aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Target/X86/X86TargetMachine.cpp
blob: e3d0128dd73dad9d2f416c8e85ea0224e43cb7e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//

#include "X86TargetMachine.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86.h"
#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86MacroFusion.h"
#include "X86Subtarget.h"
#include "X86TargetObjectFile.h"
#include "X86TargetTransformInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/CFGuard.h"
#include <memory>
#include <string>

using namespace llvm;

static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
                               cl::desc("Enable the machine combiner pass"),
                               cl::init(true), cl::Hidden);

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
  // Register the target.
  RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
  RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());

  PassRegistry &PR = *PassRegistry::getPassRegistry();
  initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
  initializeX86LowerAMXTypeLegacyPassPass(PR);
  initializeX86PreAMXConfigPassPass(PR);
  initializeGlobalISel(PR);
  initializeWinEHStatePassPass(PR);
  initializeFixupBWInstPassPass(PR);
  initializeEvexToVexInstPassPass(PR);
  initializeFixupLEAPassPass(PR);
  initializeFPSPass(PR);
  initializeX86FixupSetCCPassPass(PR);
  initializeX86CallFrameOptimizationPass(PR);
  initializeX86CmovConverterPassPass(PR);
  initializeX86TileConfigPass(PR);
  initializeX86FastTileConfigPass(PR);
  initializeX86LowerTileCopyPass(PR);
  initializeX86ExpandPseudoPass(PR);
  initializeX86ExecutionDomainFixPass(PR);
  initializeX86DomainReassignmentPass(PR);
  initializeX86AvoidSFBPassPass(PR);
  initializeX86AvoidTrailingCallPassPass(PR);
  initializeX86SpeculativeLoadHardeningPassPass(PR);
  initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
  initializeX86FlagsCopyLoweringPassPass(PR);
  initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
  initializeX86LoadValueInjectionRetHardeningPassPass(PR);
  initializeX86OptimizeLEAPassPass(PR);
  initializeX86PartialReductionPass(PR);
  initializePseudoProbeInserterPass(PR);
}

static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  if (TT.isOSBinFormatMachO()) {
    if (TT.getArch() == Triple::x86_64)
      return std::make_unique<X86_64MachoTargetObjectFile>();
    return std::make_unique<TargetLoweringObjectFileMachO>();
  }

  if (TT.isOSBinFormatCOFF())
    return std::make_unique<TargetLoweringObjectFileCOFF>();
  return std::make_unique<X86ELFTargetObjectFile>();
}

static std::string computeDataLayout(const Triple &TT) {
  // X86 is little endian
  std::string Ret = "e";

  Ret += DataLayout::getManglingComponent(TT);
  // X86 and x32 have 32 bit pointers.
  if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
    Ret += "-p:32:32";

  // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
  Ret += "-p270:32:32-p271:32:32-p272:64:64";

  // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
  if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
    Ret += "-i64:64";
  else if (TT.isOSIAMCU())
    Ret += "-i64:32-f64:32";
  else
    Ret += "-f64:32:64";

  // Some ABIs align long double to 128 bits, others to 32.
  if (TT.isOSNaCl() || TT.isOSIAMCU())
    ; // No f80
  else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment())
    Ret += "-f80:128";
  else
    Ret += "-f80:32";

  if (TT.isOSIAMCU())
    Ret += "-f128:32";

  // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
  if (TT.isArch64Bit())
    Ret += "-n8:16:32:64";
  else
    Ret += "-n8:16:32";

  // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
  if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
    Ret += "-a:0:32-S32";
  else
    Ret += "-S128";

  return Ret;
}

static Reloc::Model getEffectiveRelocModel(const Triple &TT,
                                           bool JIT,
                                           Optional<Reloc::Model> RM) {
  bool is64Bit = TT.getArch() == Triple::x86_64;
  if (!RM.hasValue()) {
    // JIT codegen should use static relocations by default, since it's
    // typically executed in process and not relocatable.
    if (JIT)
      return Reloc::Static;

    // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
    // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
    // use static relocation model by default.
    if (TT.isOSDarwin()) {
      if (is64Bit)
        return Reloc::PIC_;
      return Reloc::DynamicNoPIC;
    }
    if (TT.isOSWindows() && is64Bit)
      return Reloc::PIC_;
    return Reloc::Static;
  }

  // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
  // is defined as a model for code which may be used in static or dynamic
  // executables but not necessarily a shared library. On X86-32 we just
  // compile in -static mode, in x86-64 we use PIC.
  if (*RM == Reloc::DynamicNoPIC) {
    if (is64Bit)
      return Reloc::PIC_;
    if (!TT.isOSDarwin())
      return Reloc::Static;
  }

  // If we are on Darwin, disallow static relocation model in X86-64 mode, since
  // the Mach-O file format doesn't support it.
  if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
    return Reloc::PIC_;

  return *RM;
}

static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
                                                 bool JIT, bool Is64Bit) {
  if (CM) {
    if (*CM == CodeModel::Tiny)
      report_fatal_error("Target does not support the tiny CodeModel", false);
    return *CM;
  }
  if (JIT)
    return Is64Bit ? CodeModel::Large : CodeModel::Small;
  return CodeModel::Small;
}

/// Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
                                   StringRef CPU, StringRef FS,
                                   const TargetOptions &Options,
                                   Optional<Reloc::Model> RM,
                                   Optional<CodeModel::Model> CM,
                                   CodeGenOpt::Level OL, bool JIT)
    : LLVMTargetMachine(
          T, computeDataLayout(TT), TT, CPU, FS, Options,
          getEffectiveRelocModel(TT, JIT, RM),
          getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
          OL),
      TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
  // On PS4, the "return address" of a 'noreturn' call must still be within
  // the calling function, and TrapUnreachable is an easy way to get that.
  if (TT.isPS4() || TT.isOSBinFormatMachO()) {
    this->Options.TrapUnreachable = true;
    this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
  }

  setMachineOutliner(true);

  // x86 supports the debug entry values.
  setSupportsDebugEntryValues(true);

  initAsmInfo();
}

X86TargetMachine::~X86TargetMachine() = default;

const X86Subtarget *
X86TargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute TuneAttr = F.getFnAttribute("tune-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  StringRef CPU =
      CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
  StringRef TuneCPU =
      TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU;
  StringRef FS =
      FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;

  SmallString<512> Key;
  // The additions here are ordered so that the definitely short strings are
  // added first so we won't exceed the small size. We append the
  // much longer FS string at the end so that we only heap allocate at most
  // one time.

  // Extract prefer-vector-width attribute.
  unsigned PreferVectorWidthOverride = 0;
  Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
  if (PreferVecWidthAttr.isValid()) {
    StringRef Val = PreferVecWidthAttr.getValueAsString();
    unsigned Width;
    if (!Val.getAsInteger(0, Width)) {
      Key += 'p';
      Key += Val;
      PreferVectorWidthOverride = Width;
    }
  }

  // Extract min-legal-vector-width attribute.
  unsigned RequiredVectorWidth = UINT32_MAX;
  Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
  if (MinLegalVecWidthAttr.isValid()) {
    StringRef Val = MinLegalVecWidthAttr.getValueAsString();
    unsigned Width;
    if (!Val.getAsInteger(0, Width)) {
      Key += 'm';
      Key += Val;
      RequiredVectorWidth = Width;
    }
  }

  // Add CPU to the Key.
  Key += CPU;

  // Add tune CPU to the Key.
  Key += TuneCPU;

  // Keep track of the start of the feature portion of the string.
  unsigned FSStart = Key.size();

  // FIXME: This is related to the code below to reset the target options,
  // we need to know whether or not the soft float flag is set on the
  // function before we can generate a subtarget. We also need to use
  // it as a key for the subtarget since that can be the only difference
  // between two functions.
  bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
  // If the soft float attribute is set on the function turn on the soft float
  // subtarget feature.
  if (SoftFloat)
    Key += FS.empty() ? "+soft-float" : "+soft-float,";

  Key += FS;

  // We may have added +soft-float to the features so move the StringRef to
  // point to the full string in the Key.
  FS = Key.substr(FSStart);

  auto &I = SubtargetMap[Key];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<X86Subtarget>(
        TargetTriple, CPU, TuneCPU, FS, *this,
        MaybeAlign(F.getParent()->getOverrideStackAlignment()),
        PreferVectorWidthOverride, RequiredVectorWidth);
  }
  return I.get();
}

bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
                                           unsigned DestAS) const {
  assert(SrcAS != DestAS && "Expected different address spaces!");
  if (getPointerSize(SrcAS) != getPointerSize(DestAS))
    return false;
  return SrcAS < 256 && DestAS < 256;
}

//===----------------------------------------------------------------------===//
// X86 TTI query.
//===----------------------------------------------------------------------===//

TargetTransformInfo
X86TargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(X86TTIImpl(this, F));
}

//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//

namespace {

/// X86 Code Generator Pass Configuration Options.
class X86PassConfig : public TargetPassConfig {
public:
  X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {}

  X86TargetMachine &getX86TargetMachine() const {
    return getTM<X86TargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
    DAG->addMutation(createX86MacroFusionDAGMutation());
    return DAG;
  }

  ScheduleDAGInstrs *
  createPostMachineScheduler(MachineSchedContext *C) const override {
    ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
    DAG->addMutation(createX86MacroFusionDAGMutation());
    return DAG;
  }

  void addIRPasses() override;
  bool addInstSelector() override;
  bool addIRTranslator() override;
  bool addLegalizeMachineIR() override;
  bool addRegBankSelect() override;
  bool addGlobalInstructionSelect() override;
  bool addILPOpts() override;
  bool addPreISel() override;
  void addMachineSSAOptimization() override;
  void addPreRegAlloc() override;
  bool addPostFastRegAllocRewrite() override;
  void addPostRegAlloc() override;
  void addPreEmitPass() override;
  void addPreEmitPass2() override;
  void addPreSched2() override;
  bool addPreRewrite() override;

  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};

class X86ExecutionDomainFix : public ExecutionDomainFix {
public:
  static char ID;
  X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
  StringRef getPassName() const override {
    return "X86 Execution Dependency Fix";
  }
};
char X86ExecutionDomainFix::ID;

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
  "X86 Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
  "X86 Execution Domain Fix", false, false)

TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
  return new X86PassConfig(*this, PM);
}

void X86PassConfig::addIRPasses() {
  addPass(createAtomicExpandPass());

  // We add both pass anyway and when these two passes run, we skip the pass
  // based on the option level and option attribute.
  addPass(createX86LowerAMXIntrinsicsPass());
  addPass(createX86LowerAMXTypePass());

  if (TM->getOptLevel() == CodeGenOpt::None)
    addPass(createX86PreAMXConfigPass());

  TargetPassConfig::addIRPasses();

  if (TM->getOptLevel() != CodeGenOpt::None) {
    addPass(createInterleavedAccessPass());
    addPass(createX86PartialReductionPass());
  }

  // Add passes that handle indirect branch removal and insertion of a retpoline
  // thunk. These will be a no-op unless a function subtarget has the retpoline
  // feature enabled.
  addPass(createIndirectBrExpandPass());

  // Add Control Flow Guard checks.
  const Triple &TT = TM->getTargetTriple();
  if (TT.isOSWindows()) {
    if (TT.getArch() == Triple::x86_64) {
      addPass(createCFGuardDispatchPass());
    } else {
      addPass(createCFGuardCheckPass());
    }
  }
}

bool X86PassConfig::addInstSelector() {
  // Install an instruction selector.
  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));

  // For ELF, cleanup any local-dynamic TLS accesses.
  if (TM->getTargetTriple().isOSBinFormatELF() &&
      getOptLevel() != CodeGenOpt::None)
    addPass(createCleanupLocalDynamicTLSPass());

  addPass(createX86GlobalBaseRegPass());
  return false;
}

bool X86PassConfig::addIRTranslator() {
  addPass(new IRTranslator(getOptLevel()));
  return false;
}

bool X86PassConfig::addLegalizeMachineIR() {
  addPass(new Legalizer());
  return false;
}

bool X86PassConfig::addRegBankSelect() {
  addPass(new RegBankSelect());
  return false;
}

bool X86PassConfig::addGlobalInstructionSelect() {
  addPass(new InstructionSelect(getOptLevel()));
  return false;
}

bool X86PassConfig::addILPOpts() {
  addPass(&EarlyIfConverterID);
  if (EnableMachineCombinerPass)
    addPass(&MachineCombinerID);
  addPass(createX86CmovConverterPass());
  return true;
}

bool X86PassConfig::addPreISel() {
  // Only add this pass for 32-bit x86 Windows.
  const Triple &TT = TM->getTargetTriple();
  if (TT.isOSWindows() && TT.getArch() == Triple::x86)
    addPass(createX86WinEHStatePass());
  return true;
}

void X86PassConfig::addPreRegAlloc() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(&LiveRangeShrinkID);
    addPass(createX86FixupSetCC());
    addPass(createX86OptimizeLEAs());
    addPass(createX86CallFrameOptimization());
    addPass(createX86AvoidStoreForwardingBlocks());
  }

  addPass(createX86SpeculativeLoadHardeningPass());
  addPass(createX86FlagsCopyLoweringPass());
  addPass(createX86DynAllocaExpander());

  if (getOptLevel() != CodeGenOpt::None) {
    addPass(createX86PreTileConfigPass());
  }
}

void X86PassConfig::addMachineSSAOptimization() {
  addPass(createX86DomainReassignmentPass());
  TargetPassConfig::addMachineSSAOptimization();
}

void X86PassConfig::addPostRegAlloc() {
  addPass(createX86LowerTileCopyPass());
  addPass(createX86FloatingPointStackifierPass());
  // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
  // to using the Speculative Execution Side Effect Suppression pass for
  // mitigation. This is to prevent slow downs due to
  // analyses needed by the LVIHardening pass when compiling at -O0.
  if (getOptLevel() != CodeGenOpt::None)
    addPass(createX86LoadValueInjectionLoadHardeningPass());
}

void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }

void X86PassConfig::addPreEmitPass() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(new X86ExecutionDomainFix());
    addPass(createBreakFalseDeps());
  }

  addPass(createX86IndirectBranchTrackingPass());

  addPass(createX86IssueVZeroUpperPass());

  if (getOptLevel() != CodeGenOpt::None) {
    addPass(createX86FixupBWInsts());
    addPass(createX86PadShortFunctions());
    addPass(createX86FixupLEAs());
  }
  addPass(createX86EvexToVexInsts());
  addPass(createX86DiscriminateMemOpsPass());
  addPass(createX86InsertPrefetchPass());
  addPass(createX86InsertX87waitPass());
}

void X86PassConfig::addPreEmitPass2() {
  const Triple &TT = TM->getTargetTriple();
  const MCAsmInfo *MAI = TM->getMCAsmInfo();

  // The X86 Speculative Execution Pass must run after all control
  // flow graph modifying passes. As a result it was listed to run right before
  // the X86 Retpoline Thunks pass. The reason it must run after control flow
  // graph modifications is that the model of LFENCE in LLVM has to be updated
  // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
  // placement of this pass was hand checked to ensure that the subsequent
  // passes don't move the code around the LFENCEs in a way that will hurt the
  // correctness of this pass. This placement has been shown to work based on
  // hand inspection of the codegen output.
  addPass(createX86SpeculativeExecutionSideEffectSuppression());
  addPass(createX86IndirectThunksPass());

  // Insert extra int3 instructions after trailing call instructions to avoid
  // issues in the unwinder.
  if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
    addPass(createX86AvoidTrailingCallPass());

  // Verify basic block incoming and outgoing cfa offset and register values and
  // correct CFA calculation rule where needed by inserting appropriate CFI
  // instructions.
  if (!TT.isOSDarwin() &&
      (!TT.isOSWindows() ||
       MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
    addPass(createCFIInstrInserter());

  if (TT.isOSWindows()) {
    // Identify valid longjmp targets for Windows Control Flow Guard.
    addPass(createCFGuardLongjmpPass());
    // Identify valid eh continuation targets for Windows EHCont Guard.
    addPass(createEHContGuardCatchretPass());
  }
  addPass(createX86LoadValueInjectionRetHardeningPass());

  // Insert pseudo probe annotation for callsite profiling
  addPass(createPseudoProbeInserter());

  // On Darwin platforms, BLR_RVMARKER pseudo instructions are lowered to
  // bundles.
  if (TT.isOSDarwin())
    addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
      // Only run bundle expansion if there are relevant ObjC runtime functions
      // present in the module.
      const Function &F = MF.getFunction();
      const Module *M = F.getParent();
      return M->getFunction("objc_retainAutoreleasedReturnValue") ||
             M->getFunction("objc_unsafeClaimAutoreleasedReturnValue");
    }));
}

bool X86PassConfig::addPostFastRegAllocRewrite() {
  addPass(createX86FastTileConfigPass());
  return true;
}

bool X86PassConfig::addPreRewrite() {
  addPass(createX86TileConfigPass());
  return true;
}

std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
  return getStandardCSEConfigForOpt(TM->getOptLevel());
}