1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
|
//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
// Implementation for the IROutliner which is used by the IROutliner Pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/IROutliner.h"
#include "llvm/Analysis/IRSimilarityIdentifier.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
#include <map>
#include <set>
#include <vector>
#define DEBUG_TYPE "iroutliner"
using namespace llvm;
using namespace IRSimilarity;
// A command flag to be used for debugging to exclude branches from similarity
// matching and outlining.
namespace llvm {
extern cl::opt<bool> DisableBranches;
// A command flag to be used for debugging to indirect calls from similarity
// matching and outlining.
extern cl::opt<bool> DisableIndirectCalls;
// A command flag to be used for debugging to exclude intrinsics from similarity
// matching and outlining.
extern cl::opt<bool> DisableIntrinsics;
} // namespace llvm
// Set to true if the user wants the ir outliner to run on linkonceodr linkage
// functions. This is false by default because the linker can dedupe linkonceodr
// functions. Since the outliner is confined to a single module (modulo LTO),
// this is off by default. It should, however, be the default behavior in
// LTO.
static cl::opt<bool> EnableLinkOnceODRIROutlining(
"enable-linkonceodr-ir-outlining", cl::Hidden,
cl::desc("Enable the IR outliner on linkonceodr functions"),
cl::init(false));
// This is a debug option to test small pieces of code to ensure that outlining
// works correctly.
static cl::opt<bool> NoCostModel(
"ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
cl::desc("Debug option to outline greedily, without restriction that "
"calculated benefit outweighs cost"));
/// The OutlinableGroup holds all the overarching information for outlining
/// a set of regions that are structurally similar to one another, such as the
/// types of the overall function, the output blocks, the sets of stores needed
/// and a list of the different regions. This information is used in the
/// deduplication of extracted regions with the same structure.
struct OutlinableGroup {
/// The sections that could be outlined
std::vector<OutlinableRegion *> Regions;
/// The argument types for the function created as the overall function to
/// replace the extracted function for each region.
std::vector<Type *> ArgumentTypes;
/// The FunctionType for the overall function.
FunctionType *OutlinedFunctionType = nullptr;
/// The Function for the collective overall function.
Function *OutlinedFunction = nullptr;
/// Flag for whether we should not consider this group of OutlinableRegions
/// for extraction.
bool IgnoreGroup = false;
/// The return blocks for the overall function.
DenseMap<Value *, BasicBlock *> EndBBs;
/// The PHIBlocks with their corresponding return block based on the return
/// value as the key.
DenseMap<Value *, BasicBlock *> PHIBlocks;
/// A set containing the different GVN store sets needed. Each array contains
/// a sorted list of the different values that need to be stored into output
/// registers.
DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
/// Flag for whether the \ref ArgumentTypes have been defined after the
/// extraction of the first region.
bool InputTypesSet = false;
/// The number of input values in \ref ArgumentTypes. Anything after this
/// index in ArgumentTypes is an output argument.
unsigned NumAggregateInputs = 0;
/// The mapping of the canonical numbering of the values in outlined sections
/// to specific arguments.
DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
/// The number of branches in the region target a basic block that is outside
/// of the region.
unsigned BranchesToOutside = 0;
/// Tracker counting backwards from the highest unsigned value possible to
/// avoid conflicting with the GVNs of assigned values. We start at -3 since
/// -2 and -1 are assigned by the DenseMap.
unsigned PHINodeGVNTracker = -3;
DenseMap<unsigned,
std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
PHINodeGVNToGVNs;
DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
/// The number of instructions that will be outlined by extracting \ref
/// Regions.
InstructionCost Benefit = 0;
/// The number of added instructions needed for the outlining of the \ref
/// Regions.
InstructionCost Cost = 0;
/// The argument that needs to be marked with the swifterr attribute. If not
/// needed, there is no value.
Optional<unsigned> SwiftErrorArgument;
/// For the \ref Regions, we look at every Value. If it is a constant,
/// we check whether it is the same in Region.
///
/// \param [in,out] NotSame contains the global value numbers where the
/// constant is not always the same, and must be passed in as an argument.
void findSameConstants(DenseSet<unsigned> &NotSame);
/// For the regions, look at each set of GVN stores needed and account for
/// each combination. Add an argument to the argument types if there is
/// more than one combination.
///
/// \param [in] M - The module we are outlining from.
void collectGVNStoreSets(Module &M);
};
/// Move the contents of \p SourceBB to before the last instruction of \p
/// TargetBB.
/// \param SourceBB - the BasicBlock to pull Instructions from.
/// \param TargetBB - the BasicBlock to put Instruction into.
static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
for (Instruction &I : llvm::make_early_inc_range(SourceBB))
I.moveBefore(TargetBB, TargetBB.end());
}
/// A function to sort the keys of \p Map, which must be a mapping of constant
/// values to basic blocks and return it in \p SortedKeys
///
/// \param SortedKeys - The vector the keys will be return in and sorted.
/// \param Map - The DenseMap containing keys to sort.
static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
DenseMap<Value *, BasicBlock *> &Map) {
for (auto &VtoBB : Map)
SortedKeys.push_back(VtoBB.first);
stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
assert(RHSC && "Not a constant integer in return value?");
assert(LHSC && "Not a constant integer in return value?");
return LHSC->getLimitedValue() < RHSC->getLimitedValue();
});
}
Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
Value *V) {
Optional<unsigned> GVN = Candidate->getGVN(V);
assert(GVN.hasValue() && "No GVN for incoming value");
Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum);
Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
return FoundValueOpt.getValueOr(nullptr);
}
/// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
/// in \p Included to branch to BasicBlock \p Replace if they currently branch
/// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
/// when PHINodes are included in outlined regions.
///
/// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
/// checked.
/// \param Find - The successor block to be replaced.
/// \param Replace - The new succesor block to branch to.
/// \param Included - The set of blocks about to be outlined.
static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
BasicBlock *Replace,
DenseSet<BasicBlock *> &Included) {
for (PHINode &PN : PHIBlock->phis()) {
for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
++Idx) {
// Check if the incoming block is included in the set of blocks being
// outlined.
BasicBlock *Incoming = PN.getIncomingBlock(Idx);
if (!Included.contains(Incoming))
continue;
BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
assert(BI && "Not a branch instruction?");
// Look over the branching instructions into this block to see if we
// used to branch to Find in this outlined block.
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
Succ++) {
// If we have found the block to replace, we do so here.
if (BI->getSuccessor(Succ) != Find)
continue;
BI->setSuccessor(Succ, Replace);
}
}
}
}
void OutlinableRegion::splitCandidate() {
assert(!CandidateSplit && "Candidate already split!");
Instruction *BackInst = Candidate->backInstruction();
Instruction *EndInst = nullptr;
// Check whether the last instruction is a terminator, if it is, we do
// not split on the following instruction. We leave the block as it is. We
// also check that this is not the last instruction in the Module, otherwise
// the check for whether the current following instruction matches the
// previously recorded instruction will be incorrect.
if (!BackInst->isTerminator() ||
BackInst->getParent() != &BackInst->getFunction()->back()) {
EndInst = Candidate->end()->Inst;
assert(EndInst && "Expected an end instruction?");
}
// We check if the current instruction following the last instruction in the
// region is the same as the recorded instruction following the last
// instruction. If they do not match, there could be problems in rewriting
// the program after outlining, so we ignore it.
if (!BackInst->isTerminator() &&
EndInst != BackInst->getNextNonDebugInstruction())
return;
Instruction *StartInst = (*Candidate->begin()).Inst;
assert(StartInst && "Expected a start instruction?");
StartBB = StartInst->getParent();
PrevBB = StartBB;
DenseSet<BasicBlock *> BBSet;
Candidate->getBasicBlocks(BBSet);
// We iterate over the instructions in the region, if we find a PHINode, we
// check if there are predecessors outside of the region, if there are,
// we ignore this region since we are unable to handle the severing of the
// phi node right now.
BasicBlock::iterator It = StartInst->getIterator();
while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
unsigned NumPredsOutsideRegion = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!BBSet.contains(PN->getIncomingBlock(i)))
++NumPredsOutsideRegion;
if (NumPredsOutsideRegion > 1)
return;
It++;
}
// If the region starts with a PHINode, but is not the initial instruction of
// the BasicBlock, we ignore this region for now.
if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
return;
// If the region ends with a PHINode, but does not contain all of the phi node
// instructions of the region, we ignore it for now.
if (isa<PHINode>(BackInst)) {
EndBB = BackInst->getParent();
if (BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
return;
}
// The basic block gets split like so:
// block: block:
// inst1 inst1
// inst2 inst2
// region1 br block_to_outline
// region2 block_to_outline:
// region3 -> region1
// region4 region2
// inst3 region3
// inst4 region4
// br block_after_outline
// block_after_outline:
// inst3
// inst4
std::string OriginalName = PrevBB->getName().str();
StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
CandidateSplit = true;
if (!BackInst->isTerminator()) {
EndBB = EndInst->getParent();
FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
} else {
EndBB = BackInst->getParent();
EndsInBranch = true;
FollowBB = nullptr;
}
// Refind the basic block set.
BBSet.clear();
Candidate->getBasicBlocks(BBSet);
// For the phi nodes in the new starting basic block of the region, we
// reassign the targets of the basic blocks branching instructions.
replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
if (FollowBB)
replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
}
void OutlinableRegion::reattachCandidate() {
assert(CandidateSplit && "Candidate is not split!");
// The basic block gets reattached like so:
// block: block:
// inst1 inst1
// inst2 inst2
// br block_to_outline region1
// block_to_outline: -> region2
// region1 region3
// region2 region4
// region3 inst3
// region4 inst4
// br block_after_outline
// block_after_outline:
// inst3
// inst4
assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
PrevBB->getTerminator()->eraseFromParent();
// If we reattaching after outlining, we iterate over the phi nodes to
// the initial block, and reassign the branch instructions of the incoming
// blocks to the block we are remerging into.
if (!ExtractedFunction) {
DenseSet<BasicBlock *> BBSet;
Candidate->getBasicBlocks(BBSet);
replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
if (!EndsInBranch)
replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
}
moveBBContents(*StartBB, *PrevBB);
BasicBlock *PlacementBB = PrevBB;
if (StartBB != EndBB)
PlacementBB = EndBB;
if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
PlacementBB->getTerminator()->eraseFromParent();
moveBBContents(*FollowBB, *PlacementBB);
PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
FollowBB->eraseFromParent();
}
PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
StartBB->eraseFromParent();
// Make sure to save changes back to the StartBB.
StartBB = PrevBB;
EndBB = nullptr;
PrevBB = nullptr;
FollowBB = nullptr;
CandidateSplit = false;
}
/// Find whether \p V matches the Constants previously found for the \p GVN.
///
/// \param V - The value to check for consistency.
/// \param GVN - The global value number assigned to \p V.
/// \param GVNToConstant - The mapping of global value number to Constants.
/// \returns true if the Value matches the Constant mapped to by V and false if
/// it \p V is a Constant but does not match.
/// \returns None if \p V is not a Constant.
static Optional<bool>
constantMatches(Value *V, unsigned GVN,
DenseMap<unsigned, Constant *> &GVNToConstant) {
// See if we have a constants
Constant *CST = dyn_cast<Constant>(V);
if (!CST)
return None;
// Holds a mapping from a global value number to a Constant.
DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
bool Inserted;
// If we have a constant, try to make a new entry in the GVNToConstant.
std::tie(GVNToConstantIt, Inserted) =
GVNToConstant.insert(std::make_pair(GVN, CST));
// If it was found and is not equal, it is not the same. We do not
// handle this case yet, and exit early.
if (Inserted || (GVNToConstantIt->second == CST))
return true;
return false;
}
InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
InstructionCost Benefit = 0;
// Estimate the benefit of outlining a specific sections of the program. We
// delegate mostly this task to the TargetTransformInfo so that if the target
// has specific changes, we can have a more accurate estimate.
// However, getInstructionCost delegates the code size calculation for
// arithmetic instructions to getArithmeticInstrCost in
// include/Analysis/TargetTransformImpl.h, where it always estimates that the
// code size for a division and remainder instruction to be equal to 4, and
// everything else to 1. This is not an accurate representation of the
// division instruction for targets that have a native division instruction.
// To be overly conservative, we only add 1 to the number of instructions for
// each division instruction.
for (IRInstructionData &ID : *Candidate) {
Instruction *I = ID.Inst;
switch (I->getOpcode()) {
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::UDiv:
case Instruction::URem:
Benefit += 1;
break;
default:
Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
break;
}
}
return Benefit;
}
/// Check the \p OutputMappings structure for value \p Input, if it exists
/// it has been used as an output for outlining, and has been renamed, and we
/// return the new value, otherwise, we return the same value.
///
/// \param OutputMappings [in] - The mapping of values to their renamed value
/// after being used as an output for an outlined region.
/// \param Input [in] - The value to find the remapped value of, if it exists.
/// \return The remapped value if it has been renamed, and the same value if has
/// not.
static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
Value *Input) {
DenseMap<Value *, Value *>::const_iterator OutputMapping =
OutputMappings.find(Input);
if (OutputMapping != OutputMappings.end())
return OutputMapping->second;
return Input;
}
/// Find whether \p Region matches the global value numbering to Constant
/// mapping found so far.
///
/// \param Region - The OutlinableRegion we are checking for constants
/// \param GVNToConstant - The mapping of global value number to Constants.
/// \param NotSame - The set of global value numbers that do not have the same
/// constant in each region.
/// \returns true if all Constants are the same in every use of a Constant in \p
/// Region and false if not
static bool
collectRegionsConstants(OutlinableRegion &Region,
DenseMap<unsigned, Constant *> &GVNToConstant,
DenseSet<unsigned> &NotSame) {
bool ConstantsTheSame = true;
IRSimilarityCandidate &C = *Region.Candidate;
for (IRInstructionData &ID : C) {
// Iterate over the operands in an instruction. If the global value number,
// assigned by the IRSimilarityCandidate, has been seen before, we check if
// the the number has been found to be not the same value in each instance.
for (Value *V : ID.OperVals) {
Optional<unsigned> GVNOpt = C.getGVN(V);
assert(GVNOpt.hasValue() && "Expected a GVN for operand?");
unsigned GVN = GVNOpt.getValue();
// Check if this global value has been found to not be the same already.
if (NotSame.contains(GVN)) {
if (isa<Constant>(V))
ConstantsTheSame = false;
continue;
}
// If it has been the same so far, we check the value for if the
// associated Constant value match the previous instances of the same
// global value number. If the global value does not map to a Constant,
// it is considered to not be the same value.
Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
if (ConstantMatches.hasValue()) {
if (ConstantMatches.getValue())
continue;
else
ConstantsTheSame = false;
}
// While this value is a register, it might not have been previously,
// make sure we don't already have a constant mapped to this global value
// number.
if (GVNToConstant.find(GVN) != GVNToConstant.end())
ConstantsTheSame = false;
NotSame.insert(GVN);
}
}
return ConstantsTheSame;
}
void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
DenseMap<unsigned, Constant *> GVNToConstant;
for (OutlinableRegion *Region : Regions)
collectRegionsConstants(*Region, GVNToConstant, NotSame);
}
void OutlinableGroup::collectGVNStoreSets(Module &M) {
for (OutlinableRegion *OS : Regions)
OutputGVNCombinations.insert(OS->GVNStores);
// We are adding an extracted argument to decide between which output path
// to use in the basic block. It is used in a switch statement and only
// needs to be an integer.
if (OutputGVNCombinations.size() > 1)
ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
}
/// Get the subprogram if it exists for one of the outlined regions.
///
/// \param [in] Group - The set of regions to find a subprogram for.
/// \returns the subprogram if it exists, or nullptr.
static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
for (OutlinableRegion *OS : Group.Regions)
if (Function *F = OS->Call->getFunction())
if (DISubprogram *SP = F->getSubprogram())
return SP;
return nullptr;
}
Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
unsigned FunctionNameSuffix) {
assert(!Group.OutlinedFunction && "Function is already defined!");
Type *RetTy = Type::getVoidTy(M.getContext());
// All extracted functions _should_ have the same return type at this point
// since the similarity identifier ensures that all branches outside of the
// region occur in the same place.
// NOTE: Should we ever move to the model that uses a switch at every point
// needed, meaning that we could branch within the region or out, it is
// possible that we will need to switch to using the most general case all of
// the time.
for (OutlinableRegion *R : Group.Regions) {
Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
(RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
RetTy = ExtractedFuncType;
}
Group.OutlinedFunctionType = FunctionType::get(
RetTy, Group.ArgumentTypes, false);
// These functions will only be called from within the same module, so
// we can set an internal linkage.
Group.OutlinedFunction = Function::Create(
Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
"outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
// Transfer the swifterr attribute to the correct function parameter.
if (Group.SwiftErrorArgument.hasValue())
Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(),
Attribute::SwiftError);
Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
// If there's a DISubprogram associated with this outlined function, then
// emit debug info for the outlined function.
if (DISubprogram *SP = getSubprogramOrNull(Group)) {
Function *F = Group.OutlinedFunction;
// We have a DISubprogram. Get its DICompileUnit.
DICompileUnit *CU = SP->getUnit();
DIBuilder DB(M, true, CU);
DIFile *Unit = SP->getFile();
Mangler Mg;
// Get the mangled name of the function for the linkage name.
std::string Dummy;
llvm::raw_string_ostream MangledNameStream(Dummy);
Mg.getNameWithPrefix(MangledNameStream, F, false);
DISubprogram *OutlinedSP = DB.createFunction(
Unit /* Context */, F->getName(), MangledNameStream.str(),
Unit /* File */,
0 /* Line 0 is reserved for compiler-generated code. */,
DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
0, /* Line 0 is reserved for compiler-generated code. */
DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
/* Outlined code is optimized code by definition. */
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
// Don't add any new variables to the subprogram.
DB.finalizeSubprogram(OutlinedSP);
// Attach subprogram to the function.
F->setSubprogram(OutlinedSP);
// We're done with the DIBuilder.
DB.finalize();
}
return Group.OutlinedFunction;
}
/// Move each BasicBlock in \p Old to \p New.
///
/// \param [in] Old - The function to move the basic blocks from.
/// \param [in] New - The function to move the basic blocks to.
/// \param [out] NewEnds - The return blocks of the new overall function.
static void moveFunctionData(Function &Old, Function &New,
DenseMap<Value *, BasicBlock *> &NewEnds) {
for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
CurrBB.removeFromParent();
CurrBB.insertInto(&New);
Instruction *I = CurrBB.getTerminator();
// For each block we find a return instruction is, it is a potential exit
// path for the function. We keep track of each block based on the return
// value here.
if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
std::vector<Instruction *> DebugInsts;
for (Instruction &Val : CurrBB) {
// We must handle the scoping of called functions differently than
// other outlined instructions.
if (!isa<CallInst>(&Val)) {
// Remove the debug information for outlined functions.
Val.setDebugLoc(DebugLoc());
continue;
}
// From this point we are only handling call instructions.
CallInst *CI = cast<CallInst>(&Val);
// We add any debug statements here, to be removed after. Since the
// instructions originate from many different locations in the program,
// it will cause incorrect reporting from a debugger if we keep the
// same debug instructions.
if (isa<DbgInfoIntrinsic>(CI)) {
DebugInsts.push_back(&Val);
continue;
}
// Edit the scope of called functions inside of outlined functions.
if (DISubprogram *SP = New.getSubprogram()) {
DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
Val.setDebugLoc(DI);
}
}
for (Instruction *I : DebugInsts)
I->eraseFromParent();
}
assert(NewEnds.size() > 0 && "No return instruction for new function?");
}
/// Find the the constants that will need to be lifted into arguments
/// as they are not the same in each instance of the region.
///
/// \param [in] C - The IRSimilarityCandidate containing the region we are
/// analyzing.
/// \param [in] NotSame - The set of global value numbers that do not have a
/// single Constant across all OutlinableRegions similar to \p C.
/// \param [out] Inputs - The list containing the global value numbers of the
/// arguments needed for the region of code.
static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
std::vector<unsigned> &Inputs) {
DenseSet<unsigned> Seen;
// Iterate over the instructions, and find what constants will need to be
// extracted into arguments.
for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
IDIt != EndIDIt; IDIt++) {
for (Value *V : (*IDIt).OperVals) {
// Since these are stored before any outlining, they will be in the
// global value numbering.
unsigned GVN = C.getGVN(V).getValue();
if (isa<Constant>(V))
if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
Inputs.push_back(GVN);
Seen.insert(GVN);
}
}
}
}
/// Find the GVN for the inputs that have been found by the CodeExtractor.
///
/// \param [in] C - The IRSimilarityCandidate containing the region we are
/// analyzing.
/// \param [in] CurrentInputs - The set of inputs found by the
/// CodeExtractor.
/// \param [in] OutputMappings - The mapping of values that have been replaced
/// by a new output value.
/// \param [out] EndInputNumbers - The global value numbers for the extracted
/// arguments.
static void mapInputsToGVNs(IRSimilarityCandidate &C,
SetVector<Value *> &CurrentInputs,
const DenseMap<Value *, Value *> &OutputMappings,
std::vector<unsigned> &EndInputNumbers) {
// Get the Global Value Number for each input. We check if the Value has been
// replaced by a different value at output, and use the original value before
// replacement.
for (Value *Input : CurrentInputs) {
assert(Input && "Have a nullptr as an input");
if (OutputMappings.find(Input) != OutputMappings.end())
Input = OutputMappings.find(Input)->second;
assert(C.getGVN(Input).hasValue() &&
"Could not find a numbering for the given input");
EndInputNumbers.push_back(C.getGVN(Input).getValue());
}
}
/// Find the original value for the \p ArgInput values if any one of them was
/// replaced during a previous extraction.
///
/// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
/// \param [in] OutputMappings - The mapping of values that have been replaced
/// by a new output value.
/// \param [out] RemappedArgInputs - The remapped values according to
/// \p OutputMappings that will be extracted.
static void
remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
const DenseMap<Value *, Value *> &OutputMappings,
SetVector<Value *> &RemappedArgInputs) {
// Get the global value number for each input that will be extracted as an
// argument by the code extractor, remapping if needed for reloaded values.
for (Value *Input : ArgInputs) {
if (OutputMappings.find(Input) != OutputMappings.end())
Input = OutputMappings.find(Input)->second;
RemappedArgInputs.insert(Input);
}
}
/// Find the input GVNs and the output values for a region of Instructions.
/// Using the code extractor, we collect the inputs to the extracted function.
///
/// The \p Region can be identified as needing to be ignored in this function.
/// It should be checked whether it should be ignored after a call to this
/// function.
///
/// \param [in,out] Region - The region of code to be analyzed.
/// \param [out] InputGVNs - The global value numbers for the extracted
/// arguments.
/// \param [in] NotSame - The global value numbers in the region that do not
/// have the same constant value in the regions structurally similar to
/// \p Region.
/// \param [in] OutputMappings - The mapping of values that have been replaced
/// by a new output value after extraction.
/// \param [out] ArgInputs - The values of the inputs to the extracted function.
/// \param [out] Outputs - The set of values extracted by the CodeExtractor
/// as outputs.
static void getCodeExtractorArguments(
OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
IRSimilarityCandidate &C = *Region.Candidate;
// OverallInputs are the inputs to the region found by the CodeExtractor,
// SinkCands and HoistCands are used by the CodeExtractor to find sunken
// allocas of values whose lifetimes are contained completely within the
// outlined region. PremappedInputs are the arguments found by the
// CodeExtractor, removing conditions such as sunken allocas, but that
// may need to be remapped due to the extracted output values replacing
// the original values. We use DummyOutputs for this first run of finding
// inputs and outputs since the outputs could change during findAllocas,
// the correct set of extracted outputs will be in the final Outputs ValueSet.
SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
DummyOutputs;
// Use the code extractor to get the inputs and outputs, without sunken
// allocas or removing llvm.assumes.
CodeExtractor *CE = Region.CE;
CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
assert(Region.StartBB && "Region must have a start BasicBlock!");
Function *OrigF = Region.StartBB->getParent();
CodeExtractorAnalysisCache CEAC(*OrigF);
BasicBlock *Dummy = nullptr;
// The region may be ineligible due to VarArgs in the parent function. In this
// case we ignore the region.
if (!CE->isEligible()) {
Region.IgnoreRegion = true;
return;
}
// Find if any values are going to be sunk into the function when extracted
CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
// TODO: Support regions with sunken allocas: values whose lifetimes are
// contained completely within the outlined region. These are not guaranteed
// to be the same in every region, so we must elevate them all to arguments
// when they appear. If these values are not equal, it means there is some
// Input in OverallInputs that was removed for ArgInputs.
if (OverallInputs.size() != PremappedInputs.size()) {
Region.IgnoreRegion = true;
return;
}
findConstants(C, NotSame, InputGVNs);
mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
ArgInputs);
// Sort the GVNs, since we now have constants included in the \ref InputGVNs
// we need to make sure they are in a deterministic order.
stable_sort(InputGVNs);
}
/// Look over the inputs and map each input argument to an argument in the
/// overall function for the OutlinableRegions. This creates a way to replace
/// the arguments of the extracted function with the arguments of the new
/// overall function.
///
/// \param [in,out] Region - The region of code to be analyzed.
/// \param [in] InputGVNs - The global value numbering of the input values
/// collected.
/// \param [in] ArgInputs - The values of the arguments to the extracted
/// function.
static void
findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
std::vector<unsigned> &InputGVNs,
SetVector<Value *> &ArgInputs) {
IRSimilarityCandidate &C = *Region.Candidate;
OutlinableGroup &Group = *Region.Parent;
// This counts the argument number in the overall function.
unsigned TypeIndex = 0;
// This counts the argument number in the extracted function.
unsigned OriginalIndex = 0;
// Find the mapping of the extracted arguments to the arguments for the
// overall function. Since there may be extra arguments in the overall
// function to account for the extracted constants, we have two different
// counters as we find extracted arguments, and as we come across overall
// arguments.
// Additionally, in our first pass, for the first extracted function,
// we find argument locations for the canonical value numbering. This
// numbering overrides any discovered location for the extracted code.
for (unsigned InputVal : InputGVNs) {
Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?");
unsigned CanonicalNumber = CanonicalNumberOpt.getValue();
Optional<Value *> InputOpt = C.fromGVN(InputVal);
assert(InputOpt.hasValue() && "Global value number not found?");
Value *Input = InputOpt.getValue();
DenseMap<unsigned, unsigned>::iterator AggArgIt =
Group.CanonicalNumberToAggArg.find(CanonicalNumber);
if (!Group.InputTypesSet) {
Group.ArgumentTypes.push_back(Input->getType());
// If the input value has a swifterr attribute, make sure to mark the
// argument in the overall function.
if (Input->isSwiftError()) {
assert(
!Group.SwiftErrorArgument.hasValue() &&
"Argument already marked with swifterr for this OutlinableGroup!");
Group.SwiftErrorArgument = TypeIndex;
}
}
// Check if we have a constant. If we do add it to the overall argument
// number to Constant map for the region, and continue to the next input.
if (Constant *CST = dyn_cast<Constant>(Input)) {
if (AggArgIt != Group.CanonicalNumberToAggArg.end())
Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
else {
Group.CanonicalNumberToAggArg.insert(
std::make_pair(CanonicalNumber, TypeIndex));
Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
}
TypeIndex++;
continue;
}
// It is not a constant, we create the mapping from extracted argument list
// to the overall argument list, using the canonical location, if it exists.
assert(ArgInputs.count(Input) && "Input cannot be found!");
if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
if (OriginalIndex != AggArgIt->second)
Region.ChangedArgOrder = true;
Region.ExtractedArgToAgg.insert(
std::make_pair(OriginalIndex, AggArgIt->second));
Region.AggArgToExtracted.insert(
std::make_pair(AggArgIt->second, OriginalIndex));
} else {
Group.CanonicalNumberToAggArg.insert(
std::make_pair(CanonicalNumber, TypeIndex));
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
}
OriginalIndex++;
TypeIndex++;
}
// If the function type definitions for the OutlinableGroup holding the region
// have not been set, set the length of the inputs here. We should have the
// same inputs for all of the different regions contained in the
// OutlinableGroup since they are all structurally similar to one another.
if (!Group.InputTypesSet) {
Group.NumAggregateInputs = TypeIndex;
Group.InputTypesSet = true;
}
Region.NumExtractedInputs = OriginalIndex;
}
/// Check if the \p V has any uses outside of the region other than \p PN.
///
/// \param V [in] - The value to check.
/// \param PHILoc [in] - The location in the PHINode of \p V.
/// \param PN [in] - The PHINode using \p V.
/// \param Exits [in] - The potential blocks we exit to from the outlined
/// region.
/// \param BlocksInRegion [in] - The basic blocks contained in the region.
/// \returns true if \p V has any use soutside its region other than \p PN.
static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
SmallPtrSet<BasicBlock *, 1> &Exits,
DenseSet<BasicBlock *> &BlocksInRegion) {
// We check to see if the value is used by the PHINode from some other
// predecessor not included in the region. If it is, we make sure
// to keep it as an output.
SmallVector<unsigned, 2> IncomingNumbers(PN.getNumIncomingValues());
std::iota(IncomingNumbers.begin(), IncomingNumbers.end(), 0);
if (any_of(IncomingNumbers, [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
!BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
}))
return true;
// Check if the value is used by any other instructions outside the region.
return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
Instruction *I = dyn_cast<Instruction>(U);
if (!I)
return false;
// If the use of the item is inside the region, we skip it. Uses
// inside the region give us useful information about how the item could be
// used as an output.
BasicBlock *Parent = I->getParent();
if (BlocksInRegion.contains(Parent))
return false;
// If it's not a PHINode then we definitely know the use matters. This
// output value will not completely combined with another item in a PHINode
// as it is directly reference by another non-phi instruction
if (!isa<PHINode>(I))
return true;
// If we have a PHINode outside one of the exit locations, then it
// can be considered an outside use as well. If there is a PHINode
// contained in the Exit where this values use matters, it will be
// caught when we analyze that PHINode.
if (!Exits.contains(Parent))
return true;
return false;
});
}
/// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
/// considered outputs. A PHINodes is an output when more than one incoming
/// value has been marked by the CodeExtractor as an output.
///
/// \param CurrentExitFromRegion [in] - The block to analyze.
/// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
/// region.
/// \param RegionBlocks [in] - The basic blocks in the region.
/// \param Outputs [in, out] - The existing outputs for the region, we may add
/// PHINodes to this as we find that they replace output values.
/// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
/// totally replaced by a PHINode.
/// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
/// in PHINodes, but have other uses, and should still be considered outputs.
static void analyzeExitPHIsForOutputUses(
BasicBlock *CurrentExitFromRegion,
SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
DenseSet<Value *> &OutputsReplacedByPHINode,
DenseSet<Value *> &OutputsWithNonPhiUses) {
for (PHINode &PN : CurrentExitFromRegion->phis()) {
// Find all incoming values from the outlining region.
SmallVector<unsigned, 2> IncomingVals;
for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
if (RegionBlocks.contains(PN.getIncomingBlock(I)))
IncomingVals.push_back(I);
// Do not process PHI if there are no predecessors from region.
unsigned NumIncomingVals = IncomingVals.size();
if (NumIncomingVals == 0)
continue;
// If there is one predecessor, we mark it as a value that needs to be kept
// as an output.
if (NumIncomingVals == 1) {
Value *V = PN.getIncomingValue(*IncomingVals.begin());
OutputsWithNonPhiUses.insert(V);
OutputsReplacedByPHINode.erase(V);
continue;
}
// This PHINode will be used as an output value, so we add it to our list.
Outputs.insert(&PN);
// Not all of the incoming values should be ignored as other inputs and
// outputs may have uses in outlined region. If they have other uses
// outside of the single PHINode we should not skip over it.
for (unsigned Idx : IncomingVals) {
Value *V = PN.getIncomingValue(Idx);
if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
OutputsWithNonPhiUses.insert(V);
OutputsReplacedByPHINode.erase(V);
continue;
}
if (!OutputsWithNonPhiUses.contains(V))
OutputsReplacedByPHINode.insert(V);
}
}
}
// Represents the type for the unsigned number denoting the output number for
// phi node, along with the canonical number for the exit block.
using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
// The list of canonical numbers for the incoming values to a PHINode.
using CanonList = SmallVector<unsigned, 2>;
// The pair type representing the set of canonical values being combined in the
// PHINode, along with the location data for the PHINode.
using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
/// Encode \p PND as an integer for easy lookup based on the argument location,
/// the parent BasicBlock canonical numbering, and the canonical numbering of
/// the values stored in the PHINode.
///
/// \param PND - The data to hash.
/// \returns The hash code of \p PND.
static hash_code encodePHINodeData(PHINodeData &PND) {
return llvm::hash_combine(
llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
}
/// Create a special GVN for PHINodes that will be used outside of
/// the region. We create a hash code based on the Canonical number of the
/// parent BasicBlock, the canonical numbering of the values stored in the
/// PHINode and the aggregate argument location. This is used to find whether
/// this PHINode type has been given a canonical numbering already. If not, we
/// assign it a value and store it for later use. The value is returned to
/// identify different output schemes for the set of regions.
///
/// \param Region - The region that \p PN is an output for.
/// \param PN - The PHINode we are analyzing.
/// \param AggArgIdx - The argument \p PN will be stored into.
/// \returns An optional holding the assigned canonical number, or None if
/// there is some attribute of the PHINode blocking it from being used.
static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
PHINode *PN, unsigned AggArgIdx) {
OutlinableGroup &Group = *Region.Parent;
IRSimilarityCandidate &Cand = *Region.Candidate;
BasicBlock *PHIBB = PN->getParent();
CanonList PHIGVNs;
for (Value *Incoming : PN->incoming_values()) {
// If we cannot find a GVN, this means that the input to the PHINode is
// not included in the region we are trying to analyze, meaning, that if
// it was outlined, we would be adding an extra input. We ignore this
// case for now, and so ignore the region.
Optional<unsigned> OGVN = Cand.getGVN(Incoming);
if (!OGVN.hasValue()) {
Region.IgnoreRegion = true;
return None;
}
// Collect the canonical numbers of the values in the PHINode.
unsigned GVN = OGVN.getValue();
OGVN = Cand.getCanonicalNum(GVN);
assert(OGVN.hasValue() && "No GVN found for incoming value?");
PHIGVNs.push_back(*OGVN);
}
// Now that we have the GVNs for the incoming values, we are going to combine
// them with the GVN of the incoming bock, and the output location of the
// PHINode to generate a hash value representing this instance of the PHINode.
DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
Optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!");
BBGVN = Cand.getCanonicalNum(BBGVN.getValue());
assert(BBGVN.hasValue() &&
"Could not find canonical number for the incoming block!");
// Create a pair of the exit block canonical value, and the aggregate
// argument location, connected to the canonical numbers stored in the
// PHINode.
PHINodeData TemporaryPair =
std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs);
hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
// Look for and create a new entry in our connection between canonical
// numbers for PHINodes, and the set of objects we just created.
GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
bool Inserted = false;
std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
}
return GVNToPHIIt->second;
}
/// Create a mapping of the output arguments for the \p Region to the output
/// arguments of the overall outlined function.
///
/// \param [in,out] Region - The region of code to be analyzed.
/// \param [in] Outputs - The values found by the code extractor.
static void
findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
SetVector<Value *> &Outputs) {
OutlinableGroup &Group = *Region.Parent;
IRSimilarityCandidate &C = *Region.Candidate;
SmallVector<BasicBlock *> BE;
DenseSet<BasicBlock *> BlocksInRegion;
C.getBasicBlocks(BlocksInRegion, BE);
// Find the exits to the region.
SmallPtrSet<BasicBlock *, 1> Exits;
for (BasicBlock *Block : BE)
for (BasicBlock *Succ : successors(Block))
if (!BlocksInRegion.contains(Succ))
Exits.insert(Succ);
// After determining which blocks exit to PHINodes, we add these PHINodes to
// the set of outputs to be processed. We also check the incoming values of
// the PHINodes for whether they should no longer be considered outputs.
DenseSet<Value *> OutputsReplacedByPHINode;
DenseSet<Value *> OutputsWithNonPhiUses;
for (BasicBlock *ExitBB : Exits)
analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
OutputsReplacedByPHINode,
OutputsWithNonPhiUses);
// This counts the argument number in the extracted function.
unsigned OriginalIndex = Region.NumExtractedInputs;
// This counts the argument number in the overall function.
unsigned TypeIndex = Group.NumAggregateInputs;
bool TypeFound;
DenseSet<unsigned> AggArgsUsed;
// Iterate over the output types and identify if there is an aggregate pointer
// type whose base type matches the current output type. If there is, we mark
// that we will use this output register for this value. If not we add another
// type to the overall argument type list. We also store the GVNs used for
// stores to identify which values will need to be moved into an special
// block that holds the stores to the output registers.
for (Value *Output : Outputs) {
TypeFound = false;
// We can do this since it is a result value, and will have a number
// that is necessarily the same. BUT if in the future, the instructions
// do not have to be in same order, but are functionally the same, we will
// have to use a different scheme, as one-to-one correspondence is not
// guaranteed.
unsigned ArgumentSize = Group.ArgumentTypes.size();
// If the output is combined in a PHINode, we make sure to skip over it.
if (OutputsReplacedByPHINode.contains(Output))
continue;
unsigned AggArgIdx = 0;
for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
continue;
if (AggArgsUsed.contains(Jdx))
continue;
TypeFound = true;
AggArgsUsed.insert(Jdx);
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
AggArgIdx = Jdx;
break;
}
// We were unable to find an unused type in the output type set that matches
// the output, so we add a pointer type to the argument types of the overall
// function to handle this output and create a mapping to it.
if (!TypeFound) {
Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
// Mark the new pointer type as the last value in the aggregate argument
// list.
unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
AggArgsUsed.insert(ArgTypeIdx);
Region.ExtractedArgToAgg.insert(
std::make_pair(OriginalIndex, ArgTypeIdx));
Region.AggArgToExtracted.insert(
std::make_pair(ArgTypeIdx, OriginalIndex));
AggArgIdx = ArgTypeIdx;
}
// TODO: Adapt to the extra input from the PHINode.
PHINode *PN = dyn_cast<PHINode>(Output);
Optional<unsigned> GVN;
if (PN && !BlocksInRegion.contains(PN->getParent())) {
// Values outside the region can be combined into PHINode when we
// have multiple exits. We collect both of these into a list to identify
// which values are being used in the PHINode. Each list identifies a
// different PHINode, and a different output. We store the PHINode as it's
// own canonical value. These canonical values are also dependent on the
// output argument it is saved to.
// If two PHINodes have the same canonical values, but different aggregate
// argument locations, then they will have distinct Canonical Values.
GVN = getGVNForPHINode(Region, PN, AggArgIdx);
if (!GVN.hasValue())
return;
} else {
// If we do not have a PHINode we use the global value numbering for the
// output value, to find the canonical number to add to the set of stored
// values.
GVN = C.getGVN(Output);
GVN = C.getCanonicalNum(*GVN);
}
// Each region has a potentially unique set of outputs. We save which
// values are output in a list of canonical values so we can differentiate
// among the different store schemes.
Region.GVNStores.push_back(*GVN);
OriginalIndex++;
TypeIndex++;
}
// We sort the stored values to make sure that we are not affected by analysis
// order when determining what combination of items were stored.
stable_sort(Region.GVNStores);
}
void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
DenseSet<unsigned> &NotSame) {
std::vector<unsigned> Inputs;
SetVector<Value *> ArgInputs, Outputs;
getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
Outputs);
if (Region.IgnoreRegion)
return;
// Map the inputs found by the CodeExtractor to the arguments found for
// the overall function.
findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
// Map the outputs found by the CodeExtractor to the arguments found for
// the overall function.
findExtractedOutputToOverallOutputMapping(Region, Outputs);
}
/// Replace the extracted function in the Region with a call to the overall
/// function constructed from the deduplicated similar regions, replacing and
/// remapping the values passed to the extracted function as arguments to the
/// new arguments of the overall function.
///
/// \param [in] M - The module to outline from.
/// \param [in] Region - The regions of extracted code to be replaced with a new
/// function.
/// \returns a call instruction with the replaced function.
CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
std::vector<Value *> NewCallArgs;
DenseMap<unsigned, unsigned>::iterator ArgPair;
OutlinableGroup &Group = *Region.Parent;
CallInst *Call = Region.Call;
assert(Call && "Call to replace is nullptr?");
Function *AggFunc = Group.OutlinedFunction;
assert(AggFunc && "Function to replace with is nullptr?");
// If the arguments are the same size, there are not values that need to be
// made into an argument, the argument ordering has not been change, or
// different output registers to handle. We can simply replace the called
// function in this case.
if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
<< *AggFunc << " with same number of arguments\n");
Call->setCalledFunction(AggFunc);
return Call;
}
// We have a different number of arguments than the new function, so
// we need to use our previously mappings off extracted argument to overall
// function argument, and constants to overall function argument to create the
// new argument list.
for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
if (AggArgIdx == AggFunc->arg_size() - 1 &&
Group.OutputGVNCombinations.size() > 1) {
// If we are on the last argument, and we need to differentiate between
// output blocks, add an integer to the argument list to determine
// what block to take
LLVM_DEBUG(dbgs() << "Set switch block argument to "
<< Region.OutputBlockNum << "\n");
NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
Region.OutputBlockNum));
continue;
}
ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
if (ArgPair != Region.AggArgToExtracted.end()) {
Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
// If we found the mapping from the extracted function to the overall
// function, we simply add it to the argument list. We use the same
// value, it just needs to honor the new order of arguments.
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
<< *ArgumentValue << "\n");
NewCallArgs.push_back(ArgumentValue);
continue;
}
// If it is a constant, we simply add it to the argument list as a value.
if (Region.AggArgToConstant.find(AggArgIdx) !=
Region.AggArgToConstant.end()) {
Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
<< *CST << "\n");
NewCallArgs.push_back(CST);
continue;
}
// Add a nullptr value if the argument is not found in the extracted
// function. If we cannot find a value, it means it is not in use
// for the region, so we should not pass anything to it.
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
NewCallArgs.push_back(ConstantPointerNull::get(
static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
}
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
<< *AggFunc << " with new set of arguments\n");
// Create the new call instruction and erase the old one.
Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
Call);
// It is possible that the call to the outlined function is either the first
// instruction is in the new block, the last instruction, or both. If either
// of these is the case, we need to make sure that we replace the instruction
// in the IRInstructionData struct with the new call.
CallInst *OldCall = Region.Call;
if (Region.NewFront->Inst == OldCall)
Region.NewFront->Inst = Call;
if (Region.NewBack->Inst == OldCall)
Region.NewBack->Inst = Call;
// Transfer any debug information.
Call->setDebugLoc(Region.Call->getDebugLoc());
// Since our output may determine which branch we go to, we make sure to
// propogate this new call value through the module.
OldCall->replaceAllUsesWith(Call);
// Remove the old instruction.
OldCall->eraseFromParent();
Region.Call = Call;
// Make sure that the argument in the new function has the SwiftError
// argument.
if (Group.SwiftErrorArgument.hasValue())
Call->addParamAttr(Group.SwiftErrorArgument.getValue(),
Attribute::SwiftError);
return Call;
}
/// Find or create a BasicBlock in the outlined function containing PhiBlocks
/// for \p RetVal.
///
/// \param Group - The OutlinableGroup containing the information about the
/// overall outlined function.
/// \param RetVal - The return value or exit option that we are currently
/// evaluating.
/// \returns The found or newly created BasicBlock to contain the needed
/// PHINodes to be used as outputs.
static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
ReturnBlockForRetVal;
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
"Could not find output value!");
BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
// Find if a PHIBlock exists for this return value already. If it is
// the first time we are analyzing this, we will not, so we record it.
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
if (PhiBlockForRetVal != Group.PHIBlocks.end())
return PhiBlockForRetVal->second;
// If we did not find a block, we create one, and insert it into the
// overall function and record it.
bool Inserted = false;
BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
ReturnBB->getParent());
std::tie(PhiBlockForRetVal, Inserted) =
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
// We find the predecessors of the return block in the newly created outlined
// function in order to point them to the new PHIBlock rather than the already
// existing return block.
SmallVector<BranchInst *, 2> BranchesToChange;
for (BasicBlock *Pred : predecessors(ReturnBB))
BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
// Now we mark the branch instructions found, and change the references of the
// return block to the newly created PHIBlock.
for (BranchInst *BI : BranchesToChange)
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
if (BI->getSuccessor(Succ) != ReturnBB)
continue;
BI->setSuccessor(Succ, PHIBlock);
}
BranchInst::Create(ReturnBB, PHIBlock);
return PhiBlockForRetVal->second;
}
/// For the function call now representing the \p Region, find the passed value
/// to that call that represents Argument \p A at the call location if the
/// call has already been replaced with a call to the overall, aggregate
/// function.
///
/// \param A - The Argument to get the passed value for.
/// \param Region - The extracted Region corresponding to the outlined function.
/// \returns The Value representing \p A at the call site.
static Value *
getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
const OutlinableRegion &Region) {
// If we don't need to adjust the argument number at all (since the call
// has already been replaced by a call to the overall outlined function)
// we can just get the specified argument.
return Region.Call->getArgOperand(A->getArgNo());
}
/// For the function call now representing the \p Region, find the passed value
/// to that call that represents Argument \p A at the call location if the
/// call has only been replaced by the call to the aggregate function.
///
/// \param A - The Argument to get the passed value for.
/// \param Region - The extracted Region corresponding to the outlined function.
/// \returns The Value representing \p A at the call site.
static Value *
getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
const OutlinableRegion &Region) {
unsigned ArgNum = A->getArgNo();
// If it is a constant, we can look at our mapping from when we created
// the outputs to figure out what the constant value is.
if (Region.AggArgToConstant.count(ArgNum))
return Region.AggArgToConstant.find(ArgNum)->second;
// If it is not a constant, and we are not looking at the overall function, we
// need to adjust which argument we are looking at.
ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
return Region.Call->getArgOperand(ArgNum);
}
/// Find the canonical numbering for the incoming Values into the PHINode \p PN.
///
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
/// \param Region [in] - The OutlinableRegion containing \p PN.
/// \param OutputMappings [in] - The mapping of output values from outlined
/// region to their original values.
/// \param CanonNums [out] - The canonical numbering for the incoming values to
/// \p PN.
/// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
/// of \p Region rather than the overall function's call.
static void
findCanonNumsForPHI(PHINode *PN, OutlinableRegion &Region,
const DenseMap<Value *, Value *> &OutputMappings,
DenseSet<unsigned> &CanonNums,
bool ReplacedWithOutlinedCall = true) {
// Iterate over the incoming values.
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
Value *IVal = PN->getIncomingValue(Idx);
// If we have an argument as incoming value, we need to grab the passed
// value from the call itself.
if (Argument *A = dyn_cast<Argument>(IVal)) {
if (ReplacedWithOutlinedCall)
IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
else
IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
}
// Get the original value if it has been replaced by an output value.
IVal = findOutputMapping(OutputMappings, IVal);
// Find and add the canonical number for the incoming value.
Optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
assert(GVN.hasValue() && "No GVN for incoming value");
Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
assert(CanonNum.hasValue() && "No Canonical Number for GVN");
CanonNums.insert(*CanonNum);
}
}
/// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
/// in order to condense the number of instructions added to the outlined
/// function.
///
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
/// \param Region [in] - The OutlinableRegion containing \p PN.
/// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
/// \p PN in.
/// \param OutputMappings [in] - The mapping of output values from outlined
/// region to their original values.
/// \return the newly found or created PHINode in \p OverallPhiBlock.
static PHINode*
findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
BasicBlock *OverallPhiBlock,
const DenseMap<Value *, Value *> &OutputMappings) {
OutlinableGroup &Group = *Region.Parent;
DenseSet<unsigned> PNCanonNums;
// We have to use the extracted function since we have merged this region into
// the overall function yet. We make sure to reassign the argument numbering
// since it is possible that the argument ordering is different between the
// functions.
findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
/* ReplacedWithOutlinedCall = */ false);
OutlinableRegion *FirstRegion = Group.Regions[0];
DenseSet<unsigned> CurrentCanonNums;
// Find the Canonical Numbering for each PHINode, if it matches, we replace
// the uses of the PHINode we are searching for, with the found PHINode.
for (PHINode &CurrPN : OverallPhiBlock->phis()) {
CurrentCanonNums.clear();
findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
/* ReplacedWithOutlinedCall = */ true);
if (all_of(PNCanonNums, [&CurrentCanonNums](unsigned CanonNum) {
return CurrentCanonNums.contains(CanonNum);
}))
return &CurrPN;
}
// If we've made it here, it means we weren't able to replace the PHINode, so
// we must insert it ourselves.
PHINode *NewPN = cast<PHINode>(PN.clone());
NewPN->insertBefore(&*OverallPhiBlock->begin());
for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
Idx++) {
Value *IncomingVal = NewPN->getIncomingValue(Idx);
BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
// Find corresponding basic block in the overall function for the incoming
// block.
Instruction *FirstNonPHI = IncomingBlock->getFirstNonPHI();
assert(FirstNonPHI && "Incoming block is empty?");
Value *CorrespondingVal =
Region.findCorrespondingValueIn(*FirstRegion, FirstNonPHI);
assert(CorrespondingVal && "Value is nullptr?");
BasicBlock *BlockToUse = cast<Instruction>(CorrespondingVal)->getParent();
NewPN->setIncomingBlock(Idx, BlockToUse);
// If we have an argument we make sure we replace using the argument from
// the correct function.
if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
NewPN->setIncomingValue(Idx, Val);
continue;
}
// Find the corresponding value in the overall function.
IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
assert(Val && "Value is nullptr?");
NewPN->setIncomingValue(Idx, Val);
}
return NewPN;
}
// Within an extracted function, replace the argument uses of the extracted
// region with the arguments of the function for an OutlinableGroup.
//
/// \param [in] Region - The region of extracted code to be changed.
/// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
/// region.
/// \param [in] FirstFunction - A flag to indicate whether we are using this
/// function to define the overall outlined function for all the regions, or
/// if we are operating on one of the following regions.
static void
replaceArgumentUses(OutlinableRegion &Region,
DenseMap<Value *, BasicBlock *> &OutputBBs,
const DenseMap<Value *, Value *> &OutputMappings,
bool FirstFunction = false) {
OutlinableGroup &Group = *Region.Parent;
assert(Region.ExtractedFunction && "Region has no extracted function?");
Function *DominatingFunction = Region.ExtractedFunction;
if (FirstFunction)
DominatingFunction = Group.OutlinedFunction;
DominatorTree DT(*DominatingFunction);
for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
ArgIdx++) {
assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
Region.ExtractedArgToAgg.end() &&
"No mapping from extracted to outlined?");
unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
// The argument is an input, so we can simply replace it with the overall
// argument value
if (ArgIdx < Region.NumExtractedInputs) {
LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
<< *Region.ExtractedFunction << " with " << *AggArg
<< " in function " << *Group.OutlinedFunction << "\n");
Arg->replaceAllUsesWith(AggArg);
continue;
}
// If we are replacing an output, we place the store value in its own
// block inside the overall function before replacing the use of the output
// in the function.
assert(Arg->hasOneUse() && "Output argument can only have one use");
User *InstAsUser = Arg->user_back();
assert(InstAsUser && "User is nullptr!");
Instruction *I = cast<Instruction>(InstAsUser);
BasicBlock *BB = I->getParent();
SmallVector<BasicBlock *, 4> Descendants;
DT.getDescendants(BB, Descendants);
bool EdgeAdded = false;
if (Descendants.size() == 0) {
EdgeAdded = true;
DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
DT.getDescendants(BB, Descendants);
}
// Iterate over the following blocks, looking for return instructions,
// if we find one, find the corresponding output block for the return value
// and move our store instruction there.
for (BasicBlock *DescendBB : Descendants) {
ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
if (!RI)
continue;
Value *RetVal = RI->getReturnValue();
auto VBBIt = OutputBBs.find(RetVal);
assert(VBBIt != OutputBBs.end() && "Could not find output value!");
// If this is storing a PHINode, we must make sure it is included in the
// overall function.
StoreInst *SI = cast<StoreInst>(I);
Value *ValueOperand = SI->getValueOperand();
StoreInst *NewI = cast<StoreInst>(I->clone());
NewI->setDebugLoc(DebugLoc());
BasicBlock *OutputBB = VBBIt->second;
OutputBB->getInstList().push_back(NewI);
LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
<< *OutputBB << "\n");
// If this is storing a PHINode, we must make sure it is included in the
// overall function.
if (!isa<PHINode>(ValueOperand) ||
Region.Candidate->getGVN(ValueOperand).hasValue()) {
if (FirstFunction)
continue;
Value *CorrVal =
Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
assert(CorrVal && "Value is nullptr?");
NewI->setOperand(0, CorrVal);
continue;
}
PHINode *PN = cast<PHINode>(SI->getValueOperand());
// If it has a value, it was not split by the code extractor, which
// is what we are looking for.
if (Region.Candidate->getGVN(PN).hasValue())
continue;
// We record the parent block for the PHINode in the Region so that
// we can exclude it from checks later on.
Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
// If this is the first function, we do not need to worry about mergiing
// this with any other block in the overall outlined function, so we can
// just continue.
if (FirstFunction) {
BasicBlock *PHIBlock = PN->getParent();
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
continue;
}
// We look for the aggregate block that contains the PHINodes leading into
// this exit path. If we can't find one, we create one.
BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
// For our PHINode, we find the combined canonical numbering, and
// attempt to find a matching PHINode in the overall PHIBlock. If we
// cannot, we copy the PHINode and move it into this new block.
PHINode *NewPN =
findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, OutputMappings);
NewI->setOperand(0, NewPN);
}
// If we added an edge for basic blocks without a predecessor, we remove it
// here.
if (EdgeAdded)
DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
I->eraseFromParent();
LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
<< *Region.ExtractedFunction << " with " << *AggArg
<< " in function " << *Group.OutlinedFunction << "\n");
Arg->replaceAllUsesWith(AggArg);
}
}
/// Within an extracted function, replace the constants that need to be lifted
/// into arguments with the actual argument.
///
/// \param Region [in] - The region of extracted code to be changed.
void replaceConstants(OutlinableRegion &Region) {
OutlinableGroup &Group = *Region.Parent;
// Iterate over the constants that need to be elevated into arguments
for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
unsigned AggArgIdx = Const.first;
Function *OutlinedFunction = Group.OutlinedFunction;
assert(OutlinedFunction && "Overall Function is not defined?");
Constant *CST = Const.second;
Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
// Identify the argument it will be elevated to, and replace instances of
// that constant in the function.
// TODO: If in the future constants do not have one global value number,
// i.e. a constant 1 could be mapped to several values, this check will
// have to be more strict. It cannot be using only replaceUsesWithIf.
LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
<< " in function " << *OutlinedFunction << " with "
<< *Arg << "\n");
CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
return I->getFunction() == OutlinedFunction;
return false;
});
}
}
/// It is possible that there is a basic block that already performs the same
/// stores. This returns a duplicate block, if it exists
///
/// \param OutputBBs [in] the blocks we are looking for a duplicate of.
/// \param OutputStoreBBs [in] The existing output blocks.
/// \returns an optional value with the number output block if there is a match.
Optional<unsigned> findDuplicateOutputBlock(
DenseMap<Value *, BasicBlock *> &OutputBBs,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
bool Mismatch = false;
unsigned MatchingNum = 0;
// We compare the new set output blocks to the other sets of output blocks.
// If they are the same number, and have identical instructions, they are
// considered to be the same.
for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
Mismatch = false;
for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
OutputBBs.find(VToB.first);
if (OutputBBIt == OutputBBs.end()) {
Mismatch = true;
break;
}
BasicBlock *CompBB = VToB.second;
BasicBlock *OutputBB = OutputBBIt->second;
if (CompBB->size() - 1 != OutputBB->size()) {
Mismatch = true;
break;
}
BasicBlock::iterator NIt = OutputBB->begin();
for (Instruction &I : *CompBB) {
if (isa<BranchInst>(&I))
continue;
if (!I.isIdenticalTo(&(*NIt))) {
Mismatch = true;
break;
}
NIt++;
}
}
if (!Mismatch)
return MatchingNum;
MatchingNum++;
}
return None;
}
/// Remove empty output blocks from the outlined region.
///
/// \param BlocksToPrune - Mapping of return values output blocks for the \p
/// Region.
/// \param Region - The OutlinableRegion we are analyzing.
static bool
analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
OutlinableRegion &Region) {
bool AllRemoved = true;
Value *RetValueForBB;
BasicBlock *NewBB;
SmallVector<Value *, 4> ToRemove;
// Iterate over the output blocks created in the outlined section.
for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
RetValueForBB = VtoBB.first;
NewBB = VtoBB.second;
// If there are no instructions, we remove it from the module, and also
// mark the value for removal from the return value to output block mapping.
if (NewBB->size() == 0) {
NewBB->eraseFromParent();
ToRemove.push_back(RetValueForBB);
continue;
}
// Mark that we could not remove all the blocks since they were not all
// empty.
AllRemoved = false;
}
// Remove the return value from the mapping.
for (Value *V : ToRemove)
BlocksToPrune.erase(V);
// Mark the region as having the no output scheme.
if (AllRemoved)
Region.OutputBlockNum = -1;
return AllRemoved;
}
/// For the outlined section, move needed the StoreInsts for the output
/// registers into their own block. Then, determine if there is a duplicate
/// output block already created.
///
/// \param [in] OG - The OutlinableGroup of regions to be outlined.
/// \param [in] Region - The OutlinableRegion that is being analyzed.
/// \param [in,out] OutputBBs - the blocks that stores for this region will be
/// placed in.
/// \param [in] EndBBs - the final blocks of the extracted function.
/// \param [in] OutputMappings - OutputMappings the mapping of values that have
/// been replaced by a new output value.
/// \param [in,out] OutputStoreBBs - The existing output blocks.
static void alignOutputBlockWithAggFunc(
OutlinableGroup &OG, OutlinableRegion &Region,
DenseMap<Value *, BasicBlock *> &OutputBBs,
DenseMap<Value *, BasicBlock *> &EndBBs,
const DenseMap<Value *, Value *> &OutputMappings,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
// If none of the output blocks have any instructions, this means that we do
// not have to determine if it matches any of the other output schemes, and we
// don't have to do anything else.
if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
return;
// Determine is there is a duplicate set of blocks.
Optional<unsigned> MatchingBB =
findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
// If there is, we remove the new output blocks. If it does not,
// we add it to our list of sets of output blocks.
if (MatchingBB.hasValue()) {
LLVM_DEBUG(dbgs() << "Set output block for region in function"
<< Region.ExtractedFunction << " to "
<< MatchingBB.getValue());
Region.OutputBlockNum = MatchingBB.getValue();
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
VtoBB.second->eraseFromParent();
return;
}
Region.OutputBlockNum = OutputStoreBBs.size();
Value *RetValueForBB;
BasicBlock *NewBB;
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
RetValueForBB = VtoBB.first;
NewBB = VtoBB.second;
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
EndBBs.find(RetValueForBB);
LLVM_DEBUG(dbgs() << "Create output block for region in"
<< Region.ExtractedFunction << " to "
<< *NewBB);
BranchInst::Create(VBBIt->second, NewBB);
OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
}
}
/// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
/// before creating a basic block for each \p NewMap, and inserting into the new
/// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
///
/// \param OldMap [in] - The mapping to base the new mapping off of.
/// \param NewMap [out] - The output mapping using the keys of \p OldMap.
/// \param ParentFunc [in] - The function to put the new basic block in.
/// \param BaseName [in] - The start of the BasicBlock names to be appended to
/// by an index value.
static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
DenseMap<Value *, BasicBlock *> &NewMap,
Function *ParentFunc, Twine BaseName) {
unsigned Idx = 0;
std::vector<Value *> SortedKeys;
getSortedConstantKeys(SortedKeys, OldMap);
for (Value *RetVal : SortedKeys) {
BasicBlock *NewBB = BasicBlock::Create(
ParentFunc->getContext(),
Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
ParentFunc);
NewMap.insert(std::make_pair(RetVal, NewBB));
}
}
/// Create the switch statement for outlined function to differentiate between
/// all the output blocks.
///
/// For the outlined section, determine if an outlined block already exists that
/// matches the needed stores for the extracted section.
/// \param [in] M - The module we are outlining from.
/// \param [in] OG - The group of regions to be outlined.
/// \param [in] EndBBs - The final blocks of the extracted function.
/// \param [in,out] OutputStoreBBs - The existing output blocks.
void createSwitchStatement(
Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
// We only need the switch statement if there is more than one store
// combination, or there is more than one set of output blocks. The first
// will occur when we store different sets of values for two different
// regions. The second will occur when we have two outputs that are combined
// in a PHINode outside of the region in one outlined instance, and are used
// seaparately in another. This will create the same set of OutputGVNs, but
// will generate two different output schemes.
if (OG.OutputGVNCombinations.size() > 1) {
Function *AggFunc = OG.OutlinedFunction;
// Create a final block for each different return block.
DenseMap<Value *, BasicBlock *> ReturnBBs;
createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
std::pair<Value *, BasicBlock *> &OutputBlock =
*OG.EndBBs.find(RetBlockPair.first);
BasicBlock *ReturnBlock = RetBlockPair.second;
BasicBlock *EndBB = OutputBlock.second;
Instruction *Term = EndBB->getTerminator();
// Move the return value to the final block instead of the original exit
// stub.
Term->moveBefore(*ReturnBlock, ReturnBlock->end());
// Put the switch statement in the old end basic block for the function
// with a fall through to the new return block.
LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
<< OutputStoreBBs.size() << "\n");
SwitchInst *SwitchI =
SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
ReturnBlock, OutputStoreBBs.size(), EndBB);
unsigned Idx = 0;
for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
OutputStoreBB.find(OutputBlock.first);
if (OSBBIt == OutputStoreBB.end())
continue;
BasicBlock *BB = OSBBIt->second;
SwitchI->addCase(
ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
Term = BB->getTerminator();
Term->setSuccessor(0, ReturnBlock);
Idx++;
}
}
return;
}
assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
// If there needs to be stores, move them from the output blocks to their
// corresponding ending block. We do not check that the OutputGVNCombinations
// is equal to 1 here since that could just been the case where there are 0
// outputs. Instead, we check whether there is more than one set of output
// blocks since this is the only case where we would have to move the
// stores, and erase the extraneous blocks.
if (OutputStoreBBs.size() == 1) {
LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
<< *OG.OutlinedFunction << "\n");
DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
EndBBs.find(VBPair.first);
assert(EndBBIt != EndBBs.end() && "Could not find end block");
BasicBlock *EndBB = EndBBIt->second;
BasicBlock *OutputBB = VBPair.second;
Instruction *Term = OutputBB->getTerminator();
Term->eraseFromParent();
Term = EndBB->getTerminator();
moveBBContents(*OutputBB, *EndBB);
Term->moveBefore(*EndBB, EndBB->end());
OutputBB->eraseFromParent();
}
}
}
/// Fill the new function that will serve as the replacement function for all of
/// the extracted regions of a certain structure from the first region in the
/// list of regions. Replace this first region's extracted function with the
/// new overall function.
///
/// \param [in] M - The module we are outlining from.
/// \param [in] CurrentGroup - The group of regions to be outlined.
/// \param [in,out] OutputStoreBBs - The output blocks for each different
/// set of stores needed for the different functions.
/// \param [in,out] FuncsToRemove - Extracted functions to erase from module
/// once outlining is complete.
/// \param [in] OutputMappings - Extracted functions to erase from module
/// once outlining is complete.
static void fillOverallFunction(
Module &M, OutlinableGroup &CurrentGroup,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
std::vector<Function *> &FuncsToRemove,
const DenseMap<Value *, Value *> &OutputMappings) {
OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
// Move first extracted function's instructions into new function.
LLVM_DEBUG(dbgs() << "Move instructions from "
<< *CurrentOS->ExtractedFunction << " to instruction "
<< *CurrentGroup.OutlinedFunction << "\n");
moveFunctionData(*CurrentOS->ExtractedFunction,
*CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
// Transfer the attributes from the function to the new function.
for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
CurrentGroup.OutlinedFunction->addFnAttr(A);
// Create a new set of output blocks for the first extracted function.
DenseMap<Value *, BasicBlock *> NewBBs;
createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
CurrentGroup.OutlinedFunction, "output_block_0");
CurrentOS->OutputBlockNum = 0;
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
replaceConstants(*CurrentOS);
// We first identify if any output blocks are empty, if they are we remove
// them. We then create a branch instruction to the basic block to the return
// block for the function for each non empty output block.
if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
CurrentGroup.EndBBs.find(VToBB.first);
BasicBlock *EndBB = VBBIt->second;
BranchInst::Create(EndBB, VToBB.second);
OutputStoreBBs.back().insert(VToBB);
}
}
// Replace the call to the extracted function with the outlined function.
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
// We only delete the extracted functions at the end since we may need to
// reference instructions contained in them for mapping purposes.
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
}
void IROutliner::deduplicateExtractedSections(
Module &M, OutlinableGroup &CurrentGroup,
std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
createFunction(M, CurrentGroup, OutlinedFunctionNum);
std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
OutlinableRegion *CurrentOS;
fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
OutputMappings);
std::vector<Value *> SortedKeys;
for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
CurrentOS = CurrentGroup.Regions[Idx];
AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
*CurrentOS->ExtractedFunction);
// Create a set of BasicBlocks, one for each return block, to hold the
// needed store instructions.
DenseMap<Value *, BasicBlock *> NewBBs;
createAndInsertBasicBlocks(
CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
"output_block_" + Twine(static_cast<unsigned>(Idx)));
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
CurrentGroup.EndBBs, OutputMappings,
OutputStoreBBs);
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
}
// Create a switch statement to handle the different output schemes.
createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
OutlinedFunctionNum++;
}
/// Checks that the next instruction in the InstructionDataList matches the
/// next instruction in the module. If they do not, there could be the
/// possibility that extra code has been inserted, and we must ignore it.
///
/// \param ID - The IRInstructionData to check the next instruction of.
/// \returns true if the InstructionDataList and actual instruction match.
static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
// We check if there is a discrepancy between the InstructionDataList
// and the actual next instruction in the module. If there is, it means
// that an extra instruction was added, likely by the CodeExtractor.
// Since we do not have any similarity data about this particular
// instruction, we cannot confidently outline it, and must discard this
// candidate.
IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
Instruction *NextIDLInst = NextIDIt->Inst;
Instruction *NextModuleInst = nullptr;
if (!ID.Inst->isTerminator())
NextModuleInst = ID.Inst->getNextNonDebugInstruction();
else if (NextIDLInst != nullptr)
NextModuleInst =
&*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
if (NextIDLInst && NextIDLInst != NextModuleInst)
return false;
return true;
}
bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
const OutlinableRegion &Region) {
IRSimilarityCandidate *IRSC = Region.Candidate;
unsigned StartIdx = IRSC->getStartIdx();
unsigned EndIdx = IRSC->getEndIdx();
// A check to make sure that we are not about to attempt to outline something
// that has already been outlined.
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
if (Outlined.contains(Idx))
return false;
// We check if the recorded instruction matches the actual next instruction,
// if it does not, we fix it in the InstructionDataList.
if (!Region.Candidate->backInstruction()->isTerminator()) {
Instruction *NewEndInst =
Region.Candidate->backInstruction()->getNextNonDebugInstruction();
assert(NewEndInst && "Next instruction is a nullptr?");
if (Region.Candidate->end()->Inst != NewEndInst) {
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
IRInstructionData(*NewEndInst,
InstructionClassifier.visit(*NewEndInst), *IDL);
// Insert the first IRInstructionData of the new region after the
// last IRInstructionData of the IRSimilarityCandidate.
IDL->insert(Region.Candidate->end(), *NewEndIRID);
}
}
return none_of(*IRSC, [this](IRInstructionData &ID) {
if (!nextIRInstructionDataMatchesNextInst(ID))
return true;
return !this->InstructionClassifier.visit(ID.Inst);
});
}
void IROutliner::pruneIncompatibleRegions(
std::vector<IRSimilarityCandidate> &CandidateVec,
OutlinableGroup &CurrentGroup) {
bool PreviouslyOutlined;
// Sort from beginning to end, so the IRSimilarityCandidates are in order.
stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
const IRSimilarityCandidate &RHS) {
return LHS.getStartIdx() < RHS.getStartIdx();
});
IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
// Since outlining a call and a branch instruction will be the same as only
// outlinining a call instruction, we ignore it as a space saving.
if (FirstCandidate.getLength() == 2) {
if (isa<CallInst>(FirstCandidate.front()->Inst) &&
isa<BranchInst>(FirstCandidate.back()->Inst))
return;
}
unsigned CurrentEndIdx = 0;
for (IRSimilarityCandidate &IRSC : CandidateVec) {
PreviouslyOutlined = false;
unsigned StartIdx = IRSC.getStartIdx();
unsigned EndIdx = IRSC.getEndIdx();
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
if (Outlined.contains(Idx)) {
PreviouslyOutlined = true;
break;
}
if (PreviouslyOutlined)
continue;
// Check over the instructions, and if the basic block has its address
// taken for use somewhere else, we do not outline that block.
bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
return ID.Inst->getParent()->hasAddressTaken();
});
if (BBHasAddressTaken)
continue;
if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
!OutlineFromLinkODRs)
continue;
// Greedily prune out any regions that will overlap with already chosen
// regions.
if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
continue;
bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
if (!nextIRInstructionDataMatchesNextInst(ID))
return true;
return !this->InstructionClassifier.visit(ID.Inst);
});
if (BadInst)
continue;
OutlinableRegion *OS = new (RegionAllocator.Allocate())
OutlinableRegion(IRSC, CurrentGroup);
CurrentGroup.Regions.push_back(OS);
CurrentEndIdx = EndIdx;
}
}
InstructionCost
IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
InstructionCost RegionBenefit = 0;
for (OutlinableRegion *Region : CurrentGroup.Regions) {
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
// We add the number of instructions in the region to the benefit as an
// estimate as to how much will be removed.
RegionBenefit += Region->getBenefit(TTI);
LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
<< " saved instructions to overfall benefit.\n");
}
return RegionBenefit;
}
/// For the \p OutputCanon number passed in find the value represented by this
/// canonical number. If it is from a PHINode, we pick the first incoming
/// value and return that Value instead.
///
/// \param Region - The OutlinableRegion to get the Value from.
/// \param OutputCanon - The canonical number to find the Value from.
/// \returns The Value represented by a canonical number \p OutputCanon in \p
/// Region.
static Value *findOutputValueInRegion(OutlinableRegion &Region,
unsigned OutputCanon) {
OutlinableGroup &CurrentGroup = *Region.Parent;
// If the value is greater than the value in the tracker, we have a
// PHINode and will instead use one of the incoming values to find the
// type.
if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
"Could not find GVN set for PHINode number!");
assert(It->second.second.size() > 0 && "PHINode does not have any values!");
OutputCanon = *It->second.second.begin();
}
Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon);
assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?");
Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
assert(OV.hasValue() && "Could not find value for GVN?");
return *OV;
}
InstructionCost
IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
InstructionCost OverallCost = 0;
for (OutlinableRegion *Region : CurrentGroup.Regions) {
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
// Each output incurs a load after the call, so we add that to the cost.
for (unsigned OutputCanon : Region->GVNStores) {
Value *V = findOutputValueInRegion(*Region, OutputCanon);
InstructionCost LoadCost =
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
TargetTransformInfo::TCK_CodeSize);
LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
<< " instructions to cost for output of type "
<< *V->getType() << "\n");
OverallCost += LoadCost;
}
}
return OverallCost;
}
/// Find the extra instructions needed to handle any output values for the
/// region.
///
/// \param [in] M - The Module to outline from.
/// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
/// \param [in] TTI - The TargetTransformInfo used to collect information for
/// new instruction costs.
/// \returns the additional cost to handle the outputs.
static InstructionCost findCostForOutputBlocks(Module &M,
OutlinableGroup &CurrentGroup,
TargetTransformInfo &TTI) {
InstructionCost OutputCost = 0;
unsigned NumOutputBranches = 0;
OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
DenseSet<BasicBlock *> CandidateBlocks;
Candidate.getBasicBlocks(CandidateBlocks);
// Count the number of different output branches that point to blocks outside
// of the region.
DenseSet<BasicBlock *> FoundBlocks;
for (IRInstructionData &ID : Candidate) {
if (!isa<BranchInst>(ID.Inst))
continue;
for (Value *V : ID.OperVals) {
BasicBlock *BB = static_cast<BasicBlock *>(V);
DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB);
if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB))
continue;
FoundBlocks.insert(BB);
NumOutputBranches++;
}
}
CurrentGroup.BranchesToOutside = NumOutputBranches;
for (const ArrayRef<unsigned> &OutputUse :
CurrentGroup.OutputGVNCombinations) {
for (unsigned OutputCanon : OutputUse) {
Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
InstructionCost StoreCost =
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
TargetTransformInfo::TCK_CodeSize);
// An instruction cost is added for each store set that needs to occur for
// various output combinations inside the function, plus a branch to
// return to the exit block.
LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
<< " instructions to cost for output of type "
<< *V->getType() << "\n");
OutputCost += StoreCost * NumOutputBranches;
}
InstructionCost BranchCost =
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
<< " a branch instruction\n");
OutputCost += BranchCost * NumOutputBranches;
}
// If there is more than one output scheme, we must have a comparison and
// branch for each different item in the switch statement.
if (CurrentGroup.OutputGVNCombinations.size() > 1) {
InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
Instruction::ICmp, Type::getInt32Ty(M.getContext()),
Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
TargetTransformInfo::TCK_CodeSize);
InstructionCost BranchCost =
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
<< " instructions for each switch case for each different"
<< " output path in a function\n");
OutputCost += TotalCost * NumOutputBranches;
}
return OutputCost;
}
void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
CurrentGroup.Benefit += RegionBenefit;
LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
CurrentGroup.Cost += OutputReloadCost;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
InstructionCost AverageRegionBenefit =
RegionBenefit / CurrentGroup.Regions.size();
unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
unsigned NumRegions = CurrentGroup.Regions.size();
TargetTransformInfo &TTI =
getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
// We add one region to the cost once, to account for the instructions added
// inside of the newly created function.
LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
<< " instructions to cost for body of new function.\n");
CurrentGroup.Cost += AverageRegionBenefit;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
// For each argument, we must add an instruction for loading the argument
// out of the register and into a value inside of the newly outlined function.
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
<< " instructions to cost for each argument in the new"
<< " function.\n");
CurrentGroup.Cost +=
OverallArgumentNum * TargetTransformInfo::TCC_Basic;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
// Each argument needs to either be loaded into a register or onto the stack.
// Some arguments will only be loaded into the stack once the argument
// registers are filled.
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
<< " instructions to cost for each argument in the new"
<< " function " << NumRegions << " times for the "
<< "needed argument handling at the call site.\n");
CurrentGroup.Cost +=
2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
}
void IROutliner::updateOutputMapping(OutlinableRegion &Region,
ArrayRef<Value *> Outputs,
LoadInst *LI) {
// For and load instructions following the call
Value *Operand = LI->getPointerOperand();
Optional<unsigned> OutputIdx = None;
// Find if the operand it is an output register.
for (unsigned ArgIdx = Region.NumExtractedInputs;
ArgIdx < Region.Call->arg_size(); ArgIdx++) {
if (Operand == Region.Call->getArgOperand(ArgIdx)) {
OutputIdx = ArgIdx - Region.NumExtractedInputs;
break;
}
}
// If we found an output register, place a mapping of the new value
// to the original in the mapping.
if (!OutputIdx.hasValue())
return;
if (OutputMappings.find(Outputs[OutputIdx.getValue()]) ==
OutputMappings.end()) {
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
<< *Outputs[OutputIdx.getValue()] << "\n");
OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()]));
} else {
Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second;
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
<< *Outputs[OutputIdx.getValue()] << "\n");
OutputMappings.insert(std::make_pair(LI, Orig));
}
}
bool IROutliner::extractSection(OutlinableRegion &Region) {
SetVector<Value *> ArgInputs, Outputs, SinkCands;
assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
BasicBlock *InitialStart = Region.StartBB;
Function *OrigF = Region.StartBB->getParent();
CodeExtractorAnalysisCache CEAC(*OrigF);
Region.ExtractedFunction =
Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
// If the extraction was successful, find the BasicBlock, and reassign the
// OutlinableRegion blocks
if (!Region.ExtractedFunction) {
LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
<< "\n");
Region.reattachCandidate();
return false;
}
// Get the block containing the called branch, and reassign the blocks as
// necessary. If the original block still exists, it is because we ended on
// a branch instruction, and so we move the contents into the block before
// and assign the previous block correctly.
User *InstAsUser = Region.ExtractedFunction->user_back();
BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
Region.PrevBB = RewrittenBB->getSinglePredecessor();
assert(Region.PrevBB && "PrevBB is nullptr?");
if (Region.PrevBB == InitialStart) {
BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
Instruction *BI = NewPrev->getTerminator();
BI->eraseFromParent();
moveBBContents(*InitialStart, *NewPrev);
Region.PrevBB = NewPrev;
InitialStart->eraseFromParent();
}
Region.StartBB = RewrittenBB;
Region.EndBB = RewrittenBB;
// The sequences of outlinable regions has now changed. We must fix the
// IRInstructionDataList for consistency. Although they may not be illegal
// instructions, they should not be compared with anything else as they
// should not be outlined in this round. So marking these as illegal is
// allowed.
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
Instruction *BeginRewritten = &*RewrittenBB->begin();
Instruction *EndRewritten = &*RewrittenBB->begin();
Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
*BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
*EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
// Insert the first IRInstructionData of the new region in front of the
// first IRInstructionData of the IRSimilarityCandidate.
IDL->insert(Region.Candidate->begin(), *Region.NewFront);
// Insert the first IRInstructionData of the new region after the
// last IRInstructionData of the IRSimilarityCandidate.
IDL->insert(Region.Candidate->end(), *Region.NewBack);
// Remove the IRInstructionData from the IRSimilarityCandidate.
IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
assert(RewrittenBB != nullptr &&
"Could not find a predecessor after extraction!");
// Iterate over the new set of instructions to find the new call
// instruction.
for (Instruction &I : *RewrittenBB)
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
if (Region.ExtractedFunction == CI->getCalledFunction())
Region.Call = CI;
} else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
updateOutputMapping(Region, Outputs.getArrayRef(), LI);
Region.reattachCandidate();
return true;
}
unsigned IROutliner::doOutline(Module &M) {
// Find the possible similarity sections.
InstructionClassifier.EnableBranches = !DisableBranches;
InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
IRSimilarityIdentifier &Identifier = getIRSI(M);
SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
// Sort them by size of extracted sections
unsigned OutlinedFunctionNum = 0;
// If we only have one SimilarityGroup in SimilarityCandidates, we do not have
// to sort them by the potential number of instructions to be outlined
if (SimilarityCandidates.size() > 1)
llvm::stable_sort(SimilarityCandidates,
[](const std::vector<IRSimilarityCandidate> &LHS,
const std::vector<IRSimilarityCandidate> &RHS) {
return LHS[0].getLength() * LHS.size() >
RHS[0].getLength() * RHS.size();
});
// Creating OutlinableGroups for each SimilarityCandidate to be used in
// each of the following for loops to avoid making an allocator.
std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
DenseSet<unsigned> NotSame;
std::vector<OutlinableGroup *> NegativeCostGroups;
std::vector<OutlinableRegion *> OutlinedRegions;
// Iterate over the possible sets of similarity.
unsigned PotentialGroupIdx = 0;
for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
// Remove entries that were previously outlined
pruneIncompatibleRegions(CandidateVec, CurrentGroup);
// We pruned the number of regions to 0 to 1, meaning that it's not worth
// trying to outlined since there is no compatible similar instance of this
// code.
if (CurrentGroup.Regions.size() < 2)
continue;
// Determine if there are any values that are the same constant throughout
// each section in the set.
NotSame.clear();
CurrentGroup.findSameConstants(NotSame);
if (CurrentGroup.IgnoreGroup)
continue;
// Create a CodeExtractor for each outlinable region. Identify inputs and
// outputs for each section using the code extractor and create the argument
// types for the Aggregate Outlining Function.
OutlinedRegions.clear();
for (OutlinableRegion *OS : CurrentGroup.Regions) {
// Break the outlinable region out of its parent BasicBlock into its own
// BasicBlocks (see function implementation).
OS->splitCandidate();
// There's a chance that when the region is split, extra instructions are
// added to the region. This makes the region no longer viable
// to be split, so we ignore it for outlining.
if (!OS->CandidateSplit)
continue;
SmallVector<BasicBlock *> BE;
DenseSet<BasicBlock *> BlocksInRegion;
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
OS->CE = new (ExtractorAllocator.Allocate())
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
false, "outlined");
findAddInputsOutputs(M, *OS, NotSame);
if (!OS->IgnoreRegion)
OutlinedRegions.push_back(OS);
// We recombine the blocks together now that we have gathered all the
// needed information.
OS->reattachCandidate();
}
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CurrentGroup.Regions.empty())
continue;
CurrentGroup.collectGVNStoreSets(M);
if (CostModel)
findCostBenefit(M, CurrentGroup);
// If we are adhering to the cost model, skip those groups where the cost
// outweighs the benefits.
if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
OptimizationRemarkEmitter &ORE =
getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
ORE.emit([&]() {
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
C->frontInstruction());
R << "did not outline "
<< ore::NV(std::to_string(CurrentGroup.Regions.size()))
<< " regions due to estimated increase of "
<< ore::NV("InstructionIncrease",
CurrentGroup.Cost - CurrentGroup.Benefit)
<< " instructions at locations ";
interleave(
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
[&R](OutlinableRegion *Region) {
R << ore::NV(
"DebugLoc",
Region->Candidate->frontInstruction()->getDebugLoc());
},
[&R]() { R << " "; });
return R;
});
continue;
}
NegativeCostGroups.push_back(&CurrentGroup);
}
ExtractorAllocator.DestroyAll();
if (NegativeCostGroups.size() > 1)
stable_sort(NegativeCostGroups,
[](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
});
std::vector<Function *> FuncsToRemove;
for (OutlinableGroup *CG : NegativeCostGroups) {
OutlinableGroup &CurrentGroup = *CG;
OutlinedRegions.clear();
for (OutlinableRegion *Region : CurrentGroup.Regions) {
// We check whether our region is compatible with what has already been
// outlined, and whether we need to ignore this item.
if (!isCompatibleWithAlreadyOutlinedCode(*Region))
continue;
OutlinedRegions.push_back(Region);
}
if (OutlinedRegions.size() < 2)
continue;
// Reestimate the cost and benefit of the OutlinableGroup. Continue only if
// we are still outlining enough regions to make up for the added cost.
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CostModel) {
CurrentGroup.Benefit = 0;
CurrentGroup.Cost = 0;
findCostBenefit(M, CurrentGroup);
if (CurrentGroup.Cost >= CurrentGroup.Benefit)
continue;
}
OutlinedRegions.clear();
for (OutlinableRegion *Region : CurrentGroup.Regions) {
Region->splitCandidate();
if (!Region->CandidateSplit)
continue;
OutlinedRegions.push_back(Region);
}
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CurrentGroup.Regions.size() < 2) {
for (OutlinableRegion *R : CurrentGroup.Regions)
R->reattachCandidate();
continue;
}
LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
<< " and benefit " << CurrentGroup.Benefit << "\n");
// Create functions out of all the sections, and mark them as outlined.
OutlinedRegions.clear();
for (OutlinableRegion *OS : CurrentGroup.Regions) {
SmallVector<BasicBlock *> BE;
DenseSet<BasicBlock *> BlocksInRegion;
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
OS->CE = new (ExtractorAllocator.Allocate())
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
false, "outlined");
bool FunctionOutlined = extractSection(*OS);
if (FunctionOutlined) {
unsigned StartIdx = OS->Candidate->getStartIdx();
unsigned EndIdx = OS->Candidate->getEndIdx();
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
Outlined.insert(Idx);
OutlinedRegions.push_back(OS);
}
}
LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
<< " with benefit " << CurrentGroup.Benefit
<< " and cost " << CurrentGroup.Cost << "\n");
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CurrentGroup.Regions.empty())
continue;
OptimizationRemarkEmitter &ORE =
getORE(*CurrentGroup.Regions[0]->Call->getFunction());
ORE.emit([&]() {
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
<< " regions with decrease of "
<< ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
<< " instructions at locations ";
interleave(
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
[&R](OutlinableRegion *Region) {
R << ore::NV("DebugLoc",
Region->Candidate->frontInstruction()->getDebugLoc());
},
[&R]() { R << " "; });
return R;
});
deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
OutlinedFunctionNum);
}
for (Function *F : FuncsToRemove)
F->eraseFromParent();
return OutlinedFunctionNum;
}
bool IROutliner::run(Module &M) {
CostModel = !NoCostModel;
OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
return doOutline(M) > 0;
}
// Pass Manager Boilerplate
namespace {
class IROutlinerLegacyPass : public ModulePass {
public:
static char ID;
IROutlinerLegacyPass() : ModulePass(ID) {
initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<IRSimilarityIdentifierWrapperPass>();
}
bool runOnModule(Module &M) override;
};
} // namespace
bool IROutlinerLegacyPass::runOnModule(Module &M) {
if (skipModule(M))
return false;
std::unique_ptr<OptimizationRemarkEmitter> ORE;
auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
ORE.reset(new OptimizationRemarkEmitter(&F));
return *ORE.get();
};
auto GTTI = [this](Function &F) -> TargetTransformInfo & {
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
};
auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
};
return IROutliner(GTTI, GIRSI, GORE).run(M);
}
PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
std::function<TargetTransformInfo &(Function &)> GTTI =
[&FAM](Function &F) -> TargetTransformInfo & {
return FAM.getResult<TargetIRAnalysis>(F);
};
std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
[&AM](Module &M) -> IRSimilarityIdentifier & {
return AM.getResult<IRSimilarityAnalysis>(M);
};
std::unique_ptr<OptimizationRemarkEmitter> ORE;
std::function<OptimizationRemarkEmitter &(Function &)> GORE =
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
ORE.reset(new OptimizationRemarkEmitter(&F));
return *ORE.get();
};
if (IROutliner(GTTI, GIRSI, GORE).run(M))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
char IROutlinerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
false)
INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
false)
ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
|