why the run-time library has
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
// stack in the interceptor. This however does not work inside the
// actual function which catches the exception. Most likely because the
// compiler hoists the load of the shadow value somewhere too high.
// This causes asan to report a non-existing bug on 453.povray.
// It sounds like an LLVM bug.
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
  Function &F;
  AddressSanitizer &ASan;
  DIBuilder DIB;
  LLVMContext *C;
  Type *IntptrTy;
  Type *IntptrPtrTy;
  ShadowMapping Mapping;

  SmallVector<AllocaInst *, 16> AllocaVec;
  SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
  SmallVector<Instruction *, 8> RetVec;

  FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
      AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
  FunctionCallee AsanSetShadowFunc[0x100] = {};
  FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
  FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;

  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
  struct AllocaPoisonCall {
    IntrinsicInst *InsBefore;
    AllocaInst *AI;
    uint64_t Size;
    bool DoPoison;
  };
  SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
  SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
  bool HasUntracedLifetimeIntrinsic = false;

  SmallVector<AllocaInst *, 1> DynamicAllocaVec;
  SmallVector<IntrinsicInst *, 1> StackRestoreVec;
  AllocaInst *DynamicAllocaLayout = nullptr;
  IntrinsicInst *LocalEscapeCall = nullptr;

  bool HasInlineAsm = false;
  bool HasReturnsTwiceCall = false;
  bool PoisonStack;

  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
      : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
        C(ASan.C), IntptrTy(ASan.IntptrTy),
        IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
        PoisonStack(ClStack &&
                    !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}

  bool runOnFunction() {
    if (!PoisonStack)
      return false;

    if (ClRedzoneByvalArgs)
      copyArgsPassedByValToAllocas();

    // Collect alloca, ret, lifetime instructions etc.
    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);

    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;

    initializeCallbacks(*F.getParent());

    if (HasUntracedLifetimeIntrinsic) {
      // If there are lifetime intrinsics which couldn't be traced back to an
      // alloca, we may not know exactly when a variable enters scope, and
      // therefore should "fail safe" by not poisoning them.
      StaticAllocaPoisonCallVec.clear();
      DynamicAllocaPoisonCallVec.clear();
    }

    processDynamicAllocas();
    processStaticAllocas();

    if (ClDebugStack) {
      LLVM_DEBUG(dbgs() << F);
    }
    return true;
  }

  // Arguments marked with the "byval" attribute are implicitly copied without
  // using an alloca instruction.  To produce redzones for those arguments, we
  // copy them a second time into memory allocated with an alloca instruction.
  void copyArgsPassedByValToAllocas();

  // Finds all Alloca instructions and puts
  // poisoned red zones around all of them.
  // Then unpoison everything back before the function returns.
  void processStaticAllocas();
  void processDynamicAllocas();

  void createDynamicAllocasInitStorage();

  // ----------------------- Visitors.
  /// Collect all Ret instructions, or the musttail call instruction if it
  /// precedes the return instruction.
  void visitReturnInst(ReturnInst &RI) {
    if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
      RetVec.push_back(CI);
    else
      RetVec.push_back(&RI);
  }

  /// Collect all Resume instructions.
  void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }

  /// Collect all CatchReturnInst instructions.
  void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }

  void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
                                        Value *SavedStack) {
    IRBuilder<> IRB(InstBefore);
    Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
    // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
    // need to adjust extracted SP to compute the address of the most recent
    // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
    // this purpose.
    if (!isa<ReturnInst>(InstBefore)) {
      Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
          InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
          {IntptrTy});

      Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});

      DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
                                     DynamicAreaOffset);
    }

    IRB.CreateCall(
        AsanAllocasUnpoisonFunc,
        {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
  }

  // Unpoison dynamic allocas redzones.
  void unpoisonDynamicAllocas() {
    for (Instruction *Ret : RetVec)
      unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);

    for (Instruction *StackRestoreInst : StackRestoreVec)
      unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
                                       StackRestoreInst->getOperand(0));
  }

  // Deploy and poison redzones around dynamic alloca call. To do this, we
  // should replace this call with another one with changed parameters and
  // replace all its uses with new address, so
  //   addr = alloca type, old_size, align
  // is replaced by
  //   new_size = (old_size + additional_size) * sizeof(type)
  //   tmp = alloca i8, new_size, max(align, 32)
  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
  // Additional_size is added to make new memory allocation contain not only
  // requested memory, but also left, partial and right redzones.
  void handleDynamicAllocaCall(AllocaInst *AI);

  /// Collect Alloca instructions we want (and can) handle.
  void visitAllocaInst(AllocaInst &AI) {
    if (!ASan.isInterestingAlloca(AI)) {
      if (AI.isStaticAlloca()) {
        // Skip over allocas that are present *before* the first instrumented
        // alloca, we don't want to move those around.
        if (AllocaVec.empty())
          return;

        StaticAllocasToMoveUp.push_back(&AI);
      }
      return;
    }

    if (!AI.isStaticAlloca())
      DynamicAllocaVec.push_back(&AI);
    else
      AllocaVec.push_back(&AI);
  }

  /// Collect lifetime intrinsic calls to check for use-after-scope
  /// errors.
  void visitIntrinsicInst(IntrinsicInst &II) {
    Intrinsic::ID ID = II.getIntrinsicID();
    if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
    if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
    if (!ASan.UseAfterScope)
      return;
    if (!II.isLifetimeStartOrEnd())
      return;
    // Found lifetime intrinsic, add ASan instrumentation if necessary.
    auto *Size = cast<ConstantInt>(II.getArgOperand(0));
    // If size argument is undefined, don't do anything.
    if (Size->isMinusOne()) return;
    // Check that size doesn't saturate uint64_t and can
    // be stored in IntptrTy.
    const uint64_t SizeValue = Size->getValue().getLimitedValue();
    if (SizeValue == ~0ULL ||
        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
      return;
    // Find alloca instruction that corresponds to llvm.lifetime argument.
    // Currently we can only handle lifetime markers pointing to the
    // beginning of the alloca.
    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
    if (!AI) {
      HasUntracedLifetimeIntrinsic = true;
      return;
    }
    // We're interested only in allocas we can handle.
    if (!ASan.isInterestingAlloca(*AI))
      return;
    bool DoPoison = (ID == Intrinsic::lifetime_end);
    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
    if (AI->isStaticAlloca())
      StaticAllocaPoisonCallVec.push_back(APC);
    else if (ClInstrumentDynamicAllocas)
      DynamicAllocaPoisonCallVec.push_back(APC);
  }

  void visitCallBase(CallBase &CB) {
    if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
      HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
      HasReturnsTwiceCall |= CI->canReturnTwice();
    }
  }

  // ---------------------- Helpers.
  void initializeCallbacks(Module &M);

  // Copies bytes from ShadowBytes into shadow memory for indexes where
  // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
  // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
                    IRBuilder<> &IRB, Value *ShadowBase);
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
                    size_t Begin, size_t End, IRBuilder<> &IRB,
                    Value *ShadowBase);
  void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
                          ArrayRef<uint8_t> ShadowBytes, size_t Begin,
                          size_t End, IRBuilder<> &IRB, Value *ShadowBase);

  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);

  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
                               bool Dynamic);
  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
                     Instruction *ThenTerm, Value *ValueIfFalse);
};

} // end anonymous namespace

void LocationMetadata::parse(MDNode *MDN) {
  assert(MDN->getNumOperands() == 3);
  MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
  Filename = DIFilename->getString();
  LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
  ColumnNo =
      mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
}

// FIXME: It would be cleaner to instead attach relevant metadata to the globals
// we want to sanitize instead and reading this metadata on each pass over a
// function instead of reading module level metadata at first.
GlobalsMetadata::GlobalsMetadata(Module &M) {
  NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
  if (!Globals)
    return;
  for (auto MDN : Globals->operands()) {
    // Metadata node contains the global and the fields of "Entry".
    assert(MDN->getNumOperands() == 5);
    auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
    // The optimizer may optimize away a global entirely.
    if (!V)
      continue;
    auto *StrippedV = V->stripPointerCasts();
    auto *GV = dyn_cast<GlobalVariable>(StrippedV);
    if (!GV)
      continue;
    // We can already have an entry for GV if it was merged with another
    // global.
    Entry &E = Entries[GV];
    if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
      E.SourceLoc.parse(Loc);
    if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
      E.Name = Name->getString();
    ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
    E.IsDynInit |= IsDynInit->isOne();
    ConstantInt *IsExcluded =
        mdconst::extract<ConstantInt>(MDN->getOperand(4));
    E.IsExcluded |= IsExcluded->isOne();
  }
}

AnalysisKey ASanGlobalsMetadataAnalysis::Key;

GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
                                                 ModuleAnalysisManager &AM) {
  return GlobalsMetadata(M);
}

PreservedAnalyses AddressSanitizerPass::run(Function &F,
                                            AnalysisManager<Function> &AM) {
  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
  Module &M = *F.getParent();
  if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
    const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
    AddressSanitizer Sanitizer(M, R, nullptr, Options.CompileKernel,
                               Options.Recover, Options.UseAfterScope,
                               Options.UseAfterReturn);
    if (Sanitizer.instrumentFunction(F, TLI))
      return PreservedAnalyses::none();
    return PreservedAnalyses::all();
  }

  report_fatal_error(
      "The ASanGlobalsMetadataAnalysis is required to run before "
      "AddressSanitizer can run");
  return PreservedAnalyses::all();
}

void AddressSanitizerPass::printPipeline(
    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
  static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline(
      OS, MapClassName2PassName);
  OS << "<";
  if (Options.CompileKernel)
    OS << "kernel";
  OS << ">";
}

void ModuleAddressSanitizerPass::printPipeline(
    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
  static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline(
      OS, MapClassName2PassName);
  OS << "<";
  if (Options.CompileKernel)
    OS << "kernel";
  OS << ">";
}

ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
    const AddressSanitizerOptions &Options, bool UseGlobalGC,
    bool UseOdrIndicator, AsanDtorKind DestructorKind)
    : Options(Options), UseGlobalGC(UseGlobalGC),
      UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}

PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
                                                  ModuleAnalysisManager &MAM) {
  GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M);
  ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel,
                                         Options.Recover, UseGlobalGC,
                                         UseOdrIndicator, DestructorKind);
  bool Modified = false;
  auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  const StackSafetyGlobalInfo *const SSGI =
      ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
  for (Function &F : M) {
    AddressSanitizer FunctionSanitizer(
        M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover,
        Options.UseAfterScope, Options.UseAfterReturn);
    const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
    Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
  }
  Modified |= ModuleSanitizer.instrumentModule(M);
  return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all();
}

INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
                "Read metadata to mark which globals should be instrumented "
                "when running ASan.",
                false, true)

char AddressSanitizerLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(
    AddressSanitizerLegacyPass, "asan",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    false)
INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(
    AddressSanitizerLegacyPass, "asan",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    false)

FunctionPass *llvm::createAddressSanitizerFunctionPass(
    bool CompileKernel, bool Recover, bool UseAfterScope,
    AsanDetectStackUseAfterReturnMode UseAfterReturn) {
  assert(!CompileKernel || Recover);
  return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope,
                                        UseAfterReturn);
}

char ModuleAddressSanitizerLegacyPass::ID = 0;

INITIALIZE_PASS(
    ModuleAddressSanitizerLegacyPass, "asan-module",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    "ModulePass",
    false, false)

ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
    bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
    AsanDtorKind Destructor) {
  assert(!CompileKernel || Recover);
  return new ModuleAddressSanitizerLegacyPass(
      CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
}

static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
  size_t Res = countTrailingZeros(TypeSize / 8);
  assert(Res < kNumberOfAccessSizes);
  return Res;
}

/// Create a global describing a source location.
static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
                                                       LocationMetadata MD) {
  Constant *LocData[] = {
      createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
  };
  auto LocStruct = ConstantStruct::getAnon(LocData);
  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
                               GlobalValue::PrivateLinkage, LocStruct,
                               kAsanGenPrefix);
  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
  return GV;
}

/// Check if \p G has been created by a trusted compiler pass.
static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
  // Do not instrument @llvm.global_ctors, @llvm.used, etc.
  if (G->getName().startswith("llvm."))
    return true;

  // Do not instrument asan globals.
  if (G->getName().startswith(kAsanGenPrefix) ||
      G->getName().startswith(kSanCovGenPrefix) ||
      G->getName().startswith(kODRGenPrefix))
    return true;

  // Do not instrument gcov counter arrays.
  if (G->getName() == "__llvm_gcov_ctr")
    return true;

  return false;
}

static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
  Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
  unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
  if (AddrSpace == 3 || AddrSpace == 5)
    return true;
  return false;
}

Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
  // Shadow >> scale
  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
  if (Mapping.Offset == 0) return Shadow;
  // (Shadow >> scale) | offset
  Value *ShadowBase;
  if (LocalDynamicShadow)
    ShadowBase = LocalDynamicShadow;
  else
    ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
  if (Mapping.OrShadowOffset)
    return IRB.CreateOr(Shadow, ShadowBase);
  else
    return IRB.CreateAdd(Shadow, ShadowBase);
}

// Instrument memset/memmove/memcpy
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
  IRBuilder<> IRB(MI);
  if (isa<MemTransferInst>(MI)) {
    IRB.CreateCall(
        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
  } else if (isa<MemSetInst>(MI)) {
    IRB.CreateCall(
        AsanMemset,
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
  }
  MI->eraseFromParent();
}

/// Check if we want (and can) handle this alloca.
bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
  auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);

  if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
    return PreviouslySeenAllocaInfo->getSecond();

  bool IsInteresting =
      (AI.getAllocatedType()->isSized() &&
       // alloca() may be called with 0 size, ignore it.
       ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
       // We are only interested in allocas not promotable to registers.
       // Promotable allocas are common under -O0.
       (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
       // inalloca allocas are not treated as static, and we don't want
       // dynamic alloca instrumentation for them as well.
       !AI.isUsedWithInAlloca() &&
       // swifterror allocas are register promoted by ISel
       !AI.isSwiftError());

  ProcessedAllocas[&AI] = IsInteresting;
  return IsInteresting;
}

bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
  // Instrument acesses from different address spaces only for AMDGPU.
  Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
  if (PtrTy->getPointerAddressSpace() != 0 &&
      !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
    return true;

  // Ignore swifterror addresses.
  // swifterror memory addresses are mem2reg promoted by instruction
  // selection. As such they cannot have regular uses like an instrumentation
  // function and it makes no sense to track them as memory.
  if (Ptr->isSwiftError())
    return true;

  // Treat memory accesses to promotable allocas as non-interesting since they
  // will not cause memory violations. This greatly speeds up the instrumented
  // executable at -O0.
  if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
    if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
      return true;

  if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
      findAllocaForValue(Ptr))
    return true;

  return false;
}

void AddressSanitizer::getInterestingMemoryOperands(
    Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
  // Skip memory accesses inserted by another instrumentation.
  if (I->hasMetadata("nosanitize"))
    return;

  // Do not instrument the load fetching the dynamic shadow address.
  if (LocalDynamicShadow == I)
    return;

  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
      return;
    Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
                             LI->getType(), LI->getAlign());
  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
      return;
    Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
                             SI->getValueOperand()->getType(), SI->getAlign());
  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
      return;
    Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
                             RMW->getValOperand()->getType(), None);
  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
      return;
    Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
                             XCHG->getCompareOperand()->getType(), None);
  } else if (auto CI = dyn_cast<CallInst>(I)) {
    if (CI->getIntrinsicID() == Intrinsic::masked_load ||
        CI->getIntrinsicID() == Intrinsic::masked_store) {
      bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store;
      // Masked store has an initial operand for the value.
      unsigned OpOffset = IsWrite ? 1 : 0;
      if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
        return;

      auto BasePtr = CI->getOperand(OpOffset);
      if (ignoreAccess(I, BasePtr))
        return;
      Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
      MaybeAlign Alignment = Align(1);
      // Otherwise no alignment guarantees. We probably got Undef.
      if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
        Alignment = Op->getMaybeAlignValue();
      Value *Mask = CI->getOperand(2 + OpOffset);
      Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
    } else {
      for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
        if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
            ignoreAccess(I, CI->getArgOperand(ArgNo)))
          continue;
        Type *Ty = CI->getParamByValType(ArgNo);
        Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
      }
    }
  }
}

static bool isPointerOperand(Value *V) {
  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
}

// This is a rough heuristic; it may cause both false positives and
// false negatives. The proper implementation requires cooperation with
// the frontend.
static bool isInterestingPointerComparison(Instruction *I) {
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
    if (!Cmp->isRelational())
      return false;
  } else {
    return false;
  }
  return isPointerOperand(I->getOperand(0)) &&
         isPointerOperand(I->getOperand(1));
}

// This is a rough heuristic; it may cause both false positives and
// false negatives. The proper implementation requires cooperation with
// the frontend.
static bool isInterestingPointerSubtraction(Instruction *I) {
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    if (BO->getOpcode() != Instruction::Sub)
      return false;
  } else {
    return false;
  }
  return isPointerOperand(I->getOperand(0)) &&
         isPointerOperand(I->getOperand(1));
}

bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
  // If a global variable does not have dynamic initialization we don't
  // have to instrument it.  However, if a global does not have initializer
  // at all, we assume it has dynamic initializer (in other TU).
  //
  // FIXME: Metadata should be attched directly to the global directly instead
  // of being added to llvm.asan.globals.
  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
}

void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
    Instruction *I) {
  IRBuilder<> IRB(I);
  FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
  for (Value *&i : Param) {
    if (i->getType()->isPointerTy())
      i = IRB.CreatePointerCast(i, IntptrTy);
  }
  IRB.CreateCall(F, Param);
}

static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
                                Instruction *InsertBefore, Value *Addr,
                                MaybeAlign Alignment, unsigned Granularity,
                                uint32_t TypeSize, bool IsWrite,
                                Value *SizeArgument, bool UseCalls,
                                uint32_t Exp) {
  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
  // if the data is properly aligned.
  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
       TypeSize == 128) &&
      (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
    return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
                                   nullptr, UseCalls, Exp);
  Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
                                         IsWrite, nullptr, UseCalls, Exp);
}

static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
                                        const DataLayout &DL, Type *IntptrTy,
                                        Value *Mask, Instruction *I,
                                        Value *Addr, MaybeAlign Alignment,
                                        unsigned Granularity, Type *OpType,
                                        bool IsWrite, Value *SizeArgument,
                                        bool UseCalls, uint32_t Exp) {
  auto *VTy = cast<FixedVectorType>(OpType);
  uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
  unsigned Num = VTy->getNumElements();
  auto Zero = ConstantInt::get(IntptrTy, 0);
  for (unsigned Idx = 0; Idx < Num; ++Idx) {
    Value *InstrumentedAddress = nullptr;
    Instruction *InsertBefore = I;
    if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
      // dyn_cast as we might get UndefValue
      if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
        if (Masked->isZero())
          // Mask is constant false, so no instrumentation needed.
          continue;
        // If we have a true or undef value, fall through to doInstrumentAddress
        // with InsertBefore == I
      }
    } else {
      IRBuilder<> IRB(I);
      Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
      Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
      InsertBefore = ThenTerm;
    }

    IRBuilder<> IRB(InsertBefore);
    InstrumentedAddress =
        IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
    doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
                        Granularity, ElemTypeSize, IsWrite, SizeArgument,
                        UseCalls, Exp);
  }
}

void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
                                     InterestingMemoryOperand &O, bool UseCalls,
                                     const DataLayout &DL) {
  Value *Addr = O.getPtr();

  // Optimization experiments.
  // The experiments can be used to evaluate potential optimizations that remove
  // instrumentation (assess false negatives). Instead of completely removing
  // some instrumentation, you set Exp to a non-zero value (mask of optimization
  // experiments that want to remove instrumentation of this instruction).
  // If Exp is non-zero, this pass will emit special calls into runtime
  // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
  // make runtime terminate the program in a special way (with a different
  // exit status). Then you run the new compiler on a buggy corpus, collect
  // the special terminations (ideally, you don't see them at all -- no false
  // negatives) and make the decision on the optimization.
  uint32_t Exp = ClForceExperiment;

  if (ClOpt && ClOptGlobals) {
    // If initialization order checking is disabled, a simple access to a
    // dynamically initialized global is always valid.
    GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
    if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
        isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
      NumOptimizedAccessesToGlobalVar++;
      return;
    }
  }

  if (ClOpt && ClOptStack) {
    // A direct inbounds access to a stack variable is always valid.
    if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
        isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
      NumOptimizedAccessesToStackVar++;
      return;
    }
  }

  if (O.IsWrite)
    NumInstrumentedWrites++;
  else
    NumInstrumentedReads++;

  unsigned Granularity = 1 << Mapping.Scale;
  if (O.MaybeMask) {
    instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
                                Addr, O.Alignment, Granularity, O.OpType,
                                O.IsWrite, nullptr, UseCalls, Exp);
  } else {
    doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
                        Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
                        Exp);
  }
}

Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
                                                 Value *Addr, bool IsWrite,
                                                 size_t AccessSizeIndex,
                                                 Value *SizeArgument,
                                                 uint32_t Exp) {
  IRBuilder<> IRB(InsertBefore);
  Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
  CallInst *Call = nullptr;
  if (SizeArgument) {
    if (Exp == 0)
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
                            {Addr, SizeArgument});
    else
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
                            {Addr, SizeArgument, ExpVal});
  } else {
    if (Exp == 0)
      Call =
          IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
    else
      Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
                            {Addr, ExpVal});
  }

  Call->setCannotMerge();
  return Call;
}

Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
                                           Value *ShadowValue,
                                           uint32_t TypeSize) {
  size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
  // Addr & (Granularity - 1)
  Value *LastAccessedByte =
      IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
  // (Addr & (Granularity - 1)) + size - 1
  if (TypeSize / 8 > 1)
    LastAccessedByte = IRB.CreateAdd(
        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
  LastAccessedByte =
      IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
}

Instruction *AddressSanitizer::instrumentAMDGPUAddress(
    Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
    uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
  // Do not instrument unsupported addrspaces.
  if (isUnsupportedAMDGPUAddrspace(Addr))
    return nullptr;
  Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
  // Follow host instrumentation for global and constant addresses.
  if (PtrTy->getPointerAddressSpace() != 0)
    return InsertBefore;
  // Instrument generic addresses in supported addressspaces.
  IRBuilder<> IRB(InsertBefore);
  Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
  Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
  Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
  Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
  Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
  Value *AddrSpaceZeroLanding =
      SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
  InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
  return InsertBefore;
}

void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
                                         Instruction *InsertBefore, Value *Addr,
                                         uint32_t TypeSize, bool IsWrite,
                                         Value *SizeArgument, bool UseCalls,
                                         uint32_t Exp) {
  if (TargetTriple.isAMDGPU()) {
    InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
                                           TypeSize, IsWrite, SizeArgument);
    if (!InsertBefore)
      return;
  }

  IRBuilder<> IRB(InsertBefore);
  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
  const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);

  if (UseCalls && ClOptimizeCallbacks) {
    const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
    IRB.CreateCall(
        Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
        {IRB.CreatePointerCast(Addr, Int8PtrTy),
         ConstantInt::get(Int32Ty, AccessInfo.Packed)});
    return;
  }

  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
  if (UseCalls) {
    if (Exp == 0)
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
                     AddrLong);
    else
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
                     {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
    return;
  }

  Type *ShadowTy =
      IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
  Value *CmpVal = Constant::getNullValue(ShadowTy);
  Value *ShadowValue =
      IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));

  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
  size_t Granularity = 1ULL << Mapping.Scale;
  Instruction *CrashTerm = nullptr;

  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
    // We use branch weights for the slow path check, to indicate that the slow
    // path is rarely taken. This seems to be the case for SPEC benchmarks.
    Instruction *CheckTerm = SplitBlockAndInsertIfThen(
        Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
    assert(cast<BranchInst>(CheckTerm)->isUnconditional());
    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
    IRB.SetInsertPoint(CheckTerm);
    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
    if (Recover) {
      CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
    } else {
      BasicBlock *CrashBlock =
        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
      CrashTerm = new UnreachableInst(*C, CrashBlock);
      BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
      ReplaceInstWithInst(CheckTerm, NewTerm);
    }
  } else {
    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
  }

  Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
                                         AccessSizeIndex, SizeArgument, Exp);
  Crash->setDebugLoc(OrigIns->getDebugLoc());
}

// Instrument unusual size or unusual alignment.
// We can not do it with a single check, so we do 1-byte check for the first
// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
// to report the actual access size.
void AddressSanitizer::instrumentUnusualSizeOrAlignment(
    Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
    bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
  IRBuilder<> IRB(InsertBefore);
  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
  if (UseCalls) {
    if (Exp == 0)
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
                     {AddrLong, Size});
    else
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
                     {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
  } else {
    Value *LastByte = IRB.CreateIntToPtr(
        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
        Addr->getType());
    instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
    instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
  }
}

void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
                                                  GlobalValue *ModuleName) {
  // Set up the arguments to our poison/unpoison functions.
  IRBuilder<> IRB(&GlobalInit.front(),
                  GlobalInit.front().getFirstInsertionPt());

  // Add a call to poison all external globals before the given function starts.
  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);

  // Add calls to unpoison all globals before each return instruction.
  for (auto &BB : GlobalInit.getBasicBlockList())
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
      CallInst::Create(AsanUnpoisonGlobals, "", RI);
}

void ModuleAddressSanitizer::createInitializerPoisonCalls(
    Module &M, GlobalValue *ModuleName) {
  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
  if (!GV)
    return;

  ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
  if (!CA)
    return;

  for (Use &OP : CA->operands()) {
    if (isa<ConstantAggregateZero>(OP)) continue;
    ConstantStruct *CS = cast<ConstantStruct>(OP);

    // Must have a function or null ptr.
    if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
      if (F->getName() == kAsanModuleCtorName) continue;
      auto *Priority = cast<ConstantInt>(CS->getOperand(0));
      // Don't instrument CTORs that will run before asan.module_ctor.
      if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
        continue;
      poisonOneInitializer(*F, ModuleName);
    }
  }
}

const GlobalVariable *
ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
  // In case this function should be expanded to include rules that do not just
  // apply when CompileKernel is true, either guard all existing rules with an
  // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
  // should also apply to user space.
  assert(CompileKernel && "Only expecting to be called when compiling kernel");

  const Constant *C = GA.getAliasee();

  // When compiling the kernel, globals that are aliased by symbols prefixed
  // by "__" are special and cannot be padded with a redzone.
  if (GA.getName().startswith("__"))
    return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());

  return nullptr;
}

bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
  Type *Ty = G->getValueType();
  LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");

  // FIXME: Metadata should be attched directly to the global directly instead
  // of being added to llvm.asan.globals.
  if (GlobalsMD.get(G).IsExcluded) return false;
  if (!Ty->isSized()) return false;
  if (!G->hasInitializer()) return false;
  // Globals in address space 1 and 4 are supported for AMDGPU.
  if (G->getAddressSpace() &&
      !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
    return false;
  if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
  // Two problems with thread-locals:
  //   - The address of the main thread's copy can't be computed at link-time.
  //   - Need to poison all copies, not just the main thread's one.
  if (G->isThreadLocal()) return false;
  // For now, just ignore this Global if the alignment is large.
  if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;

  // For non-COFF targets, only instrument globals known to be defined by this
  // TU.
  // FIXME: We can instrument comdat globals on ELF if we are using the
  // GC-friendly metadata scheme.
  if (!TargetTriple.isOSBinFormatCOFF()) {
    if (!G->hasExactDefinition() || G->hasComdat())
      return false;
  } else {
    // On COFF, don't instrument non-ODR linkages.
    if (G->isInterposable())
      return false;
  }

  // If a comdat is present, it must have a selection kind that implies ODR
  // semantics: no duplicates, any, or exact match.
  if (Comdat *C = G->getComdat()) {
    switch (C->getSelectionKind()) {
    case Comdat::Any:
    case Comdat::ExactMatch:
    case Comdat::NoDeduplicate:
      break;
    case Comdat::Largest:
    case Comdat::SameSize:
      return false;
    }
  }

  if (G->hasSection()) {
    // The kernel uses explicit sections for mostly special global variables
    // that we should not instrument. E.g. the kernel may rely on their layout
    // without redzones, or remove them at link time ("discard.*"), etc.
    if (CompileKernel)
      return false;

    StringRef Section = G->getSection();

    // Globals from llvm.metadata aren't emitted, do not instrument them.
    if (Section == "llvm.metadata") return false;
    // Do not instrument globals from special LLVM sections.
    if (Section.contains("__llvm") || Section.contains("__LLVM"))
      return false;

    // Do not instrument function pointers to initialization and termination
    // routines: dynamic linker will not properly handle redzones.
    if (Section.startswith(".preinit_array") ||
        Section.startswith(".init_array") ||
        Section.startswith(".fini_array")) {
      return false;
    }

    // Do not instrument user-defined sections (with names resembling
    // valid C identifiers)
    if (TargetTriple.isOSBinFormatELF()) {
      if (llvm::all_of(Section,
                       [](char c) { return llvm::isAlnum(c) || c == '_'; }))
        return false;
    }

    // On COFF, if the section name contains '$', it is highly likely that the
    // user is using section sorting to create an array of globals similar to
    // the way initialization callbacks are registered in .init_array and
    // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
    // to such globals is counterproductive, because the intent is that they
    // will form an array, and out-of-bounds accesses are expected.
    // See https://github.com/google/sanitizers/issues/305
    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
    if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
      LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
                        << *G << "\n");
      return false;
    }

    if (TargetTriple.isOSBinFormatMachO()) {
      StringRef ParsedSegment, ParsedSection;
      unsigned TAA = 0, StubSize = 0;
      bool TAAParsed;
      cantFail(MCSectionMachO::ParseSectionSpecifier(
          Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));

      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
      // them.
      if (ParsedSegment == "__OBJC" ||
          (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
        LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
        return false;
      }
      // See https://github.com/google/sanitizers/issues/32
      // Constant CFString instances are compiled in the following way:
      //  -- the string buffer is emitted into
      //     __TEXT,__cstring,cstring_literals
      //  -- the constant NSConstantString structure referencing that buffer
      //     is placed into __DATA,__cfstring
      // Therefore there's no point in placing redzones into __DATA,__cfstring.
      // Moreover, it causes the linker to crash on OS X 10.7
      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
        LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
        return false;
      }
      // The linker merges the contents of cstring_literals and removes the
      // trailing zeroes.
      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
        LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
        return false;
      }
    }
  }

  if (CompileKernel) {
    // Globals that prefixed by "__" are special and cannot be padded with a
    // redzone.
    if (G->getName().startswith("__"))
      return false;
  }

  return true;
}

// On Mach-O platforms, we emit global metadata in a separate section of the
// binary in order to allow the linker to properly dead strip. This is only
// supported on recent versions of ld64.
bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
  if (!TargetTriple.isOSBinFormatMachO())
    return false;

  if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
    return true;
  if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
    return true;
  if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
    return true;

  return false;
}

StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
  switch (TargetTriple.getObjectFormat()) {
  case Triple::COFF:  return ".ASAN$GL";
  case Triple::ELF:   return "asan_globals";
  case Triple::MachO: return "__DATA,__asan_globals,regular";
  case Triple::Wasm:
  case Triple::GOFF:
  case Triple::XCOFF:
    report_fatal_error(
        "ModuleAddressSanitizer not implemented for object file format");
  case Triple::UnknownObjectFormat:
    break;
  }
  llvm_unreachable("unsupported object format");
}

void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);

  // Declare our poisoning and unpoisoning functions.
  AsanPoisonGlobals =
      M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
  AsanUnpoisonGlobals =
      M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());

  // Declare functions that register/unregister globals.
  AsanRegisterGlobals = M.getOrInsertFunction(
      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
  AsanUnregisterGlobals = M.getOrInsertFunction(
      kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);

  // Declare the functions that find globals in a shared object and then invoke
  // the (un)register function on them.
  AsanRegisterImageGlobals = M.getOrInsertFunction(
      kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
  AsanUnregisterImageGlobals = M.getOrInsertFunction(
      kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);

  AsanRegisterElfGlobals =
      M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
                            IntptrTy, IntptrTy, IntptrTy);
  AsanUnregisterElfGlobals =
      M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
                            IntptrTy, IntptrTy, IntptrTy);
}

// Put the metadata and the instrumented global in the same group. This ensures
// that the metadata is discarded if the instrumented global is discarded.
void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
    GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
  Module &M = *G->getParent();
  Comdat *C = G->getComdat();
  if (!C) {
    if (!G->hasName()) {
      // If G is unnamed, it must be internal. Give it an artificial name
      // so we can put it in a comdat.
      assert(G->hasLocalLinkage());
      G->setName(Twine(kAsanGenPrefix) + "_anon_global");
    }

    if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
      std::string Name = std::string(G->getName());
      Name += InternalSuffix;
      C = M.getOrInsertComdat(Name);
    } else {
      C = M.getOrInsertComdat(G->getName());
    }

    // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
    // linkage to internal linkage so that a symbol table entry is emitted. This
    // is necessary in order to create the comdat group.
    if (TargetTriple.isOSBinFormatCOFF()) {
      C->setSelectionKind(Comdat::NoDeduplicate);
      if (G->hasPrivateLinkage())
        G->setLinkage(GlobalValue::InternalLinkage);
    }
    G->setComdat(C);
  }

  assert(G->hasComdat());
  Metadata->setComdat(G->getComdat());
}

// Create a separate metadata global and put it in the appropriate ASan
// global registration section.
GlobalVariable *
ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
                                             StringRef OriginalName) {
  auto Linkage = TargetTriple.isOSBinFormatMachO()
                     ? GlobalVariable::InternalLinkage
                     : GlobalVariable::PrivateLinkage;
  GlobalVariable *Metadata = new GlobalVariable(
      M, Initializer->getType(), false, Linkage, Initializer,
      Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
  Metadata->setSection(getGlobalMetadataSection());
  return Metadata;
}

Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
  AsanDtorFunction = Function::createWithDefaultAttr(
      FunctionType::get(Type::getVoidTy(*C), false),
      GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
  AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
  // Ensure Dtor cannot be discarded, even if in a comdat.
  appendToUsed(M, {AsanDtorFunction});
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);

  return ReturnInst::Create(*C, AsanDtorBB);
}

void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
  auto &DL = M.getDataLayout();

  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
    Constant *Initializer = MetadataInitializers[i];
    GlobalVariable *G = ExtendedGlobals[i];
    GlobalVariable *Metadata =
        CreateMetadataGlobal(M, Initializer, G->getName());
    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
    Metadata->setMetadata(LLVMContext::MD_associated, MD);
    MetadataGlobals[i] = Metadata;

    // The MSVC linker always inserts padding when linking incrementally. We
    // cope with that by aligning each struct to its size, which must be a power
    // of two.
    unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
    assert(isPowerOf2_32(SizeOfGlobalStruct) &&
           "global metadata will not be padded appropriately");
    Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));

    SetComdatForGlobalMetadata(G, Metadata, "");
  }

  // Update llvm.compiler.used, adding the new metadata globals. This is
  // needed so that during LTO these variables stay alive.
  if (!MetadataGlobals.empty())
    appendToCompilerUsed(M, MetadataGlobals);
}

void ModuleAddressSanitizer::InstrumentGlobalsELF(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers,
    const std::string &UniqueModuleId) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());

  // Putting globals in a comdat changes the semantic and potentially cause
  // false negative odr violations at link time. If odr indicators are used, we
  // keep the comdat sections, as link time odr violations will be dectected on
  // the odr indicator symbols.
  bool UseComdatForGlobalsGC = UseOdrIndicator;

  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
    GlobalVariable *G = ExtendedGlobals[i];
    GlobalVariable *Metadata =
        CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
    Metadata->setMetadata(LLVMContext::MD_associated, MD);
    MetadataGlobals[i] = Metadata;

    if (UseComdatForGlobalsGC)
      SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
  }

  // Update llvm.compiler.used, adding the new metadata globals. This is
  // needed so that during LTO these variables stay alive.
  if (!MetadataGlobals.empty())
    appendToCompilerUsed(M, MetadataGlobals);

  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
  // to look up the loaded image that contains it. Second, we can store in it
  // whether registration has already occurred, to prevent duplicate
  // registration.
  //
  // Common linkage ensures that there is only one global per shared library.
  GlobalVariable *RegisteredFlag = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::CommonLinkage,
      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);

  // Create start and stop symbols.
  GlobalVariable *StartELFMetadata = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
      "__start_" + getGlobalMetadataSection());
  StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
  GlobalVariable *StopELFMetadata = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
      "__stop_" + getGlobalMetadataSection());
  StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);

  // Create a call to register the globals with the runtime.
  IRB.CreateCall(AsanRegisterElfGlobals,
                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
                  IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
                  IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});

  // We also need to unregister globals at the end, e.g., when a shared library
  // gets closed.
  if (DestructorKind != AsanDtorKind::None) {
    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
    IrbDtor.CreateCall(AsanUnregisterElfGlobals,
                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
  }
}

void ModuleAddressSanitizer::InstrumentGlobalsMachO(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());

  // On recent Mach-O platforms, use a structure which binds the liveness of
  // the global variable to the metadata struct. Keep the list of "Liveness" GV
  // created to be added to llvm.compiler.used
  StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
  SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());

  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
    Constant *Initializer = MetadataInitializers[i];
    GlobalVariable *G = ExtendedGlobals[i];
    GlobalVariable *Metadata =
        CreateMetadataGlobal(M, Initializer, G->getName());

    // On recent Mach-O platforms, we emit the global metadata in a way that
    // allows the linker to properly strip dead globals.
    auto LivenessBinder =
        ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
                            ConstantExpr::getPointerCast(Metadata, IntptrTy));
    GlobalVariable *Liveness = new GlobalVariable(
        M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
        Twine("__asan_binder_") + G->getName());
    Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
    LivenessGlobals[i] = Liveness;
  }

  // Update llvm.compiler.used, adding the new liveness globals. This is
  // needed so that during LTO these variables stay alive. The alternative
  // would be to have the linker handling the LTO symbols, but libLTO
  // current API does not expose access to the section for each symbol.
  if (!LivenessGlobals.empty())
    appendToCompilerUsed(M, LivenessGlobals);

  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
  // to look up the loaded image that contains it. Second, we can store in it
  // whether registration has already occurred, to prevent duplicate
  // registration.
  //
  // common linkage ensures that there is only one global per shared library.
  GlobalVariable *RegisteredFlag = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::CommonLinkage,
      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);

  IRB.CreateCall(AsanRegisterImageGlobals,
                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});

  // We also need to unregister globals at the end, e.g., when a shared library
  // gets closed.
  if (DestructorKind != AsanDtorKind::None) {
    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
    IrbDtor.CreateCall(AsanUnregisterImageGlobals,
                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
  }
}

void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
  unsigned N = ExtendedGlobals.size();
  assert(N > 0);

  // On platforms that don't have a custom metadata section, we emit an array
  // of global metadata structures.
  ArrayType *ArrayOfGlobalStructTy =
      ArrayType::get(MetadataInitializers[0]->getType(), N);
  auto AllGlobals = new GlobalVariable(
      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
      ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
  if (Mapping.Scale > 3)
    AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));

  IRB.CreateCall(AsanRegisterGlobals,
                 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
                  ConstantInt::get(IntptrTy, N)});

  // We also need to unregister globals at the end, e.g., when a shared library
  // gets closed.
  if (DestructorKind != AsanDtorKind::None) {
    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
    IrbDtor.CreateCall(AsanUnregisterGlobals,
                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
                        ConstantInt::get(IntptrTy, N)});
  }
}

// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
// Sets *CtorComdat to true if the global registration code emitted into the
// asan constructor is comdat-compatible.
bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
                                               bool *CtorComdat) {
  *CtorComdat = false;

  // Build set of globals that are aliased by some GA, where
  // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
  SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
  if (CompileKernel) {
    for (auto &GA : M.aliases()) {
      if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
        AliasedGlobalExclusions.insert(GV);
    }
  }

  SmallVector<GlobalVariable *, 16> GlobalsToChange;
  for (auto &G : M.globals()) {
    if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
      GlobalsToChange.push_back(&G);
  }

  size_t n = GlobalsToChange.size();
  if (n == 0) {
    *CtorComdat = true;
    return false;
  }

  auto &DL = M.getDataLayout();

  // A global is described by a structure
  //   size_t beg;
  //   size_t size;
  //   size_t size_with_redzone;
  //   const char *name;
  //   const char *module_name;
  //   size_t has_dynamic_init;
  //   void *source_location;
  //   size_t odr_indicator;
  // We initialize an array of such structures and pass it to a run-time call.
  StructType *GlobalStructTy =
      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
                      IntptrTy, IntptrTy, IntptrTy);
  SmallVector<GlobalVariable *, 16> NewGlobals(n);
  SmallVector<Constant *, 16> Initializers(n);

  bool HasDynamicallyInitializedGlobals = false;

  // We shouldn't merge same module names, as this string serves as unique
  // module ID in runtime.
  GlobalVariable *ModuleName = createPrivateGlobalForString(
      M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);

  for (size_t i = 0; i < n; i++) {
    GlobalVariable *G = GlobalsToChange[i];

    // FIXME: Metadata should be attched directly to the global directly instead
    // of being added to llvm.asan.globals.
    auto MD = GlobalsMD.get(G);
    StringRef NameForGlobal = G->getName();
    // Create string holding the global name (use global name from metadata
    // if it's available, otherwise just write the name of global variable).
    GlobalVariable *Name = createPrivateGlobalForString(
        M, MD.Name.empty() ? NameForGlobal : MD.Name,
        /*AllowMerging*/ true, kAsanGenPrefix);

    Type *Ty = G->getValueType();
    const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
    const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);

    StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
    Constant *NewInitializer = ConstantStruct::get(
        NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));

    // Create a new global variable with enough space for a redzone.
    GlobalValue::LinkageTypes Linkage = G->getLinkage();
    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
      Linkage = GlobalValue::InternalLinkage;
    GlobalVariable *NewGlobal = new GlobalVariable(
        M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
        G->getThreadLocalMode(), G->getAddressSpace());
    NewGlobal->copyAttributesFrom(G);
    NewGlobal->setComdat(G->getComdat());
    NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
    // Don't fold globals with redzones. ODR violation detector and redzone
    // poisoning implicitly creates a dependence on the global's address, so it
    // is no longer valid for it to be marked unnamed_addr.
    NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);

    // Move null-terminated C strings to "__asan_cstring" section on Darwin.
    if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
        G->isConstant()) {
      auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
      if (Seq && Seq->isCString())
        NewGlobal->setSection("__TEXT,__asan_cstring,regular");
    }

    // Transfer the debug info and type metadata.  The payload starts at offset
    // zero so we can copy the metadata over as is.
    NewGlobal->copyMetadata(G, 0);

    Value *Indices2[2];
    Indices2[0] = IRB.getInt32(0);
    Indices2[1] = IRB.getInt32(0);

    G->replaceAllUsesWith(
        ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
    NewGlobal->takeName(G);
    G->eraseFromParent();
    NewGlobals[i] = NewGlobal;

    Constant *SourceLoc;
    if (!MD.SourceLoc.empty()) {
      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
    } else {
      SourceLoc = ConstantInt::get(IntptrTy, 0);
    }

    Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
    GlobalValue *InstrumentedGlobal = NewGlobal;

    bool CanUsePrivateAliases =
        TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
        TargetTriple.isOSBinFormatWasm();
    if (CanUsePrivateAliases && UsePrivateAlias) {
      // Create local alias for NewGlobal to avoid crash on ODR between
      // instrumented and non-instrumented libraries.
      InstrumentedGlobal =
          GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
    }

    // ODR should not happen for local linkage.
    if (NewGlobal->hasLocalLinkage()) {
      ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
                                               IRB.getInt8PtrTy());
    } else if (UseOdrIndicator) {
      // With local aliases, we need to provide another externally visible
      // symbol __odr_asan_XXX to detect ODR violation.
      auto *ODRIndicatorSym =
          new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
                             Constant::getNullValue(IRB.getInt8Ty()),
                             kODRGenPrefix + NameForGlobal, nullptr,
                             NewGlobal->getThreadLocalMode());

      // Set meaningful attributes for indicator symbol.
      ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
      ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
      ODRIndicatorSym->setAlignment(Align(1));
      ODRIndicator = ODRIndicatorSym;
    }

    Constant *Initializer = ConstantStruct::get(
        GlobalStructTy,
        ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
        ConstantInt::get(IntptrTy, SizeInBytes),
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
        ConstantExpr::getPointerCast(Name, IntptrTy),
        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
        ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));

    if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;

    LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");

    Initializers[i] = Initializer;
  }

  // Add instrumented globals to llvm.compiler.used list to avoid LTO from
  // ConstantMerge'ing them.
  SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
  for (size_t i = 0; i < n; i++) {
    GlobalVariable *G = NewGlobals[i];
    if (G->getName().empty()) continue;
    GlobalsToAddToUsedList.push_back(G);
  }
  appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));

  std::string ELFUniqueModuleId =
      (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
                                                        : "";

  if (!ELFUniqueModuleId.empty()) {
    InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
    *CtorComdat = true;
  } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
    InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
  } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
    InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
  } else {
    InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
  }

  // Create calls for poisoning before initializers run and unpoisoning after.
  if (HasDynamicallyInitializedGlobals)
    createInitializerPoisonCalls(M, ModuleName);

  LLVM_DEBUG(dbgs() << M);
  return true;
}

uint64_t
ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
  constexpr uint64_t kMaxRZ = 1 << 18;
  const uint64_t MinRZ = getMinRedzoneSizeForGlobal();

  uint64_t RZ = 0;
  if (SizeInBytes <= MinRZ / 2) {
    // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
    // at least 32 bytes, optimize when SizeInBytes is less than or equal to
    // half of MinRZ.
    RZ = MinRZ - SizeInBytes;
  } else {
    // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
    RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));

    // Round up to multiple of MinRZ.
    if (SizeInBytes % MinRZ)
      RZ += MinRZ - (SizeInBytes % MinRZ);
  }

  assert((RZ + SizeInBytes) % MinRZ == 0);

  return RZ;
}

int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
  int LongSize = M.getDataLayout().getPointerSizeInBits();
  bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
  int Version = 8;
  // 32-bit Android is one version ahead because of the switch to dynamic
  // shadow.
  Version += (LongSize == 32 && isAndroid);
  return Version;
}

bool ModuleAddressSanitizer::instrumentModule(Module &M) {
  initializeCallbacks(M);

  // Create a module constructor. A destructor is created lazily because not all
  // platforms, and not all modules need it.
  if (CompileKernel) {
    // The kernel always builds with its own runtime, and therefore does not
    // need the init and version check calls.
    AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
  } else {
    std::string AsanVersion = std::to_string(GetAsanVersion(M));
    std::string VersionCheckName =
        ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
    std::tie(AsanCtorFunction, std::ignore) =
        createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
                                            kAsanInitName, /*InitArgTypes=*/{},
                                            /*InitArgs=*/{}, VersionCheckName);
  }

  bool CtorComdat = true;
  if (ClGlobals) {
    IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
    InstrumentGlobals(IRB, M, &CtorComdat);
  }

  const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);

  // Put the constructor and destructor in comdat if both
  // (1) global instrumentation is not TU-specific
  // (2) target is ELF.
  if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
    AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
    appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
    if (AsanDtorFunction) {
      AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
      appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
    }
  } else {
    appendToGlobalCtors(M, AsanCtorFunction, Priority);
    if (AsanDtorFunction)
      appendToGlobalDtors(M, AsanDtorFunction, Priority);
  }

  return true;
}

void AddressSanitizer::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  // Create __asan_report* callbacks.
  // IsWrite, TypeSize and Exp are encoded in the function name.
  for (int Exp = 0; Exp < 2; Exp++) {
    for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
      const std::string TypeStr = AccessIsWrite ? "store" : "load";
      const std::string ExpStr = Exp ? "exp_" : "";
      const std::string EndingStr = Recover ? "_noabort" : "";

      SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
      SmallVector<Type *, 2> Args1{1, IntptrTy};
      if (Exp) {
        Type *ExpType = Type::getInt32Ty(*C);
        Args2.push_back(ExpType);
        Args1.push_back(ExpType);
      }
      AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
          kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
          FunctionType::get(IRB.getVoidTy(), Args2, false));

      AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
          ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
          FunctionType::get(IRB.getVoidTy(), Args2, false));

      for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
           AccessSizeIndex++) {
        const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
        AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
            M.getOrInsertFunction(
                kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
                FunctionType::get(IRB.getVoidTy(), Args1, false));

        AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
            M.getOrInsertFunction(
                ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
                FunctionType::get(IRB.getVoidTy(), Args1, false));
      }
    }
  }

  const std::string MemIntrinCallbackPrefix =
      CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
  AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                      IRB.getInt8PtrTy(), IntptrTy);
  AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
                                     IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                     IRB.getInt8PtrTy(), IntptrTy);
  AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
                                     IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                     IRB.getInt32Ty(), IntptrTy);

  AsanHandleNoReturnFunc =
      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());

  AsanPtrCmpFunction =
      M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
  AsanPtrSubFunction =
      M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
  if (Mapping.InGlobal)
    AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
                                           ArrayType::get(IRB.getInt8Ty(), 0));

  AMDGPUAddressShared = M.getOrInsertFunction(
      kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
  AMDGPUAddressPrivate = M.getOrInsertFunction(
      kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
}

bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
  // For each NSObject descendant having a +load method, this method is invoked
  // by the ObjC runtime before any of the static constructors is called.
  // Therefore we need to instrument such methods with a call to __asan_init
  // at the beginning in order to initialize our runtime before any access to
  // the shadow memory.
  // We cannot just ignore these methods, because they may call other
  // instrumented functions.
  if (F.getName().find(" load]") != std::string::npos) {
    FunctionCallee AsanInitFunction =
        declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
    IRBuilder<> IRB(&F.front(), F.front().begin());
    IRB.CreateCall(AsanInitFunction, {});
    return true;
  }
  return false;
}

bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
  // Generate code only when dynamic addressing is needed.
  if (Mapping.Offset != kDynamicShadowSentinel)
    return false;

  IRBuilder<> IRB(&F.front().front());
  if (Mapping.InGlobal) {
    if (ClWithIfuncSuppressRemat) {
      // An empty inline asm with input reg == output reg.
      // An opaque pointer-to-int cast, basically.
      InlineAsm *Asm = InlineAsm::get(
          FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
          StringRef(""), StringRef("=r,0"),
          /*hasSideEffects=*/false);
      LocalDynamicShadow =
          IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
    } else {
      LocalDynamicShadow =
          IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
    }
  } else {
    Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
        kAsanShadowMemoryDynamicAddress, IntptrTy);
    LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
  }
  return true;
}

void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
  // Find the one possible call to llvm.localescape and pre-mark allocas passed
  // to it as uninteresting. This assumes we haven't started processing allocas
  // yet. This check is done up front because iterating the use list in
  // isInterestingAlloca would be algorithmically slower.
  assert(ProcessedAllocas.empty() && "must process localescape before allocas");

  // Try to get the declaration of llvm.localescape. If it's not in the module,
  // we can exit early.
  if (!F.getParent()->getFunction("llvm.localescape")) return;

  // Look for a call to llvm.localescape call in the entry block. It can't be in
  // any other block.
  for (Instruction &I : F.getEntryBlock()) {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
      // We found a call. Mark all the allocas passed in as uninteresting.
      for (Value *Arg : II->args()) {
        AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
        assert(AI && AI->isStaticAlloca() &&
               "non-static alloca arg to localescape");
        ProcessedAllocas[AI] = false;
      }
      break;
    }
  }
}

bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
  bool ShouldInstrument =
      ClDebugMin < 0 || ClDebugMax < 0 ||
      (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
  Instrumented++;
  return !ShouldInstrument;
}

bool AddressSanitizer::instrumentFunction(Function &F,
                                          const TargetLibraryInfo *TLI) {
  if (F.empty())
    return false;
  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
  if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
  if (F.getName().startswith("__asan_")) return false;

  bool FunctionModified = false;

  // If needed, insert __asan_init before checking for SanitizeAddress attr.
  // This function needs to be called even if the function body is not
  // instrumented.
  if (maybeInsertAsanInitAtFunctionEntry(F))
    FunctionModified = true;

  // Leave if the function doesn't need instrumentation.
  if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;

  LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");

  initializeCallbacks(*F.getParent());

  FunctionStateRAII CleanupObj(this);

  FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);

  // We can't instrument allocas used with llvm.localescape. Only static allocas
  // can be passed to that intrinsic.
  markEscapedLocalAllocas(F);

  // We want to instrument every address only once per basic block (unless there
  // are calls between uses).
  SmallPtrSet<Value *, 16> TempsToInstrument;
  SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
  SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
  SmallVector<Instruction *, 8> NoReturnCalls;
  SmallVector<BasicBlock *, 16> AllBlocks;
  SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
  int NumAllocas = 0;

  // Fill the set of memory operations to instrument.
  for (auto &BB : F) {
    AllBlocks.push_back(&BB);
    TempsToInstrument.clear();
    int NumInsnsPerBB = 0;
    for (auto &Inst : BB) {
      if (LooksLikeCodeInBug11395(&Inst)) return false;
      SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
      getInterestingMemoryOperands(&Inst, InterestingOperands);

      if (!InterestingOperands.empty()) {
        for (auto &Operand : InterestingOperands) {
          if (ClOpt && ClOptSameTemp) {
            Value *Ptr = Operand.getPtr();
            // If we have a mask, skip instrumentation if we've already
            // instrumented the full object. But don't add to TempsToInstrument
            // because we might get another load/store with a different mask.
            if (Operand.MaybeMask) {
              if (TempsToInstrument.count(Ptr))
                continue; // We've seen this (whole) temp in the current BB.
            } else {
              if (!TempsToInstrument.insert(Ptr).second)
                continue; // We've seen this temp in the current BB.
            }
          }
          OperandsToInstrument.push_back(Operand);
          NumInsnsPerBB++;
        }
      } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
                  isInterestingPointerComparison(&Inst)) ||
                 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
                  isInterestingPointerSubtraction(&Inst))) {
        PointerComparisonsOrSubtracts.push_back(&Inst);
      } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
        // ok, take it.
        IntrinToInstrument.push_back(MI);
        NumInsnsPerBB++;
      } else {
        if (isa<AllocaInst>(Inst)) NumAllocas++;
        if (auto *CB = dyn_cast<CallBase>(&Inst)) {
          // A call inside BB.
          TempsToInstrument.clear();
          if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
            NoReturnCalls.push_back(CB);
        }
        if (CallInst *CI = dyn_cast<CallInst>(&Inst))
          maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
      }
      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
    }
  }

  bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
                   OperandsToInstrument.size() + IntrinToInstrument.size() >
                       (unsigned)ClInstrumentationWithCallsThreshold);
  const DataLayout &DL = F.getParent()->getDataLayout();
  ObjectSizeOpts ObjSizeOpts;
  ObjSizeOpts.RoundToAlign = true;
  ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);

  // Instrument.
  int NumInstrumented = 0;
  for (auto &Operand : OperandsToInstrument) {
    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
      instrumentMop(ObjSizeVis, Operand, UseCalls,
                    F.getParent()->getDataLayout());
    FunctionModified = true;
  }
  for (auto Inst : IntrinToInstrument) {
    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
      instrumentMemIntrinsic(Inst);
    FunctionModified = true;
  }

  FunctionStackPoisoner FSP(F, *this);
  bool ChangedStack = FSP.runOnFunction();

  // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
  // See e.g. https://github.com/google/sanitizers/issues/37
  for (auto CI : NoReturnCalls) {
    IRBuilder<> IRB(CI);
    IRB.CreateCall(AsanHandleNoReturnFunc, {});
  }

  for (auto Inst : PointerComparisonsOrSubtracts) {
    instrumentPointerComparisonOrSubtraction(Inst);
    FunctionModified = true;
  }

  if (ChangedStack || !NoReturnCalls.empty())
    FunctionModified = true;

  LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
                    << F << "\n");

  return FunctionModified;
}

// Workaround for bug 11395: we don't want to instrument stack in functions
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
// FIXME: remove once the bug 11395 is fixed.
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
  if (LongSize != 32) return false;
  CallInst *CI = dyn_cast<CallInst>(I);
  if (!CI || !CI->isInlineAsm()) return false;
  if (CI->arg_size() <= 5)
    return false;
  // We have inline assembly with quite a few arguments.
  return true;
}

void FunctionStackPoisoner::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
      ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
    const char *MallocNameTemplate =
        ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
            ? kAsanStackMallocAlwaysNameTemplate
            : kAsanStackMallocNameTemplate;
    for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
      std::string Suffix = itostr(Index);
      AsanStackMallocFunc[Index] = M.getOrInsertFunction(
          MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
      AsanStackFreeFunc[Index] =
          M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
                                IRB.getVoidTy(), IntptrTy, IntptrTy);
    }
  }
  if (ASan.UseAfterScope) {
    AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
        kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
    AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
        kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
  }

  for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
    std::ostringstream Name;
    Name << kAsanSetShadowPrefix;
    Name << std::setw(2) << std::setfill('0') << std::hex << Val;
    AsanSetShadowFunc[Val] =
        M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
  }

  AsanAllocaPoisonFunc = M.getOrInsertFunction(
      kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
  AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
      kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
}

void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
                                               ArrayRef<uint8_t> ShadowBytes,
                                               size_t Begin, size_t End,
                                               IRBuilder<> &IRB,
                                               Value *ShadowBase) {
  if (Begin >= End)
    return;

  const size_t LargestStoreSizeInBytes =
      std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);

  const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();

  // Poison given range in shadow using larges store size with out leading and
  // trailing zeros in ShadowMask. Zeros never change, so they need neither
  // poisoning nor up-poisoning. Still we don't mind if some of them get into a
  // middle of a store.
  for (size_t i = Begin; i < End;) {
    if (!ShadowMask[i]) {
      assert(!ShadowBytes[i]);
      ++i;
      continue;
    }

    size_t StoreSizeInBytes = LargestStoreSizeInBytes;
    // Fit store size into the range.
    while (StoreSizeInBytes > End - i)
      StoreSizeInBytes /= 2;

    // Minimize store size by trimming trailing zeros.
    for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
      while (j <= StoreSizeInBytes / 2)
        StoreSizeInBytes /= 2;
    }

    uint64_t Val = 0;
    for (size_t j = 0; j < StoreSizeInBytes; j++) {
      if (IsLittleEndian)
        Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
      else
        Val = (Val << 8) | ShadowBytes[i + j];
    }

    Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
    Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
    IRB.CreateAlignedStore(
        Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
        Align(1));

    i += StoreSizeInBytes;
  }
}

void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
                                         ArrayRef<uint8_t> ShadowBytes,
                                         IRBuilder<> &IRB, Value *ShadowBase) {
  copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
}

void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
                                         ArrayRef<uint8_t> ShadowBytes,
                                         size_t Begin, size_t End,
                                         IRBuilder<> &IRB, Value *ShadowBase) {
  assert(ShadowMask.size() == ShadowBytes.size());
  size_t Done = Begin;
  for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
    if (!ShadowMask[i]) {
      assert(!ShadowBytes[i]);
      continue;
    }
    uint8_t Val = ShadowBytes[i];
    if (!AsanSetShadowFunc[Val])
      continue;

    // Skip same values.
    for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
    }

    if (j - i >= ClMaxInlinePoisoningSize) {
      copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
      IRB.CreateCall(AsanSetShadowFunc[Val],
                     {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
                      ConstantInt::get(IntptrTy, j - i)});
      Done = j;
    }
  }

  copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
}

// Fake stack allocator (asan_fake_stack.h) has 11 size classes
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
static int StackMallocSizeClass(uint64_t LocalStackSize) {
  assert(LocalStackSize <= kMaxStackMallocSize);
  uint64_t MaxSize = kMinStackMallocSize;
  for (int i = 0;; i++, MaxSize *= 2)
    if (LocalStackSize <= MaxSize) return i;
  llvm_unreachable("impossible LocalStackSize");
}

void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
  Instruction *CopyInsertPoint = &F.front().front();
  if (CopyInsertPoint == ASan.LocalDynamicShadow) {
    // Insert after the dynamic shadow location is determined
    CopyInsertPoint = CopyInsertPoint->getNextNode();
    assert(CopyInsertPoint);
  }
  IRBuilder<> IRB(CopyInsertPoint);
  const DataLayout &DL = F.getParent()->getDataLayout();
  for (Argument &Arg : F.args()) {
    if (Arg.hasByValAttr()) {
      Type *Ty = Arg.getParamByValType();
      const Align Alignment =
          DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);

      AllocaInst *AI = IRB.CreateAlloca(
          Ty, nullptr,
          (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
              ".byval");
      AI->setAlignment(Alignment);
      Arg.replaceAllUsesWith(AI);

      uint64_t AllocSize = DL.getTypeAllocSize(Ty);
      IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
    }
  }
}

PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
                                          Value *ValueIfTrue,
                                          Instruction *ThenTerm,
                                          Value *ValueIfFalse) {
  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
  PHI->addIncoming(ValueIfFalse, CondBlock);
  BasicBlock *ThenBlock = ThenTerm->getParent();
  PHI->addIncoming(ValueIfTrue, ThenBlock);
  return PHI;
}

Value *FunctionStackPoisoner::createAllocaForLayout(
    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
  AllocaInst *Alloca;
  if (Dynamic) {
    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
                              "MyAlloca");
  } else {
    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
                              nullptr, "MyAlloca");
    assert(Alloca->isStaticAlloca());
  }
  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
  uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
  Alloca->setAlignment(Align(FrameAlignment));
  return IRB.CreatePointerCast(Alloca, IntptrTy);
}

void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
  BasicBlock &FirstBB = *F.begin();
  IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
  DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
  IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
  DynamicAllocaLayout->setAlignment(Align(32));
}

void FunctionStackPoisoner::processDynamicAllocas() {
  if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
    assert(DynamicAllocaPoisonCallVec.empty());
    return;
  }

  // Insert poison calls for lifetime intrinsics for dynamic allocas.
  for (const auto &APC : DynamicAllocaPoisonCallVec) {
    assert(APC.InsBefore);
    assert(APC.AI);
    assert(ASan.isInterestingAlloca(*APC.AI));
    assert(!APC.AI->isStaticAlloca());

    IRBuilder<> IRB(APC.InsBefore);
    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
    // Dynamic allocas will be unpoisoned unconditionally below in
    // unpoisonDynamicAllocas.
    // Flag that we need unpoison static allocas.
  }

  // Handle dynamic allocas.
  createDynamicAllocasInitStorage();
  for (auto &AI : DynamicAllocaVec)
    handleDynamicAllocaCall(AI);
  unpoisonDynamicAllocas();
}

/// Collect instructions in the entry block after \p InsBefore which initialize
/// permanent storage for a function argument. These instructions must remain in
/// the entry block so that uninitialized values do not appear in backtraces. An
/// added benefit is that this conserves spill slots. This does not move stores
/// before instrumented / "interesting" allocas.
static void findStoresToUninstrumentedArgAllocas(
    AddressSanitizer &ASan, Instruction &InsBefore,
    SmallVectorImpl<Instruction *> &InitInsts) {
  Instruction *Start = InsBefore.getNextNonDebugInstruction();
  for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
    // Argument initialization looks like:
    // 1) store <Argument>, <Alloca> OR
    // 2) <CastArgument> = cast <Argument> to ...
    //    store <CastArgument> to <Alloca>
    // Do not consider any other kind of instruction.
    //
    // Note: This covers all known cases, but may not be exhaustive. An
    // alternative to pattern-matching stores is to DFS over all Argument uses:
    // this might be more general, but is probably much more complicated.
    if (isa<AllocaInst>(It) || isa<CastInst>(It))
      continue;
    if (auto *Store = dyn_cast<StoreInst>(It)) {
      // The store destination must be an alloca that isn't interesting for
      // ASan to instrument. These are moved up before InsBefore, and they're
      // not interesting because allocas for arguments can be mem2reg'd.
      auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
      if (!Alloca || ASan.isInterestingAlloca(*Alloca))
        continue;

      Value *Val = Store->getValueOperand();
      bool IsDirectArgInit = isa<Argument>(Val);
      bool IsArgInitViaCast =
          isa<CastInst>(Val) &&
          isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
          // Check that the cast appears directly before the store. Otherwise
          // moving the cast before InsBefore may break the IR.
          Val == It->getPrevNonDebugInstruction();
      bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
      if (!IsArgInit)
        continue;

      if (IsArgInitViaCast)
        InitInsts.push_back(cast<Instruction>(Val));
      InitInsts.push_back(Store);
      continue;
    }

    // Do not reorder past unknown instructions: argument initialization should
    // only involve casts and stores.
    return;
  }
}

void FunctionStackPoisoner::processStaticAllocas() {
  if (AllocaVec.empty()) {
    assert(StaticAllocaPoisonCallVec.empty());
    return;
  }

  int StackMallocIdx = -1;
  DebugLoc EntryDebugLocation;
  if (auto SP = F.getSubprogram())
    EntryDebugLocation =
        DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);

  Instruction *InsBefore = AllocaVec[0];
  IRBuilder<> IRB(InsBefore);

  // Make sure non-instrumented allocas stay in the entry block. Otherwise,
  // debug info is broken, because only entry-block allocas are treated as
  // regular stack slots.
  auto InsBeforeB = InsBefore->getParent();
  assert(InsBeforeB == &F.getEntryBlock());
  for (auto *AI : StaticAllocasToMoveUp)
    if (AI->getParent() == InsBeforeB)
      AI->moveBefore(InsBefore);

  // Move stores of arguments into entry-block allocas as well. This prevents
  // extra stack slots from being generated (to house the argument values until
  // they can be stored into the allocas). This also prevents uninitialized
  // values from being shown in backtraces.
  SmallVector<Instruction *, 8> ArgInitInsts;
  findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
  for (Instruction *ArgInitInst : ArgInitInsts)
    ArgInitInst->moveBefore(InsBefore);

  // If we have a call to llvm.localescape, keep it in the entry block.
  if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);

  SmallVector<ASanStackVariableDescription, 16> SVD;
  SVD.reserve(AllocaVec.size());
  for (AllocaInst *AI : AllocaVec) {
    ASanStackVariableDescription D = {AI->getName().data(),
                                      ASan.getAllocaSizeInBytes(*AI),
                                      0,
                                      AI->getAlignment(),
                                      AI,
                                      0,
                                      0};
    SVD.push_back(D);
  }

  // Minimal header size (left redzone) is 4 pointers,
  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
  uint64_t Granularity = 1ULL << Mapping.Scale;
  uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
  const ASanStackFrameLayout &L =
      ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);

  // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
  DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
  for (auto &Desc : SVD)
    AllocaToSVDMap[Desc.AI] = &Desc;

  // Update SVD with information from lifetime intrinsics.
  for (const auto &APC : StaticAllocaPoisonCallVec) {
    assert(APC.InsBefore);
    assert(APC.AI);
    assert(ASan.isInterestingAlloca(*APC.AI));
    assert(APC.AI->isStaticAlloca());

    ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
    Desc.LifetimeSize = Desc.Size;
    if (const DILocation *FnLoc = EntryDebugLocation.get()) {
      if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
        if (LifetimeLoc->getFile() == FnLoc->getFile())
          if (unsigned Line = LifetimeLoc->getLine())
            Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
      }
    }
  }

  auto DescriptionString = ComputeASanStackFrameDescription(SVD);
  LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
  uint64_t LocalStackSize = L.FrameSize;
  bool DoStackMalloc =
      ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
      !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
  bool DoDynamicAlloca = ClDynamicAllocaStack;
  // Don't do dynamic alloca or stack malloc if:
  // 1) There is inline asm: too often it makes assumptions on which registers
  //    are available.
  // 2) There is a returns_twice call (typically setjmp), which is
  //    optimization-hostile, and doesn't play well with introduced indirect
  //    register-relative calculation of local variable addresses.
  DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
  DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;

  Value *StaticAlloca =
      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);

  Value *FakeStack;
  Value *LocalStackBase;
  Value *LocalStackBaseAlloca;
  uint8_t DIExprFlags = DIExpression::ApplyOffset;

  if (DoStackMalloc) {
    LocalStackBaseAlloca =
        IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
    if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
      // void *FakeStack = __asan_option_detect_stack_use_after_return
      //     ? __asan_stack_malloc_N(LocalStackSize)
      //     : nullptr;
      // void *LocalStackBase = (FakeStack) ? FakeStack :
      //                        alloca(LocalStackSize);
      Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
          kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
      Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
          IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
          Constant::getNullValue(IRB.getInt32Ty()));
      Instruction *Term =
          SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
      IRBuilder<> IRBIf(Term);
      StackMallocIdx = StackMallocSizeClass(LocalStackSize);
      assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
      Value *FakeStackValue =
          IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
                           ConstantInt::get(IntptrTy, LocalStackSize));
      IRB.SetInsertPoint(InsBefore);
      FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
                            ConstantInt::get(IntptrTy, 0));
    } else {
      // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
      // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
      // void *LocalStackBase = (FakeStack) ? FakeStack :
      //                        alloca(LocalStackSize);
      StackMallocIdx = StackMallocSizeClass(LocalStackSize);
      FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
                                 ConstantInt::get(IntptrTy, LocalStackSize));
    }
    Value *NoFakeStack =
        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
    Instruction *Term =
        SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
    IRBuilder<> IRBIf(Term);
    Value *AllocaValue =
        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;

    IRB.SetInsertPoint(InsBefore);
    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
    IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
    DIExprFlags |= DIExpression::DerefBefore;
  } else {
    // void *FakeStack = nullptr;
    // void *LocalStackBase = alloca(LocalStackSize);
    FakeStack = ConstantInt::get(IntptrTy, 0);
    LocalStackBase =
        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
    LocalStackBaseAlloca = LocalStackBase;
  }

  // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
  // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
  // later passes and can result in dropped variable coverage in debug info.
  Value *LocalStackBaseAllocaPtr =
      isa<PtrToIntInst>(LocalStackBaseAlloca)
          ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
          : LocalStackBaseAlloca;
  assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
         "Variable descriptions relative to ASan stack base will be dropped");

  // Replace Alloca instructions with base+offset.
  for (const auto &Desc : SVD) {
    AllocaInst *AI = Desc.AI;
    replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
                      Desc.Offset);
    Value *NewAllocaPtr = IRB.CreateIntToPtr(
        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
        AI->getType());
    AI->replaceAllUsesWith(NewAllocaPtr);
  }

  // The left-most redzone has enough space for at least 4 pointers.
  // Write the Magic value to redzone[0].
  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
                  BasePlus0);
  // Write the frame description constant to redzone[1].
  Value *BasePlus1 = IRB.CreateIntToPtr(
      IRB.CreateAdd(LocalStackBase,
                    ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
      IntptrPtrTy);
  GlobalVariable *StackDescriptionGlobal =
      createPrivateGlobalForString(*F.getParent(), DescriptionString,
                                   /*AllowMerging*/ true, kAsanGenPrefix);
  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
  IRB.CreateStore(Description, BasePlus1);
  // Write the PC to redzone[2].
  Value *BasePlus2 = IRB.CreateIntToPtr(
      IRB.CreateAdd(LocalStackBase,
                    ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
      IntptrPtrTy);
  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);

  const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);

  // Poison the stack red zones at the entry.
  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
  // As mask we must use most poisoned case: red zones and after scope.
  // As bytes we can use either the same or just red zones only.
  copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);

  if (!StaticAllocaPoisonCallVec.empty()) {
    const auto &ShadowInScope = GetShadowBytes(SVD, L);

    // Poison static allocas near lifetime intrinsics.
    for (const auto &APC : StaticAllocaPoisonCallVec) {
      const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
      assert(Desc.Offset % L.Granularity == 0);
      size_t Begin = Desc.Offset / L.Granularity;
      size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;

      IRBuilder<> IRB(APC.InsBefore);
      copyToShadow(ShadowAfterScope,
                   APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
                   IRB, ShadowBase);
    }
  }

  SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
  SmallVector<uint8_t, 64> ShadowAfterReturn;

  // (Un)poison the stack before all ret instructions.
  for (Instruction *Ret : RetVec) {
    IRBuilder<> IRBRet(Ret);
    // Mark the current frame as retired.
    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
                       BasePlus0);
    if (DoStackMalloc) {
      assert(StackMallocIdx >= 0);
      // if FakeStack != 0  // LocalStackBase == FakeStack
      //     // In use-after-return mode, poison the whole stack frame.
      //     if StackMallocIdx <= 4
      //         // For small sizes inline the whole thing:
      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
      //         **SavedFlagPtr(FakeStack) = 0
      //     else
      //         __asan_stack_free_N(FakeStack, LocalStackSize)
      // else
      //     <This is not a fake stack; unpoison the redzones>
      Value *Cmp =
          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
      Instruction *ThenTerm, *ElseTerm;
      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);

      IRBuilder<> IRBPoison(ThenTerm);
      if (StackMallocIdx <= 4) {
        int ClassSize = kMinStackMallocSize << StackMallocIdx;
        ShadowAfterReturn.resize(ClassSize / L.Granularity,
                                 kAsanStackUseAfterReturnMagic);
        copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
                     ShadowBase);
        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
            FakeStack,
            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
        Value *SavedFlagPtr = IRBPoison.CreateLoad(
            IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
        IRBPoison.CreateStore(
            Constant::getNullValue(IRBPoison.getInt8Ty()),
            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
      } else {
        // For larger frames call __asan_stack_free_*.
        IRBPoison.CreateCall(
            AsanStackFreeFunc[StackMallocIdx],
            {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
      }

      IRBuilder<> IRBElse(ElseTerm);
      copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
    } else {
      copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
    }
  }

  // We are done. Remove the old unused alloca instructions.
  for (auto AI : AllocaVec) AI->eraseFromParent();
}

void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
                                         IRBuilder<> &IRB, bool DoPoison) {
  // For now just insert the call to ASan runtime.
  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
  IRB.CreateCall(
      DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
      {AddrArg, SizeArg});
}

// Handling llvm.lifetime intrinsics for a given %alloca:
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
//     could be poisoned by previous llvm.lifetime.end instruction, as the
//     variable may go in and out of scope several times, e.g. in loops).
// (3) if we poisoned at least one %alloca in a function,
//     unpoison the whole stack frame at function exit.
void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
  IRBuilder<> IRB(AI);

  const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment());
  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;

  Value *Zero = Constant::getNullValue(IntptrTy);
  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);

  // Since we need to extend alloca with additional memory to locate
  // redzones, and OldSize is number of allocated blocks with
  // ElementSize size, get allocated memory size in bytes by
  // OldSize * ElementSize.
  const unsigned ElementSize =
      F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
  Value *OldSize =
      IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
                    ConstantInt::get(IntptrTy, ElementSize));

  // PartialSize = OldSize % 32
  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);

  // Misalign = kAllocaRzSize - PartialSize;
  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);

  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);

  // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
  // Alignment is added to locate left redzone, PartialPadding for possible
  // partial redzone and kAllocaRzSize for right redzone respectively.
  Value *AdditionalChunkSize = IRB.CreateAdd(
      ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);

  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);

  // Insert new alloca with new NewSize and Alignment params.
  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
  NewAlloca->setAlignment(Align(Alignment));

  // NewAddress = Address + Alignment
  Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
                                    ConstantInt::get(IntptrTy, Alignment));

  // Insert __asan_alloca_poison call for new created alloca.
  IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});

  // Store the last alloca's address to DynamicAllocaLayout. We'll need this
  // for unpoisoning stuff.
  IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);

  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());

  // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
  AI->replaceAllUsesWith(NewAddressPtr);

  // We are done. Erase old alloca from parent.
  AI->eraseFromParent();
}

// isSafeAccess returns true if Addr is always inbounds with respect to its
// base object. For example, it is a field access or an array access with
// constant inbounds index.
bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
                                    Value *Addr, uint64_t TypeSize) const {
  SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
  if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
  uint64_t Size = SizeOffset.first.getZExtValue();
  int64_t Offset = SizeOffset.second.getSExtValue();
  // Three checks are required to ensure safety:
  // . Offset >= 0  (since the offset is given from the base ptr)
  // . Size >= Offset  (unsigned)
  // . Size - Offset >= NeededSize  (unsigned)
  return Offset >= 0 && Size >= uint64_t(Offset) &&
         Size - uint64_t(Offset) >= TypeSize / 8;
}