1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
//===-- X86FastTileConfig.cpp - Fast Tile Register Configure---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to config the shape of AMX physical registers
/// AMX register need to be configured before use. Before FastRegAllocation pass
/// the ldtilecfg instruction is inserted, however at that time we don't
/// know the shape of each physical tile registers, because the register
/// allocation is not done yet. This pass runs after register allocation
/// pass. It collects the shape information of each physical tile register
/// and store the shape in the stack slot that is allocated for load config
/// to tile config register.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "fasttileconfig"
namespace {
class X86FastTileConfig : public MachineFunctionPass {
// context
MachineFunction *MF = nullptr;
const X86Subtarget *ST = nullptr;
const TargetRegisterInfo *TRI = nullptr;
const TargetInstrInfo *TII = nullptr;
MachineRegisterInfo *MRI = nullptr;
X86MachineFunctionInfo *X86FI = nullptr;
MachineInstr *getTileConfigPoint();
void tileConfig();
public:
X86FastTileConfig() : MachineFunctionPass(ID) {}
bool fastTileConfig();
bool isTileLoad(MachineInstr &MI);
bool isTileStore(MachineInstr &MI);
bool isAMXInstr(MachineInstr &MI);
MachineInstr *getKeyAMXInstr(MachineInstr *MI);
void getTileShapesCfg(MachineInstr *MI,
SmallVector<MachineOperand *> &ShapedTiles);
void getShapeCfgInstrs(MachineInstr *MI,
std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs);
/// Return the pass name.
StringRef getPassName() const override {
return "Fast Tile Register Configure";
}
void materializeTileCfg(MachineInstr *MI);
void rewriteTileCfg(SmallVector<MachineOperand *> &ShapedTiles,
std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs);
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &MFunc) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
static char ID;
};
} // end anonymous namespace
char X86FastTileConfig::ID = 0;
INITIALIZE_PASS_BEGIN(X86FastTileConfig, DEBUG_TYPE,
"Fast Tile Register Configure", false, false)
INITIALIZE_PASS_END(X86FastTileConfig, DEBUG_TYPE,
"Fast Tile Register Configure", false, false)
static bool isTilePhysReg(MachineOperand &Op) {
if (!Op.isReg())
return false;
Register Reg = Op.getReg();
if (Reg >= X86::TMM0 && Reg <= X86::TMM7)
return true;
return false;
}
static unsigned getTilePhysRegIdx(MachineOperand *Op) {
assert(isTilePhysReg(*Op) && "Tile Operand is invalid");
return Op->getReg() - X86::TMM0;
}
static inline void adjustRowCfg(unsigned TIdx, MachineInstr *MI) {
unsigned Offset = 48 + TIdx;
MI->getOperand(3).ChangeToImmediate(Offset);
}
static inline void adjustColCfg(unsigned TIdx, MachineInstr *MI) {
unsigned Offset = 16 + TIdx * 2;
MI->getOperand(3).ChangeToImmediate(Offset);
}
bool X86FastTileConfig::isTileLoad(MachineInstr &MI) {
return MI.getOpcode() == X86::PTILELOADDV ||
MI.getOpcode() == X86::PTILELOADDT1V;
}
bool X86FastTileConfig::isTileStore(MachineInstr &MI) {
return MI.getOpcode() == X86::PTILESTOREDV;
}
bool X86FastTileConfig::isAMXInstr(MachineInstr &MI) {
// TODO: May need to handle some special nontile amx instrucion.
if (MI.getOpcode() == X86::PLDTILECFGV || MI.isDebugInstr())
return false;
return llvm::any_of(MI.operands(), isTilePhysReg);
}
MachineInstr *X86FastTileConfig::getKeyAMXInstr(MachineInstr *MI) {
auto Cfg = MachineBasicBlock::iterator(MI);
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *KeyMI = nullptr;
int KeyAMXNum = 0;
for (auto II = Cfg; II != MBB->end(); II++) {
if (isTileLoad(*II)) {
KeyMI = &*II;
continue;
}
if (isTileStore(*II)) {
assert(KeyMI && "Key AMX Should be found before!");
break;
}
if (isAMXInstr(*II)) {
assert((KeyAMXNum == 0) && "Too many Key AMX instruction!");
KeyAMXNum++;
KeyMI = &*II;
}
}
assert(KeyMI && "There must be an AMX instruction.");
return KeyMI;
}
// Orderly get the tiles in key amx instruction, uses before defs.
void X86FastTileConfig::getTileShapesCfg(
MachineInstr *CfgMI, SmallVector<MachineOperand *> &ShapedTiles) {
MachineInstr *KeyMI = getKeyAMXInstr(CfgMI);
SmallVector<MachineOperand *> DefTiles;
for (MachineOperand &MO : KeyMI->operands()) {
if (!isTilePhysReg(MO))
continue;
if (MO.isDef())
DefTiles.push_back(&MO);
else
ShapedTiles.push_back(&MO);
}
ShapedTiles.append(DefTiles);
}
// We pre-config the shapes at position named with "amx.tmm.N.shape.row* and
// amx.shape.N.col*" at pass "Pre AMX Tile Config".
// The 'N' implies the order of tiles in key amx intrinsic.
void X86FastTileConfig::getShapeCfgInstrs(
MachineInstr *MI, std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs) {
auto Cfg = MachineBasicBlock::iterator(MI);
MachineBasicBlock *MBB = MI->getParent();
for (auto II = Cfg; II != MBB->begin(); II--) {
if (isAMXInstr(*II) || II->isTerminator() || II->isCall())
break;
if (!II->mayStore() || !II->hasOneMemOperand())
continue;
const Value *MemPtr = II->memoperands()[0]->getValue();
if (!MemPtr)
continue;
StringRef Name = MemPtr->getName();
if (!Name.startswith("amx.tmm."))
continue;
// Get the 'N'th tile shape config in key amx instruction.
auto N = Name.find(".shape");
StringRef STileIdx = Name.slice(8, N);
unsigned Idx;
STileIdx.getAsInteger(10, Idx);
// And related them with their store instructions.
if (Name.contains("row"))
RowCfgs[Idx] = &*II;
else if (Name.contains("col"))
ColCfgs[Idx] = &*II;
else
llvm_unreachable("Invalid tile shape info!");
}
assert((RowCfgs.size() == ColCfgs.size()) &&
"The number of tile row and col must be equal!");
}
// Here is the data format for the tile config.
// 0 palette = 1 now.
// 1 start_row = 0 now.
// 2-15 reserved, must be zero
// 16-17 tile0.colsb Tile 0 bytes per row.
// 18-19 tile1.colsb Tile 1 bytes per row.
// 20-21 tile2.colsb Tile 2 bytes per row.
// ... (sequence continues)
// 30-31 tile7.colsb Tile 7 bytes per row.
// 32-47 reserved, must be zero
// 48 tile0.rows Tile 0 rows.
// 49 tile1.rows Tile 1 rows.
// 50 tile2.rows Tile 2 rows.
// ... (sequence continues)
// 55 tile7.rows Tile 7 rows.
// 56-63 reserved, must be zero
void X86FastTileConfig::rewriteTileCfg(
SmallVector<MachineOperand *> &ShapedTiles,
std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs) {
assert((RowCfgs.size() == ShapedTiles.size()) &&
"The number of tile shapes not equal with the number of tiles!");
// Orderly get the tiles and adjust the shape config.
for (unsigned I = 0, E = ShapedTiles.size(); I < E; I++) {
MachineOperand *MO = ShapedTiles[I];
unsigned TmmIdx = getTilePhysRegIdx(MO);
if (I == TmmIdx)
continue;
adjustRowCfg(TmmIdx, RowCfgs[I]);
adjustColCfg(TmmIdx, ColCfgs[I]);
}
}
// We have already preconfig the shapes before fast register allocation at
// X86PreAMXConfig::preWriteTileCfg(). Now, we have done fast register
// allocation, the shapes pre-written before may not rightly corresponding
// to the correct tmm registers, so we need adjust them.
void X86FastTileConfig::materializeTileCfg(MachineInstr *CfgMI) {
SmallVector<MachineOperand *> ShapedTiles;
std::map<unsigned, MachineInstr *> RowCfgs;
std::map<unsigned, MachineInstr *> ColCfgs;
// Orderly keep the tile uses and def in ShapedTiles;
getTileShapesCfg(CfgMI, ShapedTiles);
assert(ShapedTiles.size() && "Not find shapes config!");
getShapeCfgInstrs(CfgMI, RowCfgs, ColCfgs);
rewriteTileCfg(ShapedTiles, RowCfgs, ColCfgs);
}
bool X86FastTileConfig::fastTileConfig() {
bool Changed = false;
for (MachineBasicBlock &MBB : *MF) {
SmallVector<MachineInstr *, 2> CFGs;
for (MachineInstr &MI : MBB)
if (MI.getOpcode() == X86::PLDTILECFGV)
CFGs.push_back(&MI);
for (auto *MI : CFGs)
materializeTileCfg(MI);
if (!CFGs.empty())
Changed = true;
}
if (Changed)
X86FI->setHasVirtualTileReg(true);
return Changed;
}
bool X86FastTileConfig::runOnMachineFunction(MachineFunction &MFunc) {
MF = &MFunc;
MRI = &MFunc.getRegInfo();
ST = &MFunc.getSubtarget<X86Subtarget>();
TRI = ST->getRegisterInfo();
TII = MFunc.getSubtarget().getInstrInfo();
X86FI = MFunc.getInfo<X86MachineFunctionInfo>();
return fastTileConfig();
}
FunctionPass *llvm::createX86FastTileConfigPass() {
return new X86FastTileConfig();
}
|