aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/IPO/FunctionSpecialization.cpp
blob: 6c3cc391433723bf64bcb64f177cb0c170314815 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This specialises functions with constant parameters. Constant parameters
// like function pointers and constant globals are propagated to the callee by
// specializing the function. The main benefit of this pass at the moment is
// that indirect calls are transformed into direct calls, which provides inline
// opportunities that the inliner would not have been able to achieve. That's
// why function specialisation is run before the inliner in the optimisation
// pipeline; that is by design. Otherwise, we would only benefit from constant
// passing, which is a valid use-case too, but hasn't been explored much in
// terms of performance uplifts, cost-model and compile-time impact.
//
// Current limitations:
// - It does not yet handle integer ranges. We do support "literal constants",
//   but that's off by default under an option.
// - Only 1 argument per function is specialised,
// - The cost-model could be further looked into (it mainly focuses on inlining
//   benefits),
// - We are not yet caching analysis results, but profiling and checking where
//   extra compile time is spent didn't suggest this to be a problem.
//
// Ideas:
// - With a function specialization attribute for arguments, we could have
//   a direct way to steer function specialization, avoiding the cost-model,
//   and thus control compile-times / code-size.
//
// Todos:
// - Specializing recursive functions relies on running the transformation a
//   number of times, which is controlled by option
//   `func-specialization-max-iters`. Thus, increasing this value and the
//   number of iterations, will linearly increase the number of times recursive
//   functions get specialized, see also the discussion in
//   https://reviews.llvm.org/D106426 for details. Perhaps there is a
//   compile-time friendlier way to control/limit the number of specialisations
//   for recursive functions.
// - Don't transform the function if function specialization does not trigger;
//   the SCCPSolver may make IR changes.
//
// References:
// - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
//   it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>

using namespace llvm;

#define DEBUG_TYPE "function-specialization"

STATISTIC(NumFuncSpecialized, "Number of functions specialized");

static cl::opt<bool> ForceFunctionSpecialization(
    "force-function-specialization", cl::init(false), cl::Hidden,
    cl::desc("Force function specialization for every call site with a "
             "constant argument"));

static cl::opt<unsigned> FuncSpecializationMaxIters(
    "func-specialization-max-iters", cl::Hidden,
    cl::desc("The maximum number of iterations function specialization is run"),
    cl::init(1));

static cl::opt<unsigned> MaxClonesThreshold(
    "func-specialization-max-clones", cl::Hidden,
    cl::desc("The maximum number of clones allowed for a single function "
             "specialization"),
    cl::init(3));

static cl::opt<unsigned> SmallFunctionThreshold(
    "func-specialization-size-threshold", cl::Hidden,
    cl::desc("Don't specialize functions that have less than this theshold "
             "number of instructions"),
    cl::init(100));

static cl::opt<unsigned>
    AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
                          cl::desc("Average loop iteration count cost"),
                          cl::init(10));

static cl::opt<bool> SpecializeOnAddresses(
    "func-specialization-on-address", cl::init(false), cl::Hidden,
    cl::desc("Enable function specialization on the address of global values"));

// TODO: This needs checking to see the impact on compile-times, which is why
// this is off by default for now.
static cl::opt<bool> EnableSpecializationForLiteralConstant(
    "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
    cl::desc("Enable specialization of functions that take a literal constant "
             "as an argument."));

namespace {
// Bookkeeping struct to pass data from the analysis and profitability phase
// to the actual transform helper functions.
struct ArgInfo {
  Function *Fn;         // The function to perform specialisation on.
  Argument *Arg;        // The Formal argument being analysed.
  Constant *Const;      // A corresponding actual constant argument.
  InstructionCost Gain; // Profitability: Gain = Bonus - Cost.

  // Flag if this will be a partial specialization, in which case we will need
  // to keep the original function around in addition to the added
  // specializations.
  bool Partial = false;

  ArgInfo(Function *F, Argument *A, Constant *C, InstructionCost G)
      : Fn(F), Arg(A), Const(C), Gain(G){};
};
} // Anonymous namespace

using FuncList = SmallVectorImpl<Function *>;
using ConstList = SmallVectorImpl<Constant *>;

// Helper to check if \p LV is either a constant or a constant
// range with a single element. This should cover exactly the same cases as the
// old ValueLatticeElement::isConstant() and is intended to be used in the
// transition to ValueLatticeElement.
static bool isConstant(const ValueLatticeElement &LV) {
  return LV.isConstant() ||
         (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
}

// Helper to check if \p LV is either overdefined or a constant int.
static bool isOverdefined(const ValueLatticeElement &LV) {
  return !LV.isUnknownOrUndef() && !isConstant(LV);
}

static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
  Value *StoreValue = nullptr;
  for (auto *User : Alloca->users()) {
    // We can't use llvm::isAllocaPromotable() as that would fail because of
    // the usage in the CallInst, which is what we check here.
    if (User == Call)
      continue;
    if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
      if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
        return nullptr;
      continue;
    }

    if (auto *Store = dyn_cast<StoreInst>(User)) {
      // This is a duplicate store, bail out.
      if (StoreValue || Store->isVolatile())
        return nullptr;
      StoreValue = Store->getValueOperand();
      continue;
    }
    // Bail if there is any other unknown usage.
    return nullptr;
  }
  return dyn_cast_or_null<Constant>(StoreValue);
}

// A constant stack value is an AllocaInst that has a single constant
// value stored to it. Return this constant if such an alloca stack value
// is a function argument.
static Constant *getConstantStackValue(CallInst *Call, Value *Val,
                                       SCCPSolver &Solver) {
  if (!Val)
    return nullptr;
  Val = Val->stripPointerCasts();
  if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
    return ConstVal;
  auto *Alloca = dyn_cast<AllocaInst>(Val);
  if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
    return nullptr;
  return getPromotableAlloca(Alloca, Call);
}

// To support specializing recursive functions, it is important to propagate
// constant arguments because after a first iteration of specialisation, a
// reduced example may look like this:
//
//     define internal void @RecursiveFn(i32* arg1) {
//       %temp = alloca i32, align 4
//       store i32 2 i32* %temp, align 4
//       call void @RecursiveFn.1(i32* nonnull %temp)
//       ret void
//     }
//
// Before a next iteration, we need to propagate the constant like so
// which allows further specialization in next iterations.
//
//     @funcspec.arg = internal constant i32 2
//
//     define internal void @someFunc(i32* arg1) {
//       call void @otherFunc(i32* nonnull @funcspec.arg)
//       ret void
//     }
//
static void constantArgPropagation(FuncList &WorkList,
                                   Module &M, SCCPSolver &Solver) {
  // Iterate over the argument tracked functions see if there
  // are any new constant values for the call instruction via
  // stack variables.
  for (auto *F : WorkList) {
    // TODO: Generalize for any read only arguments.
    if (F->arg_size() != 1)
      continue;

    auto &Arg = *F->arg_begin();
    if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
      continue;

    for (auto *User : F->users()) {
      auto *Call = dyn_cast<CallInst>(User);
      if (!Call)
        break;
      auto *ArgOp = Call->getArgOperand(0);
      auto *ArgOpType = ArgOp->getType();
      auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
      if (!ConstVal)
        break;

      Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
                                     GlobalValue::InternalLinkage, ConstVal,
                                     "funcspec.arg");

      if (ArgOpType != ConstVal->getType())
        GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());

      Call->setArgOperand(0, GV);

      // Add the changed CallInst to Solver Worklist
      Solver.visitCall(*Call);
    }
  }
}

// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
// interfere with the constantArgPropagation optimization.
static void removeSSACopy(Function &F) {
  for (BasicBlock &BB : F) {
    for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
      auto *II = dyn_cast<IntrinsicInst>(&Inst);
      if (!II)
        continue;
      if (II->getIntrinsicID() != Intrinsic::ssa_copy)
        continue;
      Inst.replaceAllUsesWith(II->getOperand(0));
      Inst.eraseFromParent();
    }
  }
}

static void removeSSACopy(Module &M) {
  for (Function &F : M)
    removeSSACopy(F);
}

namespace {
class FunctionSpecializer {

  /// The IPSCCP Solver.
  SCCPSolver &Solver;

  /// Analyses used to help determine if a function should be specialized.
  std::function<AssumptionCache &(Function &)> GetAC;
  std::function<TargetTransformInfo &(Function &)> GetTTI;
  std::function<TargetLibraryInfo &(Function &)> GetTLI;

  SmallPtrSet<Function *, 2> SpecializedFuncs;

public:
  FunctionSpecializer(SCCPSolver &Solver,
                      std::function<AssumptionCache &(Function &)> GetAC,
                      std::function<TargetTransformInfo &(Function &)> GetTTI,
                      std::function<TargetLibraryInfo &(Function &)> GetTLI)
      : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}

  /// Attempt to specialize functions in the module to enable constant
  /// propagation across function boundaries.
  ///
  /// \returns true if at least one function is specialized.
  bool
  specializeFunctions(FuncList &FuncDecls,
                      FuncList &CurrentSpecializations) {
    bool Changed = false;
    for (auto *F : FuncDecls) {
      if (!isCandidateFunction(F, CurrentSpecializations))
        continue;

      auto Cost = getSpecializationCost(F);
      if (!Cost.isValid()) {
        LLVM_DEBUG(
            dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
        continue;
      }

      auto ConstArgs = calculateGains(F, Cost);
      if (ConstArgs.empty()) {
        LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
        continue;
      }

      for (auto &CA : ConstArgs) {
        specializeFunction(CA, CurrentSpecializations);
        Changed = true;
      }
    }

    updateSpecializedFuncs(FuncDecls, CurrentSpecializations);
    NumFuncSpecialized += NbFunctionsSpecialized;
    return Changed;
  }

  bool tryToReplaceWithConstant(Value *V) {
    if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
        V->user_empty())
      return false;

    const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
    if (isOverdefined(IV))
      return false;
    auto *Const =
        isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
    V->replaceAllUsesWith(Const);

    for (auto *U : Const->users())
      if (auto *I = dyn_cast<Instruction>(U))
        if (Solver.isBlockExecutable(I->getParent()))
          Solver.visit(I);

    // Remove the instruction from Block and Solver.
    if (auto *I = dyn_cast<Instruction>(V)) {
      if (I->isSafeToRemove()) {
        I->eraseFromParent();
        Solver.removeLatticeValueFor(I);
      }
    }
    return true;
  }

private:
  // The number of functions specialised, used for collecting statistics and
  // also in the cost model.
  unsigned NbFunctionsSpecialized = 0;

  /// Clone the function \p F and remove the ssa_copy intrinsics added by
  /// the SCCPSolver in the cloned version.
  Function *cloneCandidateFunction(Function *F) {
    ValueToValueMapTy EmptyMap;
    Function *Clone = CloneFunction(F, EmptyMap);
    removeSSACopy(*Clone);
    return Clone;
  }

  /// This function decides whether it's worthwhile to specialize function \p F
  /// based on the known constant values its arguments can take on, i.e. it
  /// calculates a gain and returns a list of actual arguments that are deemed
  /// profitable to specialize. Specialization is performed on the first
  /// interesting argument. Specializations based on additional arguments will
  /// be evaluated on following iterations of the main IPSCCP solve loop.
  SmallVector<ArgInfo> calculateGains(Function *F, InstructionCost Cost) {
    SmallVector<ArgInfo> Worklist;
    // Determine if we should specialize the function based on the values the
    // argument can take on. If specialization is not profitable, we continue
    // on to the next argument.
    for (Argument &FormalArg : F->args()) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: "
                        << FormalArg.getName() << "\n");
      // Determine if this argument is interesting. If we know the argument can
      // take on any constant values, they are collected in Constants. If the
      // argument can only ever equal a constant value in Constants, the
      // function will be completely specialized, and the IsPartial flag will
      // be set to false by isArgumentInteresting (that function only adds
      // values to the Constants list that are deemed profitable).
      bool IsPartial = true;
      SmallVector<Constant *> ActualConstArg;
      if (!isArgumentInteresting(&FormalArg, ActualConstArg, IsPartial)) {
        LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
        continue;
      }

      for (auto *ActualArg : ActualConstArg) {
        InstructionCost Gain =
            ForceFunctionSpecialization
                ? 1
                : getSpecializationBonus(&FormalArg, ActualArg) - Cost;

        if (Gain <= 0)
          continue;
        Worklist.push_back({F, &FormalArg, ActualArg, Gain});
      }

      if (Worklist.empty())
        continue;

      // Sort the candidates in descending order.
      llvm::stable_sort(Worklist, [](const ArgInfo &L, const ArgInfo &R) {
        return L.Gain > R.Gain;
      });

      // Truncate the worklist to 'MaxClonesThreshold' candidates if
      // necessary.
      if (Worklist.size() > MaxClonesThreshold) {
        LLVM_DEBUG(dbgs() << "FnSpecialization: number of candidates exceed "
                    << "the maximum number of clones threshold.\n"
                    << "Truncating worklist to " << MaxClonesThreshold
                    << " candidates.\n");
        Worklist.erase(Worklist.begin() + MaxClonesThreshold,
                       Worklist.end());
      }

      if (IsPartial || Worklist.size() < ActualConstArg.size())
        for (auto &ActualArg : Worklist)
          ActualArg.Partial = true;

      LLVM_DEBUG(dbgs() << "Sorted list of candidates by gain:\n";
                 for (auto &C
                      : Worklist) {
                   dbgs() << "- Function = " << C.Fn->getName() << ", ";
                   dbgs() << "FormalArg = " << C.Arg->getName() << ", ";
                   dbgs() << "ActualArg = " << C.Const->getName() << ", ";
                   dbgs() << "Gain = " << C.Gain << "\n";
                 });

      // FIXME: Only one argument per function.
      break;
    }
    return Worklist;
  }

  bool isCandidateFunction(Function *F, FuncList &Specializations) {
    // Do not specialize the cloned function again.
    if (SpecializedFuncs.contains(F))
      return false;

    // If we're optimizing the function for size, we shouldn't specialize it.
    if (F->hasOptSize() ||
        shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
      return false;

    // Exit if the function is not executable. There's no point in specializing
    // a dead function.
    if (!Solver.isBlockExecutable(&F->getEntryBlock()))
      return false;

    // It wastes time to specialize a function which would get inlined finally.
    if (F->hasFnAttribute(Attribute::AlwaysInline))
      return false;

    LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
                      << "\n");
    return true;
  }

  void specializeFunction(ArgInfo &AI, FuncList &Specializations) {
    Function *Clone = cloneCandidateFunction(AI.Fn);
    Argument *ClonedArg = Clone->getArg(AI.Arg->getArgNo());

    // Rewrite calls to the function so that they call the clone instead.
    rewriteCallSites(AI.Fn, Clone, *ClonedArg, AI.Const);

    // Initialize the lattice state of the arguments of the function clone,
    // marking the argument on which we specialized the function constant
    // with the given value.
    Solver.markArgInFuncSpecialization(AI.Fn, ClonedArg, AI.Const);

    // Mark all the specialized functions
    Specializations.push_back(Clone);
    NbFunctionsSpecialized++;

    // If the function has been completely specialized, the original function
    // is no longer needed. Mark it unreachable.
    if (!AI.Partial)
      Solver.markFunctionUnreachable(AI.Fn);
  }

  /// Compute and return the cost of specializing function \p F.
  InstructionCost getSpecializationCost(Function *F) {
    // Compute the code metrics for the function.
    SmallPtrSet<const Value *, 32> EphValues;
    CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
    CodeMetrics Metrics;
    for (BasicBlock &BB : *F)
      Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);

    // If the code metrics reveal that we shouldn't duplicate the function, we
    // shouldn't specialize it. Set the specialization cost to Invalid.
    // Or if the lines of codes implies that this function is easy to get
    // inlined so that we shouldn't specialize it.
    if (Metrics.notDuplicatable ||
        (!ForceFunctionSpecialization &&
         Metrics.NumInsts < SmallFunctionThreshold)) {
      InstructionCost C{};
      C.setInvalid();
      return C;
    }

    // Otherwise, set the specialization cost to be the cost of all the
    // instructions in the function and penalty for specializing more functions.
    unsigned Penalty = NbFunctionsSpecialized + 1;
    return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
  }

  InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
                               LoopInfo &LI) {
    auto *I = dyn_cast_or_null<Instruction>(U);
    // If not an instruction we do not know how to evaluate.
    // Keep minimum possible cost for now so that it doesnt affect
    // specialization.
    if (!I)
      return std::numeric_limits<unsigned>::min();

    auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);

    // Traverse recursively if there are more uses.
    // TODO: Any other instructions to be added here?
    if (I->mayReadFromMemory() || I->isCast())
      for (auto *User : I->users())
        Cost += getUserBonus(User, TTI, LI);

    // Increase the cost if it is inside the loop.
    auto LoopDepth = LI.getLoopDepth(I->getParent());
    Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
    return Cost;
  }

  /// Compute a bonus for replacing argument \p A with constant \p C.
  InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
    Function *F = A->getParent();
    DominatorTree DT(*F);
    LoopInfo LI(DT);
    auto &TTI = (GetTTI)(*F);
    LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
                      << "\n");

    InstructionCost TotalCost = 0;
    for (auto *U : A->users()) {
      TotalCost += getUserBonus(U, TTI, LI);
      LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
                 TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
    }

    // The below heuristic is only concerned with exposing inlining
    // opportunities via indirect call promotion. If the argument is not a
    // function pointer, give up.
    if (!isa<PointerType>(A->getType()) ||
        !isa<FunctionType>(A->getType()->getPointerElementType()))
      return TotalCost;

    // Since the argument is a function pointer, its incoming constant values
    // should be functions or constant expressions. The code below attempts to
    // look through cast expressions to find the function that will be called.
    Value *CalledValue = C;
    while (isa<ConstantExpr>(CalledValue) &&
           cast<ConstantExpr>(CalledValue)->isCast())
      CalledValue = cast<User>(CalledValue)->getOperand(0);
    Function *CalledFunction = dyn_cast<Function>(CalledValue);
    if (!CalledFunction)
      return TotalCost;

    // Get TTI for the called function (used for the inline cost).
    auto &CalleeTTI = (GetTTI)(*CalledFunction);

    // Look at all the call sites whose called value is the argument.
    // Specializing the function on the argument would allow these indirect
    // calls to be promoted to direct calls. If the indirect call promotion
    // would likely enable the called function to be inlined, specializing is a
    // good idea.
    int Bonus = 0;
    for (User *U : A->users()) {
      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
        continue;
      auto *CS = cast<CallBase>(U);
      if (CS->getCalledOperand() != A)
        continue;

      // Get the cost of inlining the called function at this call site. Note
      // that this is only an estimate. The called function may eventually
      // change in a way that leads to it not being inlined here, even though
      // inlining looks profitable now. For example, one of its called
      // functions may be inlined into it, making the called function too large
      // to be inlined into this call site.
      //
      // We apply a boost for performing indirect call promotion by increasing
      // the default threshold by the threshold for indirect calls.
      auto Params = getInlineParams();
      Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
      InlineCost IC =
          getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);

      // We clamp the bonus for this call to be between zero and the default
      // threshold.
      if (IC.isAlways())
        Bonus += Params.DefaultThreshold;
      else if (IC.isVariable() && IC.getCostDelta() > 0)
        Bonus += IC.getCostDelta();
    }

    return TotalCost + Bonus;
  }

  /// Determine if we should specialize a function based on the incoming values
  /// of the given argument.
  ///
  /// This function implements the goal-directed heuristic. It determines if
  /// specializing the function based on the incoming values of argument \p A
  /// would result in any significant optimization opportunities. If
  /// optimization opportunities exist, the constant values of \p A on which to
  /// specialize the function are collected in \p Constants. If the values in
  /// \p Constants represent the complete set of values that \p A can take on,
  /// the function will be completely specialized, and the \p IsPartial flag is
  /// set to false.
  ///
  /// \returns true if the function should be specialized on the given
  /// argument.
  bool isArgumentInteresting(Argument *A, ConstList &Constants,
                             bool &IsPartial) {
    // For now, don't attempt to specialize functions based on the values of
    // composite types.
    if (!A->getType()->isSingleValueType() || A->user_empty())
      return false;

    // If the argument isn't overdefined, there's nothing to do. It should
    // already be constant.
    if (!Solver.getLatticeValueFor(A).isOverdefined()) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
                        << "constant?\n");
      return false;
    }

    // Collect the constant values that the argument can take on. If the
    // argument can't take on any constant values, we aren't going to
    // specialize the function. While it's possible to specialize the function
    // based on non-constant arguments, there's likely not much benefit to
    // constant propagation in doing so.
    //
    // TODO 1: currently it won't specialize if there are over the threshold of
    // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
    // might be beneficial to take the occurrences into account in the cost
    // model, so we would need to find the unique constants.
    //
    // TODO 2: this currently does not support constants, i.e. integer ranges.
    //
    IsPartial = !getPossibleConstants(A, Constants);
    LLVM_DEBUG(dbgs() << "FnSpecialization: interesting arg: " << *A << "\n");
    return true;
  }

  /// Collect in \p Constants all the constant values that argument \p A can
  /// take on.
  ///
  /// \returns true if all of the values the argument can take on are constant
  /// (e.g., the argument's parent function cannot be called with an
  /// overdefined value).
  bool getPossibleConstants(Argument *A, ConstList &Constants) {
    Function *F = A->getParent();
    bool AllConstant = true;

    // Iterate over all the call sites of the argument's parent function.
    for (User *U : F->users()) {
      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
        continue;
      auto &CS = *cast<CallBase>(U);
      // If the call site has attribute minsize set, that callsite won't be
      // specialized.
      if (CS.hasFnAttr(Attribute::MinSize)) {
        AllConstant = false;
        continue;
      }

      // If the parent of the call site will never be executed, we don't need
      // to worry about the passed value.
      if (!Solver.isBlockExecutable(CS.getParent()))
        continue;

      auto *V = CS.getArgOperand(A->getArgNo());
      if (isa<PoisonValue>(V))
        return false;

      // For now, constant expressions are fine but only if they are function
      // calls.
      if (auto *CE = dyn_cast<ConstantExpr>(V))
        if (!isa<Function>(CE->getOperand(0)))
          return false;

      // TrackValueOfGlobalVariable only tracks scalar global variables.
      if (auto *GV = dyn_cast<GlobalVariable>(V)) {
        // Check if we want to specialize on the address of non-constant
        // global values.
        if (!GV->isConstant())
          if (!SpecializeOnAddresses)
            return false;

        if (!GV->getValueType()->isSingleValueType())
          return false;
      }

      if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
                               EnableSpecializationForLiteralConstant))
        Constants.push_back(cast<Constant>(V));
      else
        AllConstant = false;
    }

    // If the argument can only take on constant values, AllConstant will be
    // true.
    return AllConstant;
  }

  /// Rewrite calls to function \p F to call function \p Clone instead.
  ///
  /// This function modifies calls to function \p F whose argument at index \p
  /// ArgNo is equal to constant \p C. The calls are rewritten to call function
  /// \p Clone instead.
  ///
  /// Callsites that have been marked with the MinSize function attribute won't
  /// be specialized and rewritten.
  void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
                        Constant *C) {
    unsigned ArgNo = Arg.getArgNo();
    SmallVector<CallBase *, 4> CallSitesToRewrite;
    for (auto *U : F->users()) {
      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
        continue;
      auto &CS = *cast<CallBase>(U);
      if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
        continue;
      CallSitesToRewrite.push_back(&CS);
    }
    for (auto *CS : CallSitesToRewrite) {
      if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
          CS->getArgOperand(ArgNo) == C) {
        CS->setCalledFunction(Clone);
        Solver.markOverdefined(CS);
      }
    }
  }

  void updateSpecializedFuncs(FuncList &FuncDecls,
                              FuncList &CurrentSpecializations) {
    for (auto *SpecializedFunc : CurrentSpecializations) {
      SpecializedFuncs.insert(SpecializedFunc);

      // Initialize the state of the newly created functions, marking them
      // argument-tracked and executable.
      if (SpecializedFunc->hasExactDefinition() &&
          !SpecializedFunc->hasFnAttribute(Attribute::Naked))
        Solver.addTrackedFunction(SpecializedFunc);

      Solver.addArgumentTrackedFunction(SpecializedFunc);
      FuncDecls.push_back(SpecializedFunc);
      Solver.markBlockExecutable(&SpecializedFunc->front());

      // Replace the function arguments for the specialized functions.
      for (Argument &Arg : SpecializedFunc->args())
        if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
          LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
                            << Arg.getName() << "\n");
    }
  }
};
} // namespace

bool llvm::runFunctionSpecialization(
    Module &M, const DataLayout &DL,
    std::function<TargetLibraryInfo &(Function &)> GetTLI,
    std::function<TargetTransformInfo &(Function &)> GetTTI,
    std::function<AssumptionCache &(Function &)> GetAC,
    function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
  SCCPSolver Solver(DL, GetTLI, M.getContext());
  FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
  bool Changed = false;

  // Loop over all functions, marking arguments to those with their addresses
  // taken or that are external as overdefined.
  for (Function &F : M) {
    if (F.isDeclaration())
      continue;
    if (F.hasFnAttribute(Attribute::NoDuplicate))
      continue;

    LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
                      << "\n");
    Solver.addAnalysis(F, GetAnalysis(F));

    // Determine if we can track the function's arguments. If so, add the
    // function to the solver's set of argument-tracked functions.
    if (canTrackArgumentsInterprocedurally(&F)) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
      Solver.addArgumentTrackedFunction(&F);
      continue;
    } else {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
                        << "FnSpecialization: Doesn't have local linkage, or "
                        << "has its address taken\n");
    }

    // Assume the function is called.
    Solver.markBlockExecutable(&F.front());

    // Assume nothing about the incoming arguments.
    for (Argument &AI : F.args())
      Solver.markOverdefined(&AI);
  }

  // Determine if we can track any of the module's global variables. If so, add
  // the global variables we can track to the solver's set of tracked global
  // variables.
  for (GlobalVariable &G : M.globals()) {
    G.removeDeadConstantUsers();
    if (canTrackGlobalVariableInterprocedurally(&G))
      Solver.trackValueOfGlobalVariable(&G);
  }

  auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
  SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
                                        TrackedFuncs.end());

  // No tracked functions, so nothing to do: don't run the solver and remove
  // the ssa_copy intrinsics that may have been introduced.
  if (TrackedFuncs.empty()) {
    removeSSACopy(M);
    return false;
  }

  // Solve for constants.
  auto RunSCCPSolver = [&](auto &WorkList) {
    bool ResolvedUndefs = true;

    while (ResolvedUndefs) {
      // Not running the solver unnecessary is checked in regression test
      // nothing-to-do.ll, so if this debug message is changed, this regression
      // test needs updating too.
      LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");

      Solver.solve();
      LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
      ResolvedUndefs = false;
      for (Function *F : WorkList)
        if (Solver.resolvedUndefsIn(*F))
          ResolvedUndefs = true;
    }

    for (auto *F : WorkList) {
      for (BasicBlock &BB : *F) {
        if (!Solver.isBlockExecutable(&BB))
          continue;
        // FIXME: The solver may make changes to the function here, so set
        // Changed, even if later function specialization does not trigger.
        for (auto &I : make_early_inc_range(BB))
          Changed |= FS.tryToReplaceWithConstant(&I);
      }
    }
  };

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
  for (auto *F : FuncDecls)
    LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
#endif

  // Initially resolve the constants in all the argument tracked functions.
  RunSCCPSolver(FuncDecls);

  SmallVector<Function *, 2> CurrentSpecializations;
  unsigned I = 0;
  while (FuncSpecializationMaxIters != I++ &&
         FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {

    // Run the solver for the specialized functions.
    RunSCCPSolver(CurrentSpecializations);

    // Replace some unresolved constant arguments.
    constantArgPropagation(FuncDecls, M, Solver);

    CurrentSpecializations.clear();
    Changed = true;
  }

  // Clean up the IR by removing ssa_copy intrinsics.
  removeSSACopy(M);
  return Changed;
}