aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/IPO/GlobalDCE.cpp
blob: 5e5d2086adc2e1a45db4f1d2e7ee8cb6485c69e5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transform is designed to eliminate unreachable internal globals from the
// program.  It uses an aggressive algorithm, searching out globals that are
// known to be alive.  After it finds all of the globals which are needed, it
// deletes whatever is left over.  This allows it to delete recursive chunks of
// the program which are unreachable.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"

using namespace llvm;

#define DEBUG_TYPE "globaldce"

static cl::opt<bool>
    ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
                cl::desc("Enable virtual function elimination"));

STATISTIC(NumAliases  , "Number of global aliases removed");
STATISTIC(NumFunctions, "Number of functions removed");
STATISTIC(NumIFuncs,    "Number of indirect functions removed");
STATISTIC(NumVariables, "Number of global variables removed");
STATISTIC(NumVFuncs,    "Number of virtual functions removed");

namespace {
  class GlobalDCELegacyPass : public ModulePass {
  public:
    static char ID; // Pass identification, replacement for typeid
    GlobalDCELegacyPass() : ModulePass(ID) {
      initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
    }

    // run - Do the GlobalDCE pass on the specified module, optionally updating
    // the specified callgraph to reflect the changes.
    //
    bool runOnModule(Module &M) override {
      if (skipModule(M))
        return false;

      // We need a minimally functional dummy module analysis manager. It needs
      // to at least know about the possibility of proxying a function analysis
      // manager.
      FunctionAnalysisManager DummyFAM;
      ModuleAnalysisManager DummyMAM;
      DummyMAM.registerPass(
          [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });

      auto PA = Impl.run(M, DummyMAM);
      return !PA.areAllPreserved();
    }

  private:
    GlobalDCEPass Impl;
  };
}

char GlobalDCELegacyPass::ID = 0;
INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
                "Dead Global Elimination", false, false)

// Public interface to the GlobalDCEPass.
ModulePass *llvm::createGlobalDCEPass() {
  return new GlobalDCELegacyPass();
}

/// Returns true if F is effectively empty.
static bool isEmptyFunction(Function *F) {
  BasicBlock &Entry = F->getEntryBlock();
  for (auto &I : Entry) {
    if (I.isDebugOrPseudoInst())
      continue;
    if (auto *RI = dyn_cast<ReturnInst>(&I))
      return !RI->getReturnValue();
    break;
  }
  return false;
}

/// Compute the set of GlobalValue that depends from V.
/// The recursion stops as soon as a GlobalValue is met.
void GlobalDCEPass::ComputeDependencies(Value *V,
                                        SmallPtrSetImpl<GlobalValue *> &Deps) {
  if (auto *I = dyn_cast<Instruction>(V)) {
    Function *Parent = I->getParent()->getParent();
    Deps.insert(Parent);
  } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
    Deps.insert(GV);
  } else if (auto *CE = dyn_cast<Constant>(V)) {
    // Avoid walking the whole tree of a big ConstantExprs multiple times.
    auto Where = ConstantDependenciesCache.find(CE);
    if (Where != ConstantDependenciesCache.end()) {
      auto const &K = Where->second;
      Deps.insert(K.begin(), K.end());
    } else {
      SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
      for (User *CEUser : CE->users())
        ComputeDependencies(CEUser, LocalDeps);
      Deps.insert(LocalDeps.begin(), LocalDeps.end());
    }
  }
}

void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
  SmallPtrSet<GlobalValue *, 8> Deps;
  for (User *User : GV.users())
    ComputeDependencies(User, Deps);
  Deps.erase(&GV); // Remove self-reference.
  for (GlobalValue *GVU : Deps) {
    // If this is a dep from a vtable to a virtual function, and we have
    // complete information about all virtual call sites which could call
    // though this vtable, then skip it, because the call site information will
    // be more precise.
    if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
      LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
                        << GV.getName() << "\n");
      continue;
    }
    GVDependencies[GVU].insert(&GV);
  }
}

/// Mark Global value as Live
void GlobalDCEPass::MarkLive(GlobalValue &GV,
                             SmallVectorImpl<GlobalValue *> *Updates) {
  auto const Ret = AliveGlobals.insert(&GV);
  if (!Ret.second)
    return;

  if (Updates)
    Updates->push_back(&GV);
  if (Comdat *C = GV.getComdat()) {
    for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
      MarkLive(*CM.second, Updates); // Recursion depth is only two because only
                                     // globals in the same comdat are visited.
    }
  }
}

void GlobalDCEPass::ScanVTables(Module &M) {
  SmallVector<MDNode *, 2> Types;
  LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");

  auto *LTOPostLinkMD =
      cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
  bool LTOPostLink =
      LTOPostLinkMD &&
      (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);

  for (GlobalVariable &GV : M.globals()) {
    Types.clear();
    GV.getMetadata(LLVMContext::MD_type, Types);
    if (GV.isDeclaration() || Types.empty())
      continue;

    // Use the typeid metadata on the vtable to build a mapping from typeids to
    // the list of (GV, offset) pairs which are the possible vtables for that
    // typeid.
    for (MDNode *Type : Types) {
      Metadata *TypeID = Type->getOperand(1).get();

      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();

      TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
    }

    // If the type corresponding to the vtable is private to this translation
    // unit, we know that we can see all virtual functions which might use it,
    // so VFE is safe.
    if (auto GO = dyn_cast<GlobalObject>(&GV)) {
      GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
      if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
          (LTOPostLink &&
           TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
        LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
        VFESafeVTables.insert(&GV);
      }
    }
  }
}

void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
                                   uint64_t CallOffset) {
  for (auto &VTableInfo : TypeIdMap[TypeId]) {
    GlobalVariable *VTable = VTableInfo.first;
    uint64_t VTableOffset = VTableInfo.second;

    Constant *Ptr =
        getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
                           *Caller->getParent(), VTable);
    if (!Ptr) {
      LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
      VFESafeVTables.erase(VTable);
      return;
    }

    auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
    if (!Callee) {
      LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
      VFESafeVTables.erase(VTable);
      return;
    }

    LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
                      << Callee->getName() << "\n");
    GVDependencies[Caller].insert(Callee);
  }
}

void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
  LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
  Function *TypeCheckedLoadFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));

  if (!TypeCheckedLoadFunc)
    return;

  for (auto U : TypeCheckedLoadFunc->users()) {
    auto CI = dyn_cast<CallInst>(U);
    if (!CI)
      continue;

    auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    Value *TypeIdValue = CI->getArgOperand(2);
    auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();

    if (Offset) {
      ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
    } else {
      // type.checked.load with a non-constant offset, so assume every entry in
      // every matching vtable is used.
      for (auto &VTableInfo : TypeIdMap[TypeId]) {
        VFESafeVTables.erase(VTableInfo.first);
      }
    }
  }
}

void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
  if (!ClEnableVFE)
    return;

  // If the Virtual Function Elim module flag is present and set to zero, then
  // the vcall_visibility metadata was inserted for another optimization (WPD)
  // and we may not have type checked loads on all accesses to the vtable.
  // Don't attempt VFE in that case.
  auto *Val = mdconst::dyn_extract_or_null<ConstantInt>(
      M.getModuleFlag("Virtual Function Elim"));
  if (!Val || Val->getZExtValue() == 0)
    return;

  ScanVTables(M);

  if (VFESafeVTables.empty())
    return;

  ScanTypeCheckedLoadIntrinsics(M);

  LLVM_DEBUG(
    dbgs() << "VFE safe vtables:\n";
    for (auto *VTable : VFESafeVTables)
      dbgs() << "  " << VTable->getName() << "\n";
  );
}

PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
  bool Changed = false;

  // The algorithm first computes the set L of global variables that are
  // trivially live.  Then it walks the initialization of these variables to
  // compute the globals used to initialize them, which effectively builds a
  // directed graph where nodes are global variables, and an edge from A to B
  // means B is used to initialize A.  Finally, it propagates the liveness
  // information through the graph starting from the nodes in L. Nodes note
  // marked as alive are discarded.

  // Remove empty functions from the global ctors list.
  Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);

  // Collect the set of members for each comdat.
  for (Function &F : M)
    if (Comdat *C = F.getComdat())
      ComdatMembers.insert(std::make_pair(C, &F));
  for (GlobalVariable &GV : M.globals())
    if (Comdat *C = GV.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GV));
  for (GlobalAlias &GA : M.aliases())
    if (Comdat *C = GA.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GA));

  // Add dependencies between virtual call sites and the virtual functions they
  // might call, if we have that information.
  AddVirtualFunctionDependencies(M);

  // Loop over the module, adding globals which are obviously necessary.
  for (GlobalObject &GO : M.global_objects()) {
    Changed |= RemoveUnusedGlobalValue(GO);
    // Functions with external linkage are needed if they have a body.
    // Externally visible & appending globals are needed, if they have an
    // initializer.
    if (!GO.isDeclaration())
      if (!GO.isDiscardableIfUnused())
        MarkLive(GO);

    UpdateGVDependencies(GO);
  }

  // Compute direct dependencies of aliases.
  for (GlobalAlias &GA : M.aliases()) {
    Changed |= RemoveUnusedGlobalValue(GA);
    // Externally visible aliases are needed.
    if (!GA.isDiscardableIfUnused())
      MarkLive(GA);

    UpdateGVDependencies(GA);
  }

  // Compute direct dependencies of ifuncs.
  for (GlobalIFunc &GIF : M.ifuncs()) {
    Changed |= RemoveUnusedGlobalValue(GIF);
    // Externally visible ifuncs are needed.
    if (!GIF.isDiscardableIfUnused())
      MarkLive(GIF);

    UpdateGVDependencies(GIF);
  }

  // Propagate liveness from collected Global Values through the computed
  // dependencies.
  SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
                                           AliveGlobals.end()};
  while (!NewLiveGVs.empty()) {
    GlobalValue *LGV = NewLiveGVs.pop_back_val();
    for (auto *GVD : GVDependencies[LGV])
      MarkLive(*GVD, &NewLiveGVs);
  }

  // Now that all globals which are needed are in the AliveGlobals set, we loop
  // through the program, deleting those which are not alive.
  //

  // The first pass is to drop initializers of global variables which are dead.
  std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
  for (GlobalVariable &GV : M.globals())
    if (!AliveGlobals.count(&GV)) {
      DeadGlobalVars.push_back(&GV);         // Keep track of dead globals
      if (GV.hasInitializer()) {
        Constant *Init = GV.getInitializer();
        GV.setInitializer(nullptr);
        if (isSafeToDestroyConstant(Init))
          Init->destroyConstant();
      }
    }

  // The second pass drops the bodies of functions which are dead...
  std::vector<Function *> DeadFunctions;
  for (Function &F : M)
    if (!AliveGlobals.count(&F)) {
      DeadFunctions.push_back(&F);         // Keep track of dead globals
      if (!F.isDeclaration())
        F.deleteBody();
    }

  // The third pass drops targets of aliases which are dead...
  std::vector<GlobalAlias*> DeadAliases;
  for (GlobalAlias &GA : M.aliases())
    if (!AliveGlobals.count(&GA)) {
      DeadAliases.push_back(&GA);
      GA.setAliasee(nullptr);
    }

  // The fourth pass drops targets of ifuncs which are dead...
  std::vector<GlobalIFunc*> DeadIFuncs;
  for (GlobalIFunc &GIF : M.ifuncs())
    if (!AliveGlobals.count(&GIF)) {
      DeadIFuncs.push_back(&GIF);
      GIF.setResolver(nullptr);
    }

  // Now that all interferences have been dropped, delete the actual objects
  // themselves.
  auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
    RemoveUnusedGlobalValue(*GV);
    GV->eraseFromParent();
    Changed = true;
  };

  NumFunctions += DeadFunctions.size();
  for (Function *F : DeadFunctions) {
    if (!F->use_empty()) {
      // Virtual functions might still be referenced by one or more vtables,
      // but if we've proven them to be unused then it's safe to replace the
      // virtual function pointers with null, allowing us to remove the
      // function itself.
      ++NumVFuncs;

      // Detect vfuncs that are referenced as "relative pointers" which are used
      // in Swift vtables, i.e. entries in the form of:
      //
      //   i32 trunc (i64 sub (i64 ptrtoint @f, i64 ptrtoint ...)) to i32)
      //
      // In this case, replace the whole "sub" expression with constant 0 to
      // avoid leaving a weird sub(0, symbol) expression behind.
      replaceRelativePointerUsersWithZero(F);

      F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
    }
    EraseUnusedGlobalValue(F);
  }

  NumVariables += DeadGlobalVars.size();
  for (GlobalVariable *GV : DeadGlobalVars)
    EraseUnusedGlobalValue(GV);

  NumAliases += DeadAliases.size();
  for (GlobalAlias *GA : DeadAliases)
    EraseUnusedGlobalValue(GA);

  NumIFuncs += DeadIFuncs.size();
  for (GlobalIFunc *GIF : DeadIFuncs)
    EraseUnusedGlobalValue(GIF);

  // Make sure that all memory is released
  AliveGlobals.clear();
  ConstantDependenciesCache.clear();
  GVDependencies.clear();
  ComdatMembers.clear();
  TypeIdMap.clear();
  VFESafeVTables.clear();

  if (Changed)
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}

// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
// GlobalValue, looking for the constant pointer ref that may be pointing to it.
// If found, check to see if the constant pointer ref is safe to destroy, and if
// so, nuke it.  This will reduce the reference count on the global value, which
// might make it deader.
//
bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
  if (GV.use_empty())
    return false;
  GV.removeDeadConstantUsers();
  return GV.use_empty();
}