1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling, if-conversion, other late
// optimizations, or simply the encoding of the instructions.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
#include "llvm/IR/GlobalValue.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "x86-pseudo"
#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
namespace {
class X86ExpandPseudo : public MachineFunctionPass {
public:
static char ID;
X86ExpandPseudo() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
const X86Subtarget *STI = nullptr;
const X86InstrInfo *TII = nullptr;
const X86RegisterInfo *TRI = nullptr;
const X86MachineFunctionInfo *X86FI = nullptr;
const X86FrameLowering *X86FL = nullptr;
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override {
return "X86 pseudo instruction expansion pass";
}
private:
void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI);
void expandCALL_RVMARKER(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI);
bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
bool ExpandMBB(MachineBasicBlock &MBB);
/// This function expands pseudos which affects control flow.
/// It is done in separate pass to simplify blocks navigation in main
/// pass(calling ExpandMBB).
bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF);
/// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
/// placed into separate block guarded by check for al register(for SystemV
/// abi).
void ExpandVastartSaveXmmRegs(
MachineBasicBlock *MBB,
MachineBasicBlock::iterator VAStartPseudoInstr) const;
};
char X86ExpandPseudo::ID = 0;
} // End anonymous namespace.
INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
false)
void X86ExpandPseudo::ExpandICallBranchFunnel(
MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
MachineBasicBlock *JTMBB = MBB;
MachineInstr *JTInst = &*MBBI;
MachineFunction *MF = MBB->getParent();
const BasicBlock *BB = MBB->getBasicBlock();
auto InsPt = MachineFunction::iterator(MBB);
++InsPt;
std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
const DebugLoc &DL = JTInst->getDebugLoc();
MachineOperand Selector = JTInst->getOperand(0);
const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
auto CmpTarget = [&](unsigned Target) {
if (Selector.isReg())
MBB->addLiveIn(Selector.getReg());
BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addGlobalAddress(CombinedGlobal,
JTInst->getOperand(2 + 2 * Target).getImm())
.addReg(0);
BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
.add(Selector)
.addReg(X86::R11);
};
auto CreateMBB = [&]() {
auto *NewMBB = MF->CreateMachineBasicBlock(BB);
MBB->addSuccessor(NewMBB);
if (!MBB->isLiveIn(X86::EFLAGS))
MBB->addLiveIn(X86::EFLAGS);
return NewMBB;
};
auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
auto *ElseMBB = CreateMBB();
MF->insert(InsPt, ElseMBB);
MBB = ElseMBB;
MBBI = MBB->end();
};
auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
auto *ThenMBB = CreateMBB();
TargetMBBs.push_back({ThenMBB, Target});
EmitCondJump(CC, ThenMBB);
};
auto EmitTailCall = [&](unsigned Target) {
BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
.add(JTInst->getOperand(3 + 2 * Target));
};
std::function<void(unsigned, unsigned)> EmitBranchFunnel =
[&](unsigned FirstTarget, unsigned NumTargets) {
if (NumTargets == 1) {
EmitTailCall(FirstTarget);
return;
}
if (NumTargets == 2) {
CmpTarget(FirstTarget + 1);
EmitCondJumpTarget(X86::COND_B, FirstTarget);
EmitTailCall(FirstTarget + 1);
return;
}
if (NumTargets < 6) {
CmpTarget(FirstTarget + 1);
EmitCondJumpTarget(X86::COND_B, FirstTarget);
EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
return;
}
auto *ThenMBB = CreateMBB();
CmpTarget(FirstTarget + (NumTargets / 2));
EmitCondJump(X86::COND_B, ThenMBB);
EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
NumTargets - (NumTargets / 2) - 1);
MF->insert(InsPt, ThenMBB);
MBB = ThenMBB;
MBBI = MBB->end();
EmitBranchFunnel(FirstTarget, NumTargets / 2);
};
EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
for (auto P : TargetMBBs) {
MF->insert(InsPt, P.first);
BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
.add(JTInst->getOperand(3 + 2 * P.second));
}
JTMBB->erase(JTInst);
}
void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
// Expand CALL_RVMARKER pseudo to call instruction, followed by the special
//"movq %rax, %rdi" marker.
MachineInstr &MI = *MBBI;
MachineInstr *OriginalCall;
assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
"invalid operand for regular call");
unsigned Opc = -1;
if (MI.getOpcode() == X86::CALL64m_RVMARKER)
Opc = X86::CALL64m;
else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
Opc = X86::CALL64r;
else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
Opc = X86::CALL64pcrel32;
else
llvm_unreachable("unexpected opcode");
OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
bool RAXImplicitDead = false;
for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
// RAX may be 'implicit dead', if there are no other users of the return
// value. We introduce a new use, so change it to 'implicit def'.
if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
TRI->regsOverlap(Op.getReg(), X86::RAX)) {
Op.setIsDead(false);
Op.setIsDef(true);
RAXImplicitDead = true;
}
OriginalCall->addOperand(Op);
}
// Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be
// live across the earlier call. The call to the ObjC runtime function returns
// the first argument, so the value of %rax is unchanged after the ObjC
// runtime call.
auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
.addReg(X86::RDI, RegState::Define)
.addReg(X86::RAX)
.getInstr();
if (MI.shouldUpdateCallSiteInfo())
MBB.getParent()->moveCallSiteInfo(&MI, Marker);
// Emit call to ObjC runtime.
const uint32_t *RegMask =
TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
MachineInstr *RtCall =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
.addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
.addRegMask(RegMask)
.addReg(X86::RAX,
RegState::Implicit |
(RAXImplicitDead ? (RegState::Dead | RegState::Define)
: RegState::Define))
.getInstr();
MI.eraseFromParent();
auto &TM = MBB.getParent()->getTarget();
// On Darwin platforms, wrap the expanded sequence in a bundle to prevent
// later optimizations from breaking up the sequence.
if (TM.getTargetTriple().isOSDarwin())
finalizeBundle(MBB, OriginalCall->getIterator(),
std::next(RtCall->getIterator()));
}
/// If \p MBBI is a pseudo instruction, this method expands
/// it to the corresponding (sequence of) actual instruction(s).
/// \returns true if \p MBBI has been expanded.
bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const DebugLoc &DL = MBBI->getDebugLoc();
switch (Opcode) {
default:
return false;
case X86::TCRETURNdi:
case X86::TCRETURNdicc:
case X86::TCRETURNri:
case X86::TCRETURNmi:
case X86::TCRETURNdi64:
case X86::TCRETURNdi64cc:
case X86::TCRETURNri64:
case X86::TCRETURNmi64: {
bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
MachineOperand &JumpTarget = MBBI->getOperand(0);
MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
: 1);
assert(StackAdjust.isImm() && "Expecting immediate value.");
// Adjust stack pointer.
int StackAdj = StackAdjust.getImm();
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
int Offset = 0;
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
// Incoporate the retaddr area.
Offset = StackAdj - MaxTCDelta;
assert(Offset >= 0 && "Offset should never be negative");
if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
}
if (Offset) {
// Check for possible merge with preceding ADD instruction.
Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
}
// Jump to label or value in register.
bool IsWin64 = STI->isTargetWin64();
if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
unsigned Op;
switch (Opcode) {
case X86::TCRETURNdi:
Op = X86::TAILJMPd;
break;
case X86::TCRETURNdicc:
Op = X86::TAILJMPd_CC;
break;
case X86::TCRETURNdi64cc:
assert(!MBB.getParent()->hasWinCFI() &&
"Conditional tail calls confuse "
"the Win64 unwinder.");
Op = X86::TAILJMPd64_CC;
break;
default:
// Note: Win64 uses REX prefixes indirect jumps out of functions, but
// not direct ones.
Op = X86::TAILJMPd64;
break;
}
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
if (JumpTarget.isGlobal()) {
MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
JumpTarget.getTargetFlags());
} else {
assert(JumpTarget.isSymbol());
MIB.addExternalSymbol(JumpTarget.getSymbolName(),
JumpTarget.getTargetFlags());
}
if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
MIB.addImm(MBBI->getOperand(2).getImm());
}
} else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
unsigned Op = (Opcode == X86::TCRETURNmi)
? X86::TAILJMPm
: (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
MIB.add(MBBI->getOperand(i));
} else if (Opcode == X86::TCRETURNri64) {
JumpTarget.setIsKill();
BuildMI(MBB, MBBI, DL,
TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
.add(JumpTarget);
} else {
JumpTarget.setIsKill();
BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
.add(JumpTarget);
}
MachineInstr &NewMI = *std::prev(MBBI);
NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
// Update the call site info.
if (MBBI->isCandidateForCallSiteEntry())
MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
// Delete the pseudo instruction TCRETURN.
MBB.erase(MBBI);
return true;
}
case X86::EH_RETURN:
case X86::EH_RETURN64: {
MachineOperand &DestAddr = MBBI->getOperand(0);
assert(DestAddr.isReg() && "Offset should be in register!");
const bool Uses64BitFramePtr =
STI->isTarget64BitLP64() || STI->isTargetNaCl64();
Register StackPtr = TRI->getStackRegister();
BuildMI(MBB, MBBI, DL,
TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
.addReg(DestAddr.getReg());
// The EH_RETURN pseudo is really removed during the MC Lowering.
return true;
}
case X86::IRET: {
// Adjust stack to erase error code
int64_t StackAdj = MBBI->getOperand(0).getImm();
X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
// Replace pseudo with machine iret
unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
// Use UIRET if UINTR is present (except for building kernel)
if (STI->is64Bit() && STI->hasUINTR() &&
MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
RetOp = X86::UIRET;
BuildMI(MBB, MBBI, DL, TII->get(RetOp));
MBB.erase(MBBI);
return true;
}
case X86::RET: {
// Adjust stack to erase error code
int64_t StackAdj = MBBI->getOperand(0).getImm();
MachineInstrBuilder MIB;
if (StackAdj == 0) {
MIB = BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
} else if (isUInt<16>(StackAdj)) {
MIB = BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
.addImm(StackAdj);
} else {
assert(!STI->is64Bit() &&
"shouldn't need to do this for x86_64 targets!");
// A ret can only handle immediates as big as 2**16-1. If we need to pop
// off bytes before the return address, we must do it manually.
BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
}
for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
MIB.add(MBBI->getOperand(I));
MBB.erase(MBBI);
return true;
}
case X86::LCMPXCHG16B_SAVE_RBX: {
// Perform the following transformation.
// SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
// =>
// RBX = InArg
// actualcmpxchg Addr
// RBX = SaveRbx
const MachineOperand &InArg = MBBI->getOperand(6);
Register SaveRbx = MBBI->getOperand(7).getReg();
// Copy the input argument of the pseudo into the argument of the
// actual instruction.
// NOTE: We don't copy the kill flag since the input might be the same reg
// as one of the other operands of LCMPXCHG16B.
TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
// Create the actual instruction.
MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
// Copy the operands related to the address.
for (unsigned Idx = 1; Idx < 6; ++Idx)
NewInstr->addOperand(MBBI->getOperand(Idx));
// Finally, restore the value of RBX.
TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
/*SrcIsKill*/ true);
// Delete the pseudo.
MBBI->eraseFromParent();
return true;
}
// Loading/storing mask pairs requires two kmov operations. The second one of
// these needs a 2 byte displacement relative to the specified address (with
// 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
// same spill size, they all are stored using MASKPAIR16STORE, loaded using
// MASKPAIR16LOAD.
//
// The displacement value might wrap around in theory, thus the asserts in
// both cases.
case X86::MASKPAIR16LOAD: {
int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
Register Reg = MBBI->getOperand(0).getReg();
bool DstIsDead = MBBI->getOperand(0).isDead();
Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
.addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
.addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
for (int i = 0; i < X86::AddrNumOperands; ++i) {
MIBLo.add(MBBI->getOperand(1 + i));
if (i == X86::AddrDisp)
MIBHi.addImm(Disp + 2);
else
MIBHi.add(MBBI->getOperand(1 + i));
}
// Split the memory operand, adjusting the offset and size for the halves.
MachineMemOperand *OldMMO = MBBI->memoperands().front();
MachineFunction *MF = MBB.getParent();
MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
MIBLo.setMemRefs(MMOLo);
MIBHi.setMemRefs(MMOHi);
// Delete the pseudo.
MBB.erase(MBBI);
return true;
}
case X86::MASKPAIR16STORE: {
int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
for (int i = 0; i < X86::AddrNumOperands; ++i) {
MIBLo.add(MBBI->getOperand(i));
if (i == X86::AddrDisp)
MIBHi.addImm(Disp + 2);
else
MIBHi.add(MBBI->getOperand(i));
}
MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
// Split the memory operand, adjusting the offset and size for the halves.
MachineMemOperand *OldMMO = MBBI->memoperands().front();
MachineFunction *MF = MBB.getParent();
MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
MIBLo.setMemRefs(MMOLo);
MIBHi.setMemRefs(MMOHi);
// Delete the pseudo.
MBB.erase(MBBI);
return true;
}
case X86::MWAITX_SAVE_RBX: {
// Perform the following transformation.
// SaveRbx = pseudomwaitx InArg, SaveRbx
// =>
// [E|R]BX = InArg
// actualmwaitx
// [E|R]BX = SaveRbx
const MachineOperand &InArg = MBBI->getOperand(1);
// Copy the input argument of the pseudo into the argument of the
// actual instruction.
TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
// Create the actual instruction.
BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
// Finally, restore the value of RBX.
Register SaveRbx = MBBI->getOperand(2).getReg();
TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
// Delete the pseudo.
MBBI->eraseFromParent();
return true;
}
case TargetOpcode::ICALL_BRANCH_FUNNEL:
ExpandICallBranchFunnel(&MBB, MBBI);
return true;
case X86::PLDTILECFGV: {
MI.setDesc(TII->get(X86::LDTILECFG));
return true;
}
case X86::PTILELOADDV:
case X86::PTILELOADDT1V: {
for (unsigned i = 2; i > 0; --i)
MI.RemoveOperand(i);
unsigned Opc =
Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1;
MI.setDesc(TII->get(Opc));
return true;
}
case X86::PTDPBSSDV:
case X86::PTDPBSUDV:
case X86::PTDPBUSDV:
case X86::PTDPBUUDV:
case X86::PTDPBF16PSV: {
MI.untieRegOperand(4);
for (unsigned i = 3; i > 0; --i)
MI.RemoveOperand(i);
unsigned Opc;
switch (Opcode) {
case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break;
case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break;
case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break;
case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break;
case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
default: llvm_unreachable("Impossible Opcode!");
}
MI.setDesc(TII->get(Opc));
MI.tieOperands(0, 1);
return true;
}
case X86::PTILESTOREDV: {
for (int i = 1; i >= 0; --i)
MI.RemoveOperand(i);
MI.setDesc(TII->get(X86::TILESTORED));
return true;
}
case X86::PTILEZEROV: {
for (int i = 2; i > 0; --i) // Remove row, col
MI.RemoveOperand(i);
MI.setDesc(TII->get(X86::TILEZERO));
return true;
}
case X86::CALL64pcrel32_RVMARKER:
case X86::CALL64r_RVMARKER:
case X86::CALL64m_RVMARKER:
expandCALL_RVMARKER(MBB, MBBI);
return true;
}
llvm_unreachable("Previous switch has a fallthrough?");
}
// This function creates additional block for storing varargs guarded
// registers. It adds check for %al into entry block, to skip
// GuardedRegsBlk if xmm registers should not be stored.
//
// EntryBlk[VAStartPseudoInstr] EntryBlk
// | | .
// | | .
// | | GuardedRegsBlk
// | => | .
// | | .
// | TailBlk
// | |
// | |
//
void X86ExpandPseudo::ExpandVastartSaveXmmRegs(
MachineBasicBlock *EntryBlk,
MachineBasicBlock::iterator VAStartPseudoInstr) const {
assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
MachineFunction *Func = EntryBlk->getParent();
const TargetInstrInfo *TII = STI->getInstrInfo();
const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
// Calculate liveins for newly created blocks.
LivePhysRegs LiveRegs(*STI->getRegisterInfo());
SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
LiveRegs.addLiveIns(*EntryBlk);
for (MachineInstr &MI : EntryBlk->instrs()) {
if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
break;
LiveRegs.stepForward(MI, Clobbers);
}
// Create the new basic blocks. One block contains all the XMM stores,
// and another block is the final destination regardless of whether any
// stores were performed.
const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
Func->insert(EntryBlkIter, GuardedRegsBlk);
Func->insert(EntryBlkIter, TailBlk);
// Transfer the remainder of EntryBlk and its successor edges to TailBlk.
TailBlk->splice(TailBlk->begin(), EntryBlk,
std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
EntryBlk->end());
TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
// TODO: add support for YMM and ZMM here.
unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
// In the XMM save block, save all the XMM argument registers.
for (int64_t OpndIdx = 7, RegIdx = 0;
OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
OpndIdx++, RegIdx++) {
auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
for (int i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
else
NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
}
NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
assert(Register::isPhysicalRegister(
VAStartPseudoInstr->getOperand(OpndIdx).getReg()));
}
// The original block will now fall through to the GuardedRegsBlk.
EntryBlk->addSuccessor(GuardedRegsBlk);
// The GuardedRegsBlk will fall through to the TailBlk.
GuardedRegsBlk->addSuccessor(TailBlk);
if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
// If %al is 0, branch around the XMM save block.
BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
.addReg(CountReg)
.addReg(CountReg);
BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
.addMBB(TailBlk)
.addImm(X86::COND_E);
EntryBlk->addSuccessor(TailBlk);
}
// Add liveins to the created block.
addLiveIns(*GuardedRegsBlk, LiveRegs);
addLiveIns(*TailBlk, LiveRegs);
// Delete the pseudo.
VAStartPseudoInstr->eraseFromParent();
}
/// Expand all pseudo instructions contained in \p MBB.
/// \returns true if any expansion occurred for \p MBB.
bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
bool Modified = false;
// MBBI may be invalidated by the expansion.
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
Modified |= ExpandMI(MBB, MBBI);
MBBI = NMBBI;
}
return Modified;
}
bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) {
// Currently pseudo which affects control flow is only
// X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
// So we do not need to evaluate other blocks.
for (MachineInstr &Instr : MF.front().instrs()) {
if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
ExpandVastartSaveXmmRegs(&(MF.front()), Instr);
return true;
}
}
return false;
}
bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
TII = STI->getInstrInfo();
TRI = STI->getRegisterInfo();
X86FI = MF.getInfo<X86MachineFunctionInfo>();
X86FL = STI->getFrameLowering();
bool Modified = ExpandPseudosWhichAffectControlFlow(MF);
for (MachineBasicBlock &MBB : MF)
Modified |= ExpandMBB(MBB);
return Modified;
}
/// Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createX86ExpandPseudoPass() {
return new X86ExpandPseudo();
}
|