aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Target/ARM/ARMFastISel.cpp
blob: 5d94b99d4c5d95d7ef49467570d93e7ccb8cabaa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
//===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the ARM-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// ARMGenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMCallingConv.h"
#include "ARMConstantPoolValue.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <cstdint>
#include <utility>

using namespace llvm;

namespace {

  // All possible address modes, plus some.
  struct Address {
    enum {
      RegBase,
      FrameIndexBase
    } BaseType = RegBase;

    union {
      unsigned Reg;
      int FI;
    } Base;

    int Offset = 0;

    // Innocuous defaults for our address.
    Address() {
      Base.Reg = 0;
    }
  };

class ARMFastISel final : public FastISel {
  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
  /// make the right decision when generating code for different targets.
  const ARMSubtarget *Subtarget;
  Module &M;
  const TargetMachine &TM;
  const TargetInstrInfo &TII;
  const TargetLowering &TLI;
  ARMFunctionInfo *AFI;

  // Convenience variables to avoid some queries.
  bool isThumb2;
  LLVMContext *Context;

  public:
    explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
                         const TargetLibraryInfo *libInfo)
        : FastISel(funcInfo, libInfo),
          Subtarget(
              &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
          M(const_cast<Module &>(*funcInfo.Fn->getParent())),
          TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
          TLI(*Subtarget->getTargetLowering()) {
      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
      isThumb2 = AFI->isThumbFunction();
      Context = &funcInfo.Fn->getContext();
    }

  private:
    // Code from FastISel.cpp.

    unsigned fastEmitInst_r(unsigned MachineInstOpcode,
                            const TargetRegisterClass *RC, unsigned Op0);
    unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
                             const TargetRegisterClass *RC,
                             unsigned Op0, unsigned Op1);
    unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
                             const TargetRegisterClass *RC,
                             unsigned Op0, uint64_t Imm);
    unsigned fastEmitInst_i(unsigned MachineInstOpcode,
                            const TargetRegisterClass *RC,
                            uint64_t Imm);

    // Backend specific FastISel code.

    bool fastSelectInstruction(const Instruction *I) override;
    unsigned fastMaterializeConstant(const Constant *C) override;
    unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
    bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
                             const LoadInst *LI) override;
    bool fastLowerArguments() override;

  #include "ARMGenFastISel.inc"

    // Instruction selection routines.

    bool SelectLoad(const Instruction *I);
    bool SelectStore(const Instruction *I);
    bool SelectBranch(const Instruction *I);
    bool SelectIndirectBr(const Instruction *I);
    bool SelectCmp(const Instruction *I);
    bool SelectFPExt(const Instruction *I);
    bool SelectFPTrunc(const Instruction *I);
    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
    bool SelectIToFP(const Instruction *I, bool isSigned);
    bool SelectFPToI(const Instruction *I, bool isSigned);
    bool SelectDiv(const Instruction *I, bool isSigned);
    bool SelectRem(const Instruction *I, bool isSigned);
    bool SelectCall(const Instruction *I, const char *IntrMemName);
    bool SelectIntrinsicCall(const IntrinsicInst &I);
    bool SelectSelect(const Instruction *I);
    bool SelectRet(const Instruction *I);
    bool SelectTrunc(const Instruction *I);
    bool SelectIntExt(const Instruction *I);
    bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);

    // Utility routines.

    bool isPositionIndependent() const;
    bool isTypeLegal(Type *Ty, MVT &VT);
    bool isLoadTypeLegal(Type *Ty, MVT &VT);
    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
                    bool isZExt);
    bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
                     unsigned Alignment = 0, bool isZExt = true,
                     bool allocReg = true);
    bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
                      unsigned Alignment = 0);
    bool ARMComputeAddress(const Value *Obj, Address &Addr);
    void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
    bool ARMIsMemCpySmall(uint64_t Len);
    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
                               unsigned Alignment);
    unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
    unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
    unsigned ARMMaterializeInt(const Constant *C, MVT VT);
    unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
    unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
    unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
    unsigned ARMSelectCallOp(bool UseReg);
    unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);

    const TargetLowering *getTargetLowering() { return &TLI; }

    // Call handling routines.

    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
                                  bool Return,
                                  bool isVarArg);
    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
                         SmallVectorImpl<Register> &ArgRegs,
                         SmallVectorImpl<MVT> &ArgVTs,
                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
                         SmallVectorImpl<Register> &RegArgs,
                         CallingConv::ID CC,
                         unsigned &NumBytes,
                         bool isVarArg);
    unsigned getLibcallReg(const Twine &Name);
    bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
                    const Instruction *I, CallingConv::ID CC,
                    unsigned &NumBytes, bool isVarArg);
    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);

    // OptionalDef handling routines.

    bool isARMNEONPred(const MachineInstr *MI);
    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
    void AddLoadStoreOperands(MVT VT, Address &Addr,
                              const MachineInstrBuilder &MIB,
                              MachineMemOperand::Flags Flags, bool useAM3);
};

} // end anonymous namespace

// DefinesOptionalPredicate - This is different from DefinesPredicate in that
// we don't care about implicit defs here, just places we'll need to add a
// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
  if (!MI->hasOptionalDef())
    return false;

  // Look to see if our OptionalDef is defining CPSR or CCR.
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || !MO.isDef()) continue;
    if (MO.getReg() == ARM::CPSR)
      *CPSR = true;
  }
  return true;
}

bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
  const MCInstrDesc &MCID = MI->getDesc();

  // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
       AFI->isThumb2Function())
    return MI->isPredicable();

  for (const MCOperandInfo &opInfo : MCID.operands())
    if (opInfo.isPredicate())
      return true;

  return false;
}

// If the machine is predicable go ahead and add the predicate operands, if
// it needs default CC operands add those.
// TODO: If we want to support thumb1 then we'll need to deal with optional
// CPSR defs that need to be added before the remaining operands. See s_cc_out
// for descriptions why.
const MachineInstrBuilder &
ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
  MachineInstr *MI = &*MIB;

  // Do we use a predicate? or...
  // Are we NEON in ARM mode and have a predicate operand? If so, I know
  // we're not predicable but add it anyways.
  if (isARMNEONPred(MI))
    MIB.add(predOps(ARMCC::AL));

  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
  bool CPSR = false;
  if (DefinesOptionalPredicate(MI, &CPSR))
    MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
  return MIB;
}

unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
                                     const TargetRegisterClass *RC,
                                     unsigned Op0) {
  Register ResultReg = createResultReg(RC);
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  // Make sure the input operand is sufficiently constrained to be legal
  // for this instruction.
  Op0 = constrainOperandRegClass(II, Op0, 1);
  if (II.getNumDefs() >= 1) {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
                            ResultReg).addReg(Op0));
  } else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
                   .addReg(Op0));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                   TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
                                      const TargetRegisterClass *RC,
                                      unsigned Op0, unsigned Op1) {
  Register ResultReg = createResultReg(RC);
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  // Make sure the input operands are sufficiently constrained to be legal
  // for this instruction.
  Op0 = constrainOperandRegClass(II, Op0, 1);
  Op1 = constrainOperandRegClass(II, Op1, 2);

  if (II.getNumDefs() >= 1) {
    AddOptionalDefs(
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
            .addReg(Op0)
            .addReg(Op1));
  } else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
                   .addReg(Op0)
                   .addReg(Op1));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
                                      const TargetRegisterClass *RC,
                                      unsigned Op0, uint64_t Imm) {
  Register ResultReg = createResultReg(RC);
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  // Make sure the input operand is sufficiently constrained to be legal
  // for this instruction.
  Op0 = constrainOperandRegClass(II, Op0, 1);
  if (II.getNumDefs() >= 1) {
    AddOptionalDefs(
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
            .addReg(Op0)
            .addImm(Imm));
  } else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
                   .addReg(Op0)
                   .addImm(Imm));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
                                     const TargetRegisterClass *RC,
                                     uint64_t Imm) {
  Register ResultReg = createResultReg(RC);
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1) {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
                            ResultReg).addImm(Imm));
  } else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
                   .addImm(Imm));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

// TODO: Don't worry about 64-bit now, but when this is fixed remove the
// checks from the various callers.
unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
  if (VT == MVT::f64) return 0;

  Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(ARM::VMOVSR), MoveReg)
                  .addReg(SrcReg));
  return MoveReg;
}

unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
  if (VT == MVT::i64) return 0;

  Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(ARM::VMOVRS), MoveReg)
                  .addReg(SrcReg));
  return MoveReg;
}

// For double width floating point we need to materialize two constants
// (the high and the low) into integer registers then use a move to get
// the combined constant into an FP reg.
unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
  const APFloat Val = CFP->getValueAPF();
  bool is64bit = VT == MVT::f64;

  // This checks to see if we can use VFP3 instructions to materialize
  // a constant, otherwise we have to go through the constant pool.
  if (TLI.isFPImmLegal(Val, VT)) {
    int Imm;
    unsigned Opc;
    if (is64bit) {
      Imm = ARM_AM::getFP64Imm(Val);
      Opc = ARM::FCONSTD;
    } else {
      Imm = ARM_AM::getFP32Imm(Val);
      Opc = ARM::FCONSTS;
    }
    Register DestReg = createResultReg(TLI.getRegClassFor(VT));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(Opc), DestReg).addImm(Imm));
    return DestReg;
  }

  // Require VFP2 for loading fp constants.
  if (!Subtarget->hasVFP2Base()) return false;

  // MachineConstantPool wants an explicit alignment.
  Align Alignment = DL.getPrefTypeAlign(CFP->getType());
  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
  Register DestReg = createResultReg(TLI.getRegClassFor(VT));
  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;

  // The extra reg is for addrmode5.
  AddOptionalDefs(
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
          .addConstantPoolIndex(Idx)
          .addReg(0));
  return DestReg;
}

unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
    return 0;

  // If we can do this in a single instruction without a constant pool entry
  // do so now.
  const ConstantInt *CI = cast<ConstantInt>(C);
  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
    const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
      &ARM::GPRRegClass;
    Register ImmReg = createResultReg(RC);
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(Opc), ImmReg)
                    .addImm(CI->getZExtValue()));
    return ImmReg;
  }

  // Use MVN to emit negative constants.
  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
    unsigned Imm = (unsigned)~(CI->getSExtValue());
    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
      (ARM_AM::getSOImmVal(Imm) != -1);
    if (UseImm) {
      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
      const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
                                                 &ARM::GPRRegClass;
      Register ImmReg = createResultReg(RC);
      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                              TII.get(Opc), ImmReg)
                      .addImm(Imm));
      return ImmReg;
    }
  }

  unsigned ResultReg = 0;
  if (Subtarget->useMovt())
    ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());

  if (ResultReg)
    return ResultReg;

  // Load from constant pool.  For now 32-bit only.
  if (VT != MVT::i32)
    return 0;

  // MachineConstantPool wants an explicit alignment.
  Align Alignment = DL.getPrefTypeAlign(C->getType());
  unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
  ResultReg = createResultReg(TLI.getRegClassFor(VT));
  if (isThumb2)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(ARM::t2LDRpci), ResultReg)
                      .addConstantPoolIndex(Idx));
  else {
    // The extra immediate is for addrmode2.
    ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(ARM::LDRcp), ResultReg)
                      .addConstantPoolIndex(Idx)
                      .addImm(0));
  }
  return ResultReg;
}

bool ARMFastISel::isPositionIndependent() const {
  return TLI.isPositionIndependent();
}

unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
  // For now 32-bit only.
  if (VT != MVT::i32 || GV->isThreadLocal()) return 0;

  // ROPI/RWPI not currently supported.
  if (Subtarget->isROPI() || Subtarget->isRWPI())
    return 0;

  bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
  const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
                                           : &ARM::GPRRegClass;
  Register DestReg = createResultReg(RC);

  // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
  bool IsThreadLocal = GVar && GVar->isThreadLocal();
  if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;

  bool IsPositionIndependent = isPositionIndependent();
  // Use movw+movt when possible, it avoids constant pool entries.
  // Non-darwin targets only support static movt relocations in FastISel.
  if (Subtarget->useMovt() &&
      (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
    unsigned Opc;
    unsigned char TF = 0;
    if (Subtarget->isTargetMachO())
      TF = ARMII::MO_NONLAZY;

    if (IsPositionIndependent)
      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
    else
      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
  } else {
    // MachineConstantPool wants an explicit alignment.
    Align Alignment = DL.getPrefTypeAlign(GV->getType());

    if (Subtarget->isTargetELF() && IsPositionIndependent)
      return ARMLowerPICELF(GV, VT);

    // Grab index.
    unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
    unsigned Id = AFI->createPICLabelUId();
    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
                                                                ARMCP::CPValue,
                                                                PCAdj);
    unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);

    // Load value.
    MachineInstrBuilder MIB;
    if (isThumb2) {
      unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
                    DestReg).addConstantPoolIndex(Idx);
      if (IsPositionIndependent)
        MIB.addImm(Id);
      AddOptionalDefs(MIB);
    } else {
      // The extra immediate is for addrmode2.
      DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                    TII.get(ARM::LDRcp), DestReg)
                .addConstantPoolIndex(Idx)
                .addImm(0);
      AddOptionalDefs(MIB);

      if (IsPositionIndependent) {
        unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
        Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));

        MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
                                          DbgLoc, TII.get(Opc), NewDestReg)
                                  .addReg(DestReg)
                                  .addImm(Id);
        AddOptionalDefs(MIB);
        return NewDestReg;
      }
    }
  }

  if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
      (Subtarget->isTargetMachO() && IsIndirect) ||
      Subtarget->genLongCalls()) {
    MachineInstrBuilder MIB;
    Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    if (isThumb2)
      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                    TII.get(ARM::t2LDRi12), NewDestReg)
            .addReg(DestReg)
            .addImm(0);
    else
      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                    TII.get(ARM::LDRi12), NewDestReg)
                .addReg(DestReg)
                .addImm(0);
    DestReg = NewDestReg;
    AddOptionalDefs(MIB);
  }

  return DestReg;
}

unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
  EVT CEVT = TLI.getValueType(DL, C->getType(), true);

  // Only handle simple types.
  if (!CEVT.isSimple()) return 0;
  MVT VT = CEVT.getSimpleVT();

  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    return ARMMaterializeFP(CFP, VT);
  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return ARMMaterializeGV(GV, VT);
  else if (isa<ConstantInt>(C))
    return ARMMaterializeInt(C, VT);

  return 0;
}

// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);

unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
  // Don't handle dynamic allocas.
  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;

  MVT VT;
  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;

  DenseMap<const AllocaInst*, int>::iterator SI =
    FuncInfo.StaticAllocaMap.find(AI);

  // This will get lowered later into the correct offsets and registers
  // via rewriteXFrameIndex.
  if (SI != FuncInfo.StaticAllocaMap.end()) {
    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
    Register ResultReg = createResultReg(RC);
    ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);

    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(Opc), ResultReg)
                            .addFrameIndex(SI->second)
                            .addImm(0));
    return ResultReg;
  }

  return 0;
}

bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
  EVT evt = TLI.getValueType(DL, Ty, true);

  // Only handle simple types.
  if (evt == MVT::Other || !evt.isSimple()) return false;
  VT = evt.getSimpleVT();

  // Handle all legal types, i.e. a register that will directly hold this
  // value.
  return TLI.isTypeLegal(VT);
}

bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
  if (isTypeLegal(Ty, VT)) return true;

  // If this is a type than can be sign or zero-extended to a basic operation
  // go ahead and accept it now.
  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    return true;

  return false;
}

// Computes the address to get to an object.
bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
  // Some boilerplate from the X86 FastISel.
  const User *U = nullptr;
  unsigned Opcode = Instruction::UserOp1;
  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    // Don't walk into other basic blocks unless the object is an alloca from
    // another block, otherwise it may not have a virtual register assigned.
    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
      Opcode = I->getOpcode();
      U = I;
    }
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    Opcode = C->getOpcode();
    U = C;
  }

  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    if (Ty->getAddressSpace() > 255)
      // Fast instruction selection doesn't support the special
      // address spaces.
      return false;

  switch (Opcode) {
    default:
    break;
    case Instruction::BitCast:
      // Look through bitcasts.
      return ARMComputeAddress(U->getOperand(0), Addr);
    case Instruction::IntToPtr:
      // Look past no-op inttoptrs.
      if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
          TLI.getPointerTy(DL))
        return ARMComputeAddress(U->getOperand(0), Addr);
      break;
    case Instruction::PtrToInt:
      // Look past no-op ptrtoints.
      if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
        return ARMComputeAddress(U->getOperand(0), Addr);
      break;
    case Instruction::GetElementPtr: {
      Address SavedAddr = Addr;
      int TmpOffset = Addr.Offset;

      // Iterate through the GEP folding the constants into offsets where
      // we can.
      gep_type_iterator GTI = gep_type_begin(U);
      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
           i != e; ++i, ++GTI) {
        const Value *Op = *i;
        if (StructType *STy = GTI.getStructTypeOrNull()) {
          const StructLayout *SL = DL.getStructLayout(STy);
          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
          TmpOffset += SL->getElementOffset(Idx);
        } else {
          uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
          while (true) {
            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
              // Constant-offset addressing.
              TmpOffset += CI->getSExtValue() * S;
              break;
            }
            if (canFoldAddIntoGEP(U, Op)) {
              // A compatible add with a constant operand. Fold the constant.
              ConstantInt *CI =
              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
              TmpOffset += CI->getSExtValue() * S;
              // Iterate on the other operand.
              Op = cast<AddOperator>(Op)->getOperand(0);
              continue;
            }
            // Unsupported
            goto unsupported_gep;
          }
        }
      }

      // Try to grab the base operand now.
      Addr.Offset = TmpOffset;
      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;

      // We failed, restore everything and try the other options.
      Addr = SavedAddr;

      unsupported_gep:
      break;
    }
    case Instruction::Alloca: {
      const AllocaInst *AI = cast<AllocaInst>(Obj);
      DenseMap<const AllocaInst*, int>::iterator SI =
        FuncInfo.StaticAllocaMap.find(AI);
      if (SI != FuncInfo.StaticAllocaMap.end()) {
        Addr.BaseType = Address::FrameIndexBase;
        Addr.Base.FI = SI->second;
        return true;
      }
      break;
    }
  }

  // Try to get this in a register if nothing else has worked.
  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
  return Addr.Base.Reg != 0;
}

void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
  bool needsLowering = false;
  switch (VT.SimpleTy) {
    default: llvm_unreachable("Unhandled load/store type!");
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      if (!useAM3) {
        // Integer loads/stores handle 12-bit offsets.
        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
        // Handle negative offsets.
        if (needsLowering && isThumb2)
          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
                            Addr.Offset > -256);
      } else {
        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
      }
      break;
    case MVT::f32:
    case MVT::f64:
      // Floating point operands handle 8-bit offsets.
      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
      break;
  }

  // If this is a stack pointer and the offset needs to be simplified then
  // put the alloca address into a register, set the base type back to
  // register and continue. This should almost never happen.
  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
    const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
                                             : &ARM::GPRRegClass;
    Register ResultReg = createResultReg(RC);
    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(Opc), ResultReg)
                            .addFrameIndex(Addr.Base.FI)
                            .addImm(0));
    Addr.Base.Reg = ResultReg;
    Addr.BaseType = Address::RegBase;
  }

  // Since the offset is too large for the load/store instruction
  // get the reg+offset into a register.
  if (needsLowering) {
    Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
                                 Addr.Offset, MVT::i32);
    Addr.Offset = 0;
  }
}

void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
                                       const MachineInstrBuilder &MIB,
                                       MachineMemOperand::Flags Flags,
                                       bool useAM3) {
  // addrmode5 output depends on the selection dag addressing dividing the
  // offset by 4 that it then later multiplies. Do this here as well.
  if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
    Addr.Offset /= 4;

  // Frame base works a bit differently. Handle it separately.
  if (Addr.BaseType == Address::FrameIndexBase) {
    int FI = Addr.Base.FI;
    int Offset = Addr.Offset;
    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
        MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
    // Now add the rest of the operands.
    MIB.addFrameIndex(FI);

    // ARM halfword load/stores and signed byte loads need an additional
    // operand.
    if (useAM3) {
      int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
      MIB.addReg(0);
      MIB.addImm(Imm);
    } else {
      MIB.addImm(Addr.Offset);
    }
    MIB.addMemOperand(MMO);
  } else {
    // Now add the rest of the operands.
    MIB.addReg(Addr.Base.Reg);

    // ARM halfword load/stores and signed byte loads need an additional
    // operand.
    if (useAM3) {
      int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
      MIB.addReg(0);
      MIB.addImm(Imm);
    } else {
      MIB.addImm(Addr.Offset);
    }
  }
  AddOptionalDefs(MIB);
}

bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
                              unsigned Alignment, bool isZExt, bool allocReg) {
  unsigned Opc;
  bool useAM3 = false;
  bool needVMOV = false;
  const TargetRegisterClass *RC;
  switch (VT.SimpleTy) {
    // This is mostly going to be Neon/vector support.
    default: return false;
    case MVT::i1:
    case MVT::i8:
      if (isThumb2) {
        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
        else
          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
      } else {
        if (isZExt) {
          Opc = ARM::LDRBi12;
        } else {
          Opc = ARM::LDRSB;
          useAM3 = true;
        }
      }
      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
      break;
    case MVT::i16:
      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
        return false;

      if (isThumb2) {
        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
        else
          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
      } else {
        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
        useAM3 = true;
      }
      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
      break;
    case MVT::i32:
      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
        return false;

      if (isThumb2) {
        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
          Opc = ARM::t2LDRi8;
        else
          Opc = ARM::t2LDRi12;
      } else {
        Opc = ARM::LDRi12;
      }
      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
      break;
    case MVT::f32:
      if (!Subtarget->hasVFP2Base()) return false;
      // Unaligned loads need special handling. Floats require word-alignment.
      if (Alignment && Alignment < 4) {
        needVMOV = true;
        VT = MVT::i32;
        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
        RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
      } else {
        Opc = ARM::VLDRS;
        RC = TLI.getRegClassFor(VT);
      }
      break;
    case MVT::f64:
      // Can load and store double precision even without FeatureFP64
      if (!Subtarget->hasVFP2Base()) return false;
      // FIXME: Unaligned loads need special handling.  Doublewords require
      // word-alignment.
      if (Alignment && Alignment < 4)
        return false;

      Opc = ARM::VLDRD;
      RC = TLI.getRegClassFor(VT);
      break;
  }
  // Simplify this down to something we can handle.
  ARMSimplifyAddress(Addr, VT, useAM3);

  // Create the base instruction, then add the operands.
  if (allocReg)
    ResultReg = createResultReg(RC);
  assert(ResultReg > 255 && "Expected an allocated virtual register.");
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(Opc), ResultReg);
  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);

  // If we had an unaligned load of a float we've converted it to an regular
  // load.  Now we must move from the GRP to the FP register.
  if (needVMOV) {
    Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(ARM::VMOVSR), MoveReg)
                    .addReg(ResultReg));
    ResultReg = MoveReg;
  }
  return true;
}

bool ARMFastISel::SelectLoad(const Instruction *I) {
  // Atomic loads need special handling.
  if (cast<LoadInst>(I)->isAtomic())
    return false;

  const Value *SV = I->getOperand(0);
  if (TLI.supportSwiftError()) {
    // Swifterror values can come from either a function parameter with
    // swifterror attribute or an alloca with swifterror attribute.
    if (const Argument *Arg = dyn_cast<Argument>(SV)) {
      if (Arg->hasSwiftErrorAttr())
        return false;
    }

    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
      if (Alloca->isSwiftError())
        return false;
    }
  }

  // Verify we have a legal type before going any further.
  MVT VT;
  if (!isLoadTypeLegal(I->getType(), VT))
    return false;

  // See if we can handle this address.
  Address Addr;
  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;

  Register ResultReg;
  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
    return false;
  updateValueMap(I, ResultReg);
  return true;
}

bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
                               unsigned Alignment) {
  unsigned StrOpc;
  bool useAM3 = false;
  switch (VT.SimpleTy) {
    // This is mostly going to be Neon/vector support.
    default: return false;
    case MVT::i1: {
      Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
                                              : &ARM::GPRRegClass);
      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
      SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                              TII.get(Opc), Res)
                      .addReg(SrcReg).addImm(1));
      SrcReg = Res;
      LLVM_FALLTHROUGH;
    }
    case MVT::i8:
      if (isThumb2) {
        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
          StrOpc = ARM::t2STRBi8;
        else
          StrOpc = ARM::t2STRBi12;
      } else {
        StrOpc = ARM::STRBi12;
      }
      break;
    case MVT::i16:
      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
        return false;

      if (isThumb2) {
        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
          StrOpc = ARM::t2STRHi8;
        else
          StrOpc = ARM::t2STRHi12;
      } else {
        StrOpc = ARM::STRH;
        useAM3 = true;
      }
      break;
    case MVT::i32:
      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
        return false;

      if (isThumb2) {
        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
          StrOpc = ARM::t2STRi8;
        else
          StrOpc = ARM::t2STRi12;
      } else {
        StrOpc = ARM::STRi12;
      }
      break;
    case MVT::f32:
      if (!Subtarget->hasVFP2Base()) return false;
      // Unaligned stores need special handling. Floats require word-alignment.
      if (Alignment && Alignment < 4) {
        Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                TII.get(ARM::VMOVRS), MoveReg)
                        .addReg(SrcReg));
        SrcReg = MoveReg;
        VT = MVT::i32;
        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
      } else {
        StrOpc = ARM::VSTRS;
      }
      break;
    case MVT::f64:
      // Can load and store double precision even without FeatureFP64
      if (!Subtarget->hasVFP2Base()) return false;
      // FIXME: Unaligned stores need special handling.  Doublewords require
      // word-alignment.
      if (Alignment && Alignment < 4)
          return false;

      StrOpc = ARM::VSTRD;
      break;
  }
  // Simplify this down to something we can handle.
  ARMSimplifyAddress(Addr, VT, useAM3);

  // Create the base instruction, then add the operands.
  SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(StrOpc))
                            .addReg(SrcReg);
  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
  return true;
}

bool ARMFastISel::SelectStore(const Instruction *I) {
  Value *Op0 = I->getOperand(0);
  unsigned SrcReg = 0;

  // Atomic stores need special handling.
  if (cast<StoreInst>(I)->isAtomic())
    return false;

  const Value *PtrV = I->getOperand(1);
  if (TLI.supportSwiftError()) {
    // Swifterror values can come from either a function parameter with
    // swifterror attribute or an alloca with swifterror attribute.
    if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
      if (Arg->hasSwiftErrorAttr())
        return false;
    }

    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
      if (Alloca->isSwiftError())
        return false;
    }
  }

  // Verify we have a legal type before going any further.
  MVT VT;
  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
    return false;

  // Get the value to be stored into a register.
  SrcReg = getRegForValue(Op0);
  if (SrcReg == 0) return false;

  // See if we can handle this address.
  Address Addr;
  if (!ARMComputeAddress(I->getOperand(1), Addr))
    return false;

  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
    return false;
  return true;
}

static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
  switch (Pred) {
    // Needs two compares...
    case CmpInst::FCMP_ONE:
    case CmpInst::FCMP_UEQ:
    default:
      // AL is our "false" for now. The other two need more compares.
      return ARMCC::AL;
    case CmpInst::ICMP_EQ:
    case CmpInst::FCMP_OEQ:
      return ARMCC::EQ;
    case CmpInst::ICMP_SGT:
    case CmpInst::FCMP_OGT:
      return ARMCC::GT;
    case CmpInst::ICMP_SGE:
    case CmpInst::FCMP_OGE:
      return ARMCC::GE;
    case CmpInst::ICMP_UGT:
    case CmpInst::FCMP_UGT:
      return ARMCC::HI;
    case CmpInst::FCMP_OLT:
      return ARMCC::MI;
    case CmpInst::ICMP_ULE:
    case CmpInst::FCMP_OLE:
      return ARMCC::LS;
    case CmpInst::FCMP_ORD:
      return ARMCC::VC;
    case CmpInst::FCMP_UNO:
      return ARMCC::VS;
    case CmpInst::FCMP_UGE:
      return ARMCC::PL;
    case CmpInst::ICMP_SLT:
    case CmpInst::FCMP_ULT:
      return ARMCC::LT;
    case CmpInst::ICMP_SLE:
    case CmpInst::FCMP_ULE:
      return ARMCC::LE;
    case CmpInst::FCMP_UNE:
    case CmpInst::ICMP_NE:
      return ARMCC::NE;
    case CmpInst::ICMP_UGE:
      return ARMCC::HS;
    case CmpInst::ICMP_ULT:
      return ARMCC::LO;
  }
}

bool ARMFastISel::SelectBranch(const Instruction *I) {
  const BranchInst *BI = cast<BranchInst>(I);
  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];

  // Simple branch support.

  // If we can, avoid recomputing the compare - redoing it could lead to wonky
  // behavior.
  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
      // Get the compare predicate.
      // Try to take advantage of fallthrough opportunities.
      CmpInst::Predicate Predicate = CI->getPredicate();
      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
        std::swap(TBB, FBB);
        Predicate = CmpInst::getInversePredicate(Predicate);
      }

      ARMCC::CondCodes ARMPred = getComparePred(Predicate);

      // We may not handle every CC for now.
      if (ARMPred == ARMCC::AL) return false;

      // Emit the compare.
      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
        return false;

      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
      finishCondBranch(BI->getParent(), TBB, FBB);
      return true;
    }
  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
    MVT SourceVT;
    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
      Register OpReg = getRegForValue(TI->getOperand(0));
      OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                              TII.get(TstOpc))
                      .addReg(OpReg).addImm(1));

      unsigned CCMode = ARMCC::NE;
      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
        std::swap(TBB, FBB);
        CCMode = ARMCC::EQ;
      }

      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);

      finishCondBranch(BI->getParent(), TBB, FBB);
      return true;
    }
  } else if (const ConstantInt *CI =
             dyn_cast<ConstantInt>(BI->getCondition())) {
    uint64_t Imm = CI->getZExtValue();
    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
    fastEmitBranch(Target, DbgLoc);
    return true;
  }

  Register CmpReg = getRegForValue(BI->getCondition());
  if (CmpReg == 0) return false;

  // We've been divorced from our compare!  Our block was split, and
  // now our compare lives in a predecessor block.  We musn't
  // re-compare here, as the children of the compare aren't guaranteed
  // live across the block boundary (we *could* check for this).
  // Regardless, the compare has been done in the predecessor block,
  // and it left a value for us in a virtual register.  Ergo, we test
  // the one-bit value left in the virtual register.
  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
  CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
  AddOptionalDefs(
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
          .addReg(CmpReg)
          .addImm(1));

  unsigned CCMode = ARMCC::NE;
  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
    std::swap(TBB, FBB);
    CCMode = ARMCC::EQ;
  }

  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
  finishCondBranch(BI->getParent(), TBB, FBB);
  return true;
}

bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
  Register AddrReg = getRegForValue(I->getOperand(0));
  if (AddrReg == 0) return false;

  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
  assert(isThumb2 || Subtarget->hasV4TOps());

  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(Opc)).addReg(AddrReg));

  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
  for (const BasicBlock *SuccBB : IB->successors())
    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);

  return true;
}

bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
                             bool isZExt) {
  Type *Ty = Src1Value->getType();
  EVT SrcEVT = TLI.getValueType(DL, Ty, true);
  if (!SrcEVT.isSimple()) return false;
  MVT SrcVT = SrcEVT.getSimpleVT();

  if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
    return false;

  if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
    return false;

  // Check to see if the 2nd operand is a constant that we can encode directly
  // in the compare.
  int Imm = 0;
  bool UseImm = false;
  bool isNegativeImm = false;
  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
  // Thus, Src1Value may be a ConstantInt, but we're missing it.
  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
        SrcVT == MVT::i1) {
      const APInt &CIVal = ConstInt->getValue();
      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
      // then a cmn, because there is no way to represent 2147483648 as a
      // signed 32-bit int.
      if (Imm < 0 && Imm != (int)0x80000000) {
        isNegativeImm = true;
        Imm = -Imm;
      }
      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
        (ARM_AM::getSOImmVal(Imm) != -1);
    }
  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
      if (ConstFP->isZero() && !ConstFP->isNegative())
        UseImm = true;
  }

  unsigned CmpOpc;
  bool isICmp = true;
  bool needsExt = false;
  switch (SrcVT.SimpleTy) {
    default: return false;
    // TODO: Verify compares.
    case MVT::f32:
      isICmp = false;
      CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
      break;
    case MVT::f64:
      isICmp = false;
      CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
      break;
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
      needsExt = true;
      LLVM_FALLTHROUGH;
    case MVT::i32:
      if (isThumb2) {
        if (!UseImm)
          CmpOpc = ARM::t2CMPrr;
        else
          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
      } else {
        if (!UseImm)
          CmpOpc = ARM::CMPrr;
        else
          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
      }
      break;
  }

  Register SrcReg1 = getRegForValue(Src1Value);
  if (SrcReg1 == 0) return false;

  unsigned SrcReg2 = 0;
  if (!UseImm) {
    SrcReg2 = getRegForValue(Src2Value);
    if (SrcReg2 == 0) return false;
  }

  // We have i1, i8, or i16, we need to either zero extend or sign extend.
  if (needsExt) {
    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
    if (SrcReg1 == 0) return false;
    if (!UseImm) {
      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
      if (SrcReg2 == 0) return false;
    }
  }

  const MCInstrDesc &II = TII.get(CmpOpc);
  SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
  if (!UseImm) {
    SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
                    .addReg(SrcReg1).addReg(SrcReg2));
  } else {
    MachineInstrBuilder MIB;
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
      .addReg(SrcReg1);

    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
    if (isICmp)
      MIB.addImm(Imm);
    AddOptionalDefs(MIB);
  }

  // For floating point we need to move the result to a comparison register
  // that we can then use for branches.
  if (Ty->isFloatTy() || Ty->isDoubleTy())
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                            TII.get(ARM::FMSTAT)));
  return true;
}

bool ARMFastISel::SelectCmp(const Instruction *I) {
  const CmpInst *CI = cast<CmpInst>(I);

  // Get the compare predicate.
  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());

  // We may not handle every CC for now.
  if (ARMPred == ARMCC::AL) return false;

  // Emit the compare.
  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
    return false;

  // Now set a register based on the comparison. Explicitly set the predicates
  // here.
  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
  const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
                                           : &ARM::GPRRegClass;
  Register DestReg = createResultReg(RC);
  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
  unsigned ZeroReg = fastMaterializeConstant(Zero);
  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
          .addReg(ZeroReg).addImm(1)
          .addImm(ARMPred).addReg(ARM::CPSR);

  updateValueMap(I, DestReg);
  return true;
}

bool ARMFastISel::SelectFPExt(const Instruction *I) {
  // Make sure we have VFP and that we're extending float to double.
  if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;

  Value *V = I->getOperand(0);
  if (!I->getType()->isDoubleTy() ||
      !V->getType()->isFloatTy()) return false;

  Register Op = getRegForValue(V);
  if (Op == 0) return false;

  Register Result = createResultReg(&ARM::DPRRegClass);
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(ARM::VCVTDS), Result)
                  .addReg(Op));
  updateValueMap(I, Result);
  return true;
}

bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
  // Make sure we have VFP and that we're truncating double to float.
  if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;

  Value *V = I->getOperand(0);
  if (!(I->getType()->isFloatTy() &&
        V->getType()->isDoubleTy())) return false;

  Register Op = getRegForValue(V);
  if (Op == 0) return false;

  Register Result = createResultReg(&ARM::SPRRegClass);
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(ARM::VCVTSD), Result)
                  .addReg(Op));
  updateValueMap(I, Result);
  return true;
}

bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
  // Make sure we have VFP.
  if (!Subtarget->hasVFP2Base()) return false;

  MVT DstVT;
  Type *Ty = I->getType();
  if (!isTypeLegal(Ty, DstVT))
    return false;

  Value *Src = I->getOperand(0);
  EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
  if (!SrcEVT.isSimple())
    return false;
  MVT SrcVT = SrcEVT.getSimpleVT();
  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
    return false;

  Register SrcReg = getRegForValue(Src);
  if (SrcReg == 0) return false;

  // Handle sign-extension.
  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
                                       /*isZExt*/!isSigned);
    if (SrcReg == 0) return false;
  }

  // The conversion routine works on fp-reg to fp-reg and the operand above
  // was an integer, move it to the fp registers if possible.
  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
  if (FP == 0) return false;

  unsigned Opc;
  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
  else if (Ty->isDoubleTy() && Subtarget->hasFP64())
    Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
  else return false;

  Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(Opc), ResultReg).addReg(FP));
  updateValueMap(I, ResultReg);
  return true;
}

bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
  // Make sure we have VFP.
  if (!Subtarget->hasVFP2Base()) return false;

  MVT DstVT;
  Type *RetTy = I->getType();
  if (!isTypeLegal(RetTy, DstVT))
    return false;

  Register Op = getRegForValue(I->getOperand(0));
  if (Op == 0) return false;

  unsigned Opc;
  Type *OpTy = I->getOperand(0)->getType();
  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
  else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
    Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
  else return false;

  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
  Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(Opc), ResultReg).addReg(Op));

  // This result needs to be in an integer register, but the conversion only
  // takes place in fp-regs.
  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
  if (IntReg == 0) return false;

  updateValueMap(I, IntReg);
  return true;
}

bool ARMFastISel::SelectSelect(const Instruction *I) {
  MVT VT;
  if (!isTypeLegal(I->getType(), VT))
    return false;

  // Things need to be register sized for register moves.
  if (VT != MVT::i32) return false;

  Register CondReg = getRegForValue(I->getOperand(0));
  if (CondReg == 0) return false;
  Register Op1Reg = getRegForValue(I->getOperand(1));
  if (Op1Reg == 0) return false;

  // Check to see if we can use an immediate in the conditional move.
  int Imm = 0;
  bool UseImm = false;
  bool isNegativeImm = false;
  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
    assert(VT == MVT::i32 && "Expecting an i32.");
    Imm = (int)ConstInt->getValue().getZExtValue();
    if (Imm < 0) {
      isNegativeImm = true;
      Imm = ~Imm;
    }
    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
      (ARM_AM::getSOImmVal(Imm) != -1);
  }

  unsigned Op2Reg = 0;
  if (!UseImm) {
    Op2Reg = getRegForValue(I->getOperand(2));
    if (Op2Reg == 0) return false;
  }

  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
  CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
  AddOptionalDefs(
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
          .addReg(CondReg)
          .addImm(1));

  unsigned MovCCOpc;
  const TargetRegisterClass *RC;
  if (!UseImm) {
    RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
  } else {
    RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
    if (!isNegativeImm)
      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
    else
      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
  }
  Register ResultReg = createResultReg(RC);
  if (!UseImm) {
    Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
            ResultReg)
        .addReg(Op2Reg)
        .addReg(Op1Reg)
        .addImm(ARMCC::NE)
        .addReg(ARM::CPSR);
  } else {
    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
            ResultReg)
        .addReg(Op1Reg)
        .addImm(Imm)
        .addImm(ARMCC::EQ)
        .addReg(ARM::CPSR);
  }
  updateValueMap(I, ResultReg);
  return true;
}

bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
  MVT VT;
  Type *Ty = I->getType();
  if (!isTypeLegal(Ty, VT))
    return false;

  // If we have integer div support we should have selected this automagically.
  // In case we have a real miss go ahead and return false and we'll pick
  // it up later.
  if (Subtarget->hasDivideInThumbMode())
    return false;

  // Otherwise emit a libcall.
  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
  if (VT == MVT::i8)
    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
  else if (VT == MVT::i16)
    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
  else if (VT == MVT::i32)
    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
  else if (VT == MVT::i64)
    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
  else if (VT == MVT::i128)
    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");

  return ARMEmitLibcall(I, LC);
}

bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
  MVT VT;
  Type *Ty = I->getType();
  if (!isTypeLegal(Ty, VT))
    return false;

  // Many ABIs do not provide a libcall for standalone remainder, so we need to
  // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
  // multi-reg returns, we'll have to bail out.
  if (!TLI.hasStandaloneRem(VT)) {
    return false;
  }

  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
  if (VT == MVT::i8)
    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
  else if (VT == MVT::i16)
    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
  else if (VT == MVT::i32)
    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
  else if (VT == MVT::i64)
    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
  else if (VT == MVT::i128)
    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");

  return ARMEmitLibcall(I, LC);
}

bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
  EVT DestVT = TLI.getValueType(DL, I->getType(), true);

  // We can get here in the case when we have a binary operation on a non-legal
  // type and the target independent selector doesn't know how to handle it.
  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
    return false;

  unsigned Opc;
  switch (ISDOpcode) {
    default: return false;
    case ISD::ADD:
      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
      break;
    case ISD::OR:
      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
      break;
    case ISD::SUB:
      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
      break;
  }

  Register SrcReg1 = getRegForValue(I->getOperand(0));
  if (SrcReg1 == 0) return false;

  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
  // in the instruction, rather then materializing the value in a register.
  Register SrcReg2 = getRegForValue(I->getOperand(1));
  if (SrcReg2 == 0) return false;

  Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
  SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
  SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(Opc), ResultReg)
                  .addReg(SrcReg1).addReg(SrcReg2));
  updateValueMap(I, ResultReg);
  return true;
}

bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
  EVT FPVT = TLI.getValueType(DL, I->getType(), true);
  if (!FPVT.isSimple()) return false;
  MVT VT = FPVT.getSimpleVT();

  // FIXME: Support vector types where possible.
  if (VT.isVector())
    return false;

  // We can get here in the case when we want to use NEON for our fp
  // operations, but can't figure out how to. Just use the vfp instructions
  // if we have them.
  // FIXME: It'd be nice to use NEON instructions.
  Type *Ty = I->getType();
  if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
    return false;
  if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
    return false;

  unsigned Opc;
  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
  switch (ISDOpcode) {
    default: return false;
    case ISD::FADD:
      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
      break;
    case ISD::FSUB:
      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
      break;
    case ISD::FMUL:
      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
      break;
  }
  Register Op1 = getRegForValue(I->getOperand(0));
  if (Op1 == 0) return false;

  Register Op2 = getRegForValue(I->getOperand(1));
  if (Op2 == 0) return false;

  Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(Opc), ResultReg)
                  .addReg(Op1).addReg(Op2));
  updateValueMap(I, ResultReg);
  return true;
}

// Call Handling Code

// This is largely taken directly from CCAssignFnForNode
// TODO: We may not support all of this.
CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
                                           bool Return,
                                           bool isVarArg) {
  switch (CC) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::Fast:
    if (Subtarget->hasVFP2Base() && !isVarArg) {
      if (!Subtarget->isAAPCS_ABI())
        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
      // For AAPCS ABI targets, just use VFP variant of the calling convention.
      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
    }
    LLVM_FALLTHROUGH;
  case CallingConv::C:
  case CallingConv::CXX_FAST_TLS:
    // Use target triple & subtarget features to do actual dispatch.
    if (Subtarget->isAAPCS_ABI()) {
      if (Subtarget->hasVFP2Base() &&
          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
      else
        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
    } else {
      return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
    }
  case CallingConv::ARM_AAPCS_VFP:
  case CallingConv::Swift:
  case CallingConv::SwiftTail:
    if (!isVarArg)
      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
    // Fall through to soft float variant, variadic functions don't
    // use hard floating point ABI.
    LLVM_FALLTHROUGH;
  case CallingConv::ARM_AAPCS:
    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
  case CallingConv::ARM_APCS:
    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
  case CallingConv::GHC:
    if (Return)
      report_fatal_error("Can't return in GHC call convention");
    else
      return CC_ARM_APCS_GHC;
  case CallingConv::CFGuard_Check:
    return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
  }
}

bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
                                  SmallVectorImpl<Register> &ArgRegs,
                                  SmallVectorImpl<MVT> &ArgVTs,
                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
                                  SmallVectorImpl<Register> &RegArgs,
                                  CallingConv::ID CC,
                                  unsigned &NumBytes,
                                  bool isVarArg) {
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
                             CCAssignFnForCall(CC, false, isVarArg));

  // Check that we can handle all of the arguments. If we can't, then bail out
  // now before we add code to the MBB.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    MVT ArgVT = ArgVTs[VA.getValNo()];

    // We don't handle NEON/vector parameters yet.
    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
      return false;

    // Now copy/store arg to correct locations.
    if (VA.isRegLoc() && !VA.needsCustom()) {
      continue;
    } else if (VA.needsCustom()) {
      // TODO: We need custom lowering for vector (v2f64) args.
      if (VA.getLocVT() != MVT::f64 ||
          // TODO: Only handle register args for now.
          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
        return false;
    } else {
      switch (ArgVT.SimpleTy) {
      default:
        return false;
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
      case MVT::i32:
        break;
      case MVT::f32:
        if (!Subtarget->hasVFP2Base())
          return false;
        break;
      case MVT::f64:
        if (!Subtarget->hasVFP2Base())
          return false;
        break;
      }
    }
  }

  // At the point, we are able to handle the call's arguments in fast isel.

  // Get a count of how many bytes are to be pushed on the stack.
  NumBytes = CCInfo.getNextStackOffset();

  // Issue CALLSEQ_START
  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(AdjStackDown))
                  .addImm(NumBytes).addImm(0));

  // Process the args.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    const Value *ArgVal = Args[VA.getValNo()];
    Register Arg = ArgRegs[VA.getValNo()];
    MVT ArgVT = ArgVTs[VA.getValNo()];

    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
           "We don't handle NEON/vector parameters yet.");

    // Handle arg promotion, etc.
    switch (VA.getLocInfo()) {
      case CCValAssign::Full: break;
      case CCValAssign::SExt: {
        MVT DestVT = VA.getLocVT();
        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
        assert(Arg != 0 && "Failed to emit a sext");
        ArgVT = DestVT;
        break;
      }
      case CCValAssign::AExt:
      // Intentional fall-through.  Handle AExt and ZExt.
      case CCValAssign::ZExt: {
        MVT DestVT = VA.getLocVT();
        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
        assert(Arg != 0 && "Failed to emit a zext");
        ArgVT = DestVT;
        break;
      }
      case CCValAssign::BCvt: {
        unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
        assert(BC != 0 && "Failed to emit a bitcast!");
        Arg = BC;
        ArgVT = VA.getLocVT();
        break;
      }
      default: llvm_unreachable("Unknown arg promotion!");
    }

    // Now copy/store arg to correct locations.
    if (VA.isRegLoc() && !VA.needsCustom()) {
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
      RegArgs.push_back(VA.getLocReg());
    } else if (VA.needsCustom()) {
      // TODO: We need custom lowering for vector (v2f64) args.
      assert(VA.getLocVT() == MVT::f64 &&
             "Custom lowering for v2f64 args not available");

      // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
      CCValAssign &NextVA = ArgLocs[++i];

      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
             "We only handle register args!");

      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                              TII.get(ARM::VMOVRRD), VA.getLocReg())
                      .addReg(NextVA.getLocReg(), RegState::Define)
                      .addReg(Arg));
      RegArgs.push_back(VA.getLocReg());
      RegArgs.push_back(NextVA.getLocReg());
    } else {
      assert(VA.isMemLoc());
      // Need to store on the stack.

      // Don't emit stores for undef values.
      if (isa<UndefValue>(ArgVal))
        continue;

      Address Addr;
      Addr.BaseType = Address::RegBase;
      Addr.Base.Reg = ARM::SP;
      Addr.Offset = VA.getLocMemOffset();

      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
      assert(EmitRet && "Could not emit a store for argument!");
    }
  }

  return true;
}

bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
                             const Instruction *I, CallingConv::ID CC,
                             unsigned &NumBytes, bool isVarArg) {
  // Issue CALLSEQ_END
  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                          TII.get(AdjStackUp))
                  .addImm(NumBytes).addImm(-1ULL));

  // Now the return value.
  if (RetVT != MVT::isVoid) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));

    // Copy all of the result registers out of their specified physreg.
    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
      // For this move we copy into two registers and then move into the
      // double fp reg we want.
      MVT DestVT = RVLocs[0].getValVT();
      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
      Register ResultReg = createResultReg(DstRC);
      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                              TII.get(ARM::VMOVDRR), ResultReg)
                      .addReg(RVLocs[0].getLocReg())
                      .addReg(RVLocs[1].getLocReg()));

      UsedRegs.push_back(RVLocs[0].getLocReg());
      UsedRegs.push_back(RVLocs[1].getLocReg());

      // Finally update the result.
      updateValueMap(I, ResultReg);
    } else {
      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
      MVT CopyVT = RVLocs[0].getValVT();

      // Special handling for extended integers.
      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
        CopyVT = MVT::i32;

      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);

      Register ResultReg = createResultReg(DstRC);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY),
              ResultReg).addReg(RVLocs[0].getLocReg());
      UsedRegs.push_back(RVLocs[0].getLocReg());

      // Finally update the result.
      updateValueMap(I, ResultReg);
    }
  }

  return true;
}

bool ARMFastISel::SelectRet(const Instruction *I) {
  const ReturnInst *Ret = cast<ReturnInst>(I);
  const Function &F = *I->getParent()->getParent();
  const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");

  if (!FuncInfo.CanLowerReturn)
    return false;

  if (TLI.supportSwiftError() &&
      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return false;

  if (TLI.supportSplitCSR(FuncInfo.MF))
    return false;

  // Build a list of return value registers.
  SmallVector<unsigned, 4> RetRegs;

  CallingConv::ID CC = F.getCallingConv();
  if (Ret->getNumOperands() > 0) {
    SmallVector<ISD::OutputArg, 4> Outs;
    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);

    // Analyze operands of the call, assigning locations to each operand.
    SmallVector<CCValAssign, 16> ValLocs;
    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
                                                 F.isVarArg()));

    const Value *RV = Ret->getOperand(0);
    Register Reg = getRegForValue(RV);
    if (Reg == 0)
      return false;

    // Only handle a single return value for now.
    if (ValLocs.size() != 1)
      return false;

    CCValAssign &VA = ValLocs[0];

    // Don't bother handling odd stuff for now.
    if (VA.getLocInfo() != CCValAssign::Full)
      return false;
    // Only handle register returns for now.
    if (!VA.isRegLoc())
      return false;

    unsigned SrcReg = Reg + VA.getValNo();
    EVT RVEVT = TLI.getValueType(DL, RV->getType());
    if (!RVEVT.isSimple()) return false;
    MVT RVVT = RVEVT.getSimpleVT();
    MVT DestVT = VA.getValVT();
    // Special handling for extended integers.
    if (RVVT != DestVT) {
      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
        return false;

      assert(DestVT == MVT::i32 && "ARM should always ext to i32");

      // Perform extension if flagged as either zext or sext.  Otherwise, do
      // nothing.
      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
        if (SrcReg == 0) return false;
      }
    }

    // Make the copy.
    Register DstReg = VA.getLocReg();
    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
    // Avoid a cross-class copy. This is very unlikely.
    if (!SrcRC->contains(DstReg))
      return false;
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);

    // Add register to return instruction.
    RetRegs.push_back(VA.getLocReg());
  }

  unsigned RetOpc;
  if (IsCmseNSEntry)
    if (isThumb2)
      RetOpc = ARM::tBXNS_RET;
    else
      llvm_unreachable("CMSE not valid for non-Thumb targets");
  else
    RetOpc = Subtarget->getReturnOpcode();

  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(RetOpc));
  AddOptionalDefs(MIB);
  for (unsigned R : RetRegs)
    MIB.addReg(R, RegState::Implicit);
  return true;
}

unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
  if (UseReg)
    return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
  else
    return isThumb2 ? ARM::tBL : ARM::BL;
}

unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
  // Manually compute the global's type to avoid building it when unnecessary.
  Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
  EVT LCREVT = TLI.getValueType(DL, GVTy);
  if (!LCREVT.isSimple()) return 0;

  GlobalValue *GV = M.getNamedGlobal(Name.str());
  if (!GV)
    GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
                            GlobalValue::ExternalLinkage, nullptr, Name);

  return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
}

// A quick function that will emit a call for a named libcall in F with the
// vector of passed arguments for the Instruction in I. We can assume that we
// can emit a call for any libcall we can produce. This is an abridged version
// of the full call infrastructure since we won't need to worry about things
// like computed function pointers or strange arguments at call sites.
// TODO: Try to unify this and the normal call bits for ARM, then try to unify
// with X86.
bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);

  // Handle *simple* calls for now.
  Type *RetTy = I->getType();
  MVT RetVT;
  if (RetTy->isVoidTy())
    RetVT = MVT::isVoid;
  else if (!isTypeLegal(RetTy, RetVT))
    return false;

  // Can't handle non-double multi-reg retvals.
  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
      return false;
  }

  // Set up the argument vectors.
  SmallVector<Value*, 8> Args;
  SmallVector<Register, 8> ArgRegs;
  SmallVector<MVT, 8> ArgVTs;
  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
  Args.reserve(I->getNumOperands());
  ArgRegs.reserve(I->getNumOperands());
  ArgVTs.reserve(I->getNumOperands());
  ArgFlags.reserve(I->getNumOperands());
  for (Value *Op :  I->operands()) {
    Register Arg = getRegForValue(Op);
    if (Arg == 0) return false;

    Type *ArgTy = Op->getType();
    MVT ArgVT;
    if (!isTypeLegal(ArgTy, ArgVT)) return false;

    ISD::ArgFlagsTy Flags;
    Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));

    Args.push_back(Op);
    ArgRegs.push_back(Arg);
    ArgVTs.push_back(ArgVT);
    ArgFlags.push_back(Flags);
  }

  // Handle the arguments now that we've gotten them.
  SmallVector<Register, 4> RegArgs;
  unsigned NumBytes;
  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
                       RegArgs, CC, NumBytes, false))
    return false;

  Register CalleeReg;
  if (Subtarget->genLongCalls()) {
    CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
    if (CalleeReg == 0) return false;
  }

  // Issue the call.
  unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
                                    DbgLoc, TII.get(CallOpc));
  // BL / BLX don't take a predicate, but tBL / tBLX do.
  if (isThumb2)
    MIB.add(predOps(ARMCC::AL));
  if (Subtarget->genLongCalls()) {
    CalleeReg =
        constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
    MIB.addReg(CalleeReg);
  } else
    MIB.addExternalSymbol(TLI.getLibcallName(Call));

  // Add implicit physical register uses to the call.
  for (Register R : RegArgs)
    MIB.addReg(R, RegState::Implicit);

  // Add a register mask with the call-preserved registers.
  // Proper defs for return values will be added by setPhysRegsDeadExcept().
  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));

  // Finish off the call including any return values.
  SmallVector<Register, 4> UsedRegs;
  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;

  // Set all unused physreg defs as dead.
  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);

  return true;
}

bool ARMFastISel::SelectCall(const Instruction *I,
                             const char *IntrMemName = nullptr) {
  const CallInst *CI = cast<CallInst>(I);
  const Value *Callee = CI->getCalledOperand();

  // Can't handle inline asm.
  if (isa<InlineAsm>(Callee)) return false;

  // Allow SelectionDAG isel to handle tail calls.
  if (CI->isTailCall()) return false;

  // Check the calling convention.
  CallingConv::ID CC = CI->getCallingConv();

  // TODO: Avoid some calling conventions?

  FunctionType *FTy = CI->getFunctionType();
  bool isVarArg = FTy->isVarArg();

  // Handle *simple* calls for now.
  Type *RetTy = I->getType();
  MVT RetVT;
  if (RetTy->isVoidTy())
    RetVT = MVT::isVoid;
  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
           RetVT != MVT::i8  && RetVT != MVT::i1)
    return false;

  // Can't handle non-double multi-reg retvals.
  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
      RetVT != MVT::i16 && RetVT != MVT::i32) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
      return false;
  }

  // Set up the argument vectors.
  SmallVector<Value*, 8> Args;
  SmallVector<Register, 8> ArgRegs;
  SmallVector<MVT, 8> ArgVTs;
  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
  unsigned arg_size = CI->arg_size();
  Args.reserve(arg_size);
  ArgRegs.reserve(arg_size);
  ArgVTs.reserve(arg_size);
  ArgFlags.reserve(arg_size);
  for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
    // If we're lowering a memory intrinsic instead of a regular call, skip the
    // last argument, which shouldn't be passed to the underlying function.
    if (IntrMemName && ArgE - ArgI <= 1)
      break;

    ISD::ArgFlagsTy Flags;
    unsigned ArgIdx = ArgI - CI->arg_begin();
    if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
      Flags.setSExt();
    if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
      Flags.setZExt();

    // FIXME: Only handle *easy* calls for now.
    if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
        CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
        CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
        CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
        CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
        CI->paramHasAttr(ArgIdx, Attribute::ByVal))
      return false;

    Type *ArgTy = (*ArgI)->getType();
    MVT ArgVT;
    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
        ArgVT != MVT::i1)
      return false;

    Register Arg = getRegForValue(*ArgI);
    if (!Arg.isValid())
      return false;

    Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));

    Args.push_back(*ArgI);
    ArgRegs.push_back(Arg);
    ArgVTs.push_back(ArgVT);
    ArgFlags.push_back(Flags);
  }

  // Handle the arguments now that we've gotten them.
  SmallVector<Register, 4> RegArgs;
  unsigned NumBytes;
  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
                       RegArgs, CC, NumBytes, isVarArg))
    return false;

  bool UseReg = false;
  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
  if (!GV || Subtarget->genLongCalls()) UseReg = true;

  Register CalleeReg;
  if (UseReg) {
    if (IntrMemName)
      CalleeReg = getLibcallReg(IntrMemName);
    else
      CalleeReg = getRegForValue(Callee);

    if (CalleeReg == 0) return false;
  }

  // Issue the call.
  unsigned CallOpc = ARMSelectCallOp(UseReg);
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
                                    DbgLoc, TII.get(CallOpc));

  // ARM calls don't take a predicate, but tBL / tBLX do.
  if(isThumb2)
    MIB.add(predOps(ARMCC::AL));
  if (UseReg) {
    CalleeReg =
        constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
    MIB.addReg(CalleeReg);
  } else if (!IntrMemName)
    MIB.addGlobalAddress(GV, 0, 0);
  else
    MIB.addExternalSymbol(IntrMemName, 0);

  // Add implicit physical register uses to the call.
  for (Register R : RegArgs)
    MIB.addReg(R, RegState::Implicit);

  // Add a register mask with the call-preserved registers.
  // Proper defs for return values will be added by setPhysRegsDeadExcept().
  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));

  // Finish off the call including any return values.
  SmallVector<Register, 4> UsedRegs;
  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
    return false;

  // Set all unused physreg defs as dead.
  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);

  return true;
}

bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
  return Len <= 16;
}

bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
                                        uint64_t Len, unsigned Alignment) {
  // Make sure we don't bloat code by inlining very large memcpy's.
  if (!ARMIsMemCpySmall(Len))
    return false;

  while (Len) {
    MVT VT;
    if (!Alignment || Alignment >= 4) {
      if (Len >= 4)
        VT = MVT::i32;
      else if (Len >= 2)
        VT = MVT::i16;
      else {
        assert(Len == 1 && "Expected a length of 1!");
        VT = MVT::i8;
      }
    } else {
      // Bound based on alignment.
      if (Len >= 2 && Alignment == 2)
        VT = MVT::i16;
      else {
        VT = MVT::i8;
      }
    }

    bool RV;
    Register ResultReg;
    RV = ARMEmitLoad(VT, ResultReg, Src);
    assert(RV && "Should be able to handle this load.");
    RV = ARMEmitStore(VT, ResultReg, Dest);
    assert(RV && "Should be able to handle this store.");
    (void)RV;

    unsigned Size = VT.getSizeInBits()/8;
    Len -= Size;
    Dest.Offset += Size;
    Src.Offset += Size;
  }

  return true;
}

bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
  // FIXME: Handle more intrinsics.
  switch (I.getIntrinsicID()) {
  default: return false;
  case Intrinsic::frameaddress: {
    MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
    MFI.setFrameAddressIsTaken(true);

    unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
    const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
                                             : &ARM::GPRRegClass;

    const ARMBaseRegisterInfo *RegInfo =
        static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
    Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
    unsigned SrcReg = FramePtr;

    // Recursively load frame address
    // ldr r0 [fp]
    // ldr r0 [r0]
    // ldr r0 [r0]
    // ...
    unsigned DestReg;
    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
    while (Depth--) {
      DestReg = createResultReg(RC);
      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                              TII.get(LdrOpc), DestReg)
                      .addReg(SrcReg).addImm(0));
      SrcReg = DestReg;
    }
    updateValueMap(&I, SrcReg);
    return true;
  }
  case Intrinsic::memcpy:
  case Intrinsic::memmove: {
    const MemTransferInst &MTI = cast<MemTransferInst>(I);
    // Don't handle volatile.
    if (MTI.isVolatile())
      return false;

    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
    // we would emit dead code because we don't currently handle memmoves.
    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
      // Small memcpy's are common enough that we want to do them without a call
      // if possible.
      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
      if (ARMIsMemCpySmall(Len)) {
        Address Dest, Src;
        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
            !ARMComputeAddress(MTI.getRawSource(), Src))
          return false;
        unsigned Alignment = MinAlign(MTI.getDestAlignment(),
                                      MTI.getSourceAlignment());
        if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
          return true;
      }
    }

    if (!MTI.getLength()->getType()->isIntegerTy(32))
      return false;

    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
      return false;

    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
    return SelectCall(&I, IntrMemName);
  }
  case Intrinsic::memset: {
    const MemSetInst &MSI = cast<MemSetInst>(I);
    // Don't handle volatile.
    if (MSI.isVolatile())
      return false;

    if (!MSI.getLength()->getType()->isIntegerTy(32))
      return false;

    if (MSI.getDestAddressSpace() > 255)
      return false;

    return SelectCall(&I, "memset");
  }
  case Intrinsic::trap: {
    unsigned Opcode;
    if (Subtarget->isThumb())
      Opcode = ARM::tTRAP;
    else
      Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode));
    return true;
  }
  }
}

bool ARMFastISel::SelectTrunc(const Instruction *I) {
  // The high bits for a type smaller than the register size are assumed to be
  // undefined.
  Value *Op = I->getOperand(0);

  EVT SrcVT, DestVT;
  SrcVT = TLI.getValueType(DL, Op->getType(), true);
  DestVT = TLI.getValueType(DL, I->getType(), true);

  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
    return false;
  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
    return false;

  Register SrcReg = getRegForValue(Op);
  if (!SrcReg) return false;

  // Because the high bits are undefined, a truncate doesn't generate
  // any code.
  updateValueMap(I, SrcReg);
  return true;
}

unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
                                    bool isZExt) {
  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
    return 0;
  if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
    return 0;

  // Table of which combinations can be emitted as a single instruction,
  // and which will require two.
  static const uint8_t isSingleInstrTbl[3][2][2][2] = {
    //            ARM                     Thumb
    //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
    //    ext:     s  z      s  z          s  z      s  z
    /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
    /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
    /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
  };

  // Target registers for:
  //  - For ARM can never be PC.
  //  - For 16-bit Thumb are restricted to lower 8 registers.
  //  - For 32-bit Thumb are restricted to non-SP and non-PC.
  static const TargetRegisterClass *RCTbl[2][2] = {
    // Instructions: Two                     Single
    /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
    /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
  };

  // Table governing the instruction(s) to be emitted.
  static const struct InstructionTable {
    uint32_t Opc   : 16;
    uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
    uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
    uint32_t Imm   :  8; // All instructions have either a shift or a mask.
  } IT[2][2][3][2] = {
    { // Two instructions (first is left shift, second is in this table).
      { // ARM                Opc           S  Shift             Imm
        /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
        /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
        /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
        /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
        /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
        /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
      },
      { // Thumb              Opc           S  Shift             Imm
        /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
        /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
        /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
        /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
        /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
        /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
      }
    },
    { // Single instruction.
      { // ARM                Opc           S  Shift             Imm
        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
        /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
        /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
        /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
        /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
        /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
      },
      { // Thumb              Opc           S  Shift             Imm
        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
        /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
        /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
        /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
        /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
        /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
      }
    }
  };

  unsigned SrcBits = SrcVT.getSizeInBits();
  unsigned DestBits = DestVT.getSizeInBits();
  (void) DestBits;
  assert((SrcBits < DestBits) && "can only extend to larger types");
  assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
         "other sizes unimplemented");
  assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
         "other sizes unimplemented");

  bool hasV6Ops = Subtarget->hasV6Ops();
  unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
  assert((Bitness < 3) && "sanity-check table bounds");

  bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
  const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
  const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
  unsigned Opc = ITP->Opc;
  assert(ARM::KILL != Opc && "Invalid table entry");
  unsigned hasS = ITP->hasS;
  ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
  assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
         "only MOVsi has shift operand addressing mode");
  unsigned Imm = ITP->Imm;

  // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
  bool setsCPSR = &ARM::tGPRRegClass == RC;
  unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
  unsigned ResultReg;
  // MOVsi encodes shift and immediate in shift operand addressing mode.
  // The following condition has the same value when emitting two
  // instruction sequences: both are shifts.
  bool ImmIsSO = (Shift != ARM_AM::no_shift);

  // Either one or two instructions are emitted.
  // They're always of the form:
  //   dst = in OP imm
  // CPSR is set only by 16-bit Thumb instructions.
  // Predicate, if any, is AL.
  // S bit, if available, is always 0.
  // When two are emitted the first's result will feed as the second's input,
  // that value is then dead.
  unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
  for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
    ResultReg = createResultReg(RC);
    bool isLsl = (0 == Instr) && !isSingleInstr;
    unsigned Opcode = isLsl ? LSLOpc : Opc;
    ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
    unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
    bool isKill = 1 == Instr;
    MachineInstrBuilder MIB = BuildMI(
        *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
    if (setsCPSR)
      MIB.addReg(ARM::CPSR, RegState::Define);
    SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
    MIB.addReg(SrcReg, isKill * RegState::Kill)
        .addImm(ImmEnc)
        .add(predOps(ARMCC::AL));
    if (hasS)
      MIB.add(condCodeOp());
    // Second instruction consumes the first's result.
    SrcReg = ResultReg;
  }

  return ResultReg;
}

bool ARMFastISel::SelectIntExt(const Instruction *I) {
  // On ARM, in general, integer casts don't involve legal types; this code
  // handles promotable integers.
  Type *DestTy = I->getType();
  Value *Src = I->getOperand(0);
  Type *SrcTy = Src->getType();

  bool isZExt = isa<ZExtInst>(I);
  Register SrcReg = getRegForValue(Src);
  if (!SrcReg) return false;

  EVT SrcEVT, DestEVT;
  SrcEVT = TLI.getValueType(DL, SrcTy, true);
  DestEVT = TLI.getValueType(DL, DestTy, true);
  if (!SrcEVT.isSimple()) return false;
  if (!DestEVT.isSimple()) return false;

  MVT SrcVT = SrcEVT.getSimpleVT();
  MVT DestVT = DestEVT.getSimpleVT();
  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
  if (ResultReg == 0) return false;
  updateValueMap(I, ResultReg);
  return true;
}

bool ARMFastISel::SelectShift(const Instruction *I,
                              ARM_AM::ShiftOpc ShiftTy) {
  // We handle thumb2 mode by target independent selector
  // or SelectionDAG ISel.
  if (isThumb2)
    return false;

  // Only handle i32 now.
  EVT DestVT = TLI.getValueType(DL, I->getType(), true);
  if (DestVT != MVT::i32)
    return false;

  unsigned Opc = ARM::MOVsr;
  unsigned ShiftImm;
  Value *Src2Value = I->getOperand(1);
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
    ShiftImm = CI->getZExtValue();

    // Fall back to selection DAG isel if the shift amount
    // is zero or greater than the width of the value type.
    if (ShiftImm == 0 || ShiftImm >=32)
      return false;

    Opc = ARM::MOVsi;
  }

  Value *Src1Value = I->getOperand(0);
  Register Reg1 = getRegForValue(Src1Value);
  if (Reg1 == 0) return false;

  unsigned Reg2 = 0;
  if (Opc == ARM::MOVsr) {
    Reg2 = getRegForValue(Src2Value);
    if (Reg2 == 0) return false;
  }

  Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
  if(ResultReg == 0) return false;

  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(Opc), ResultReg)
                            .addReg(Reg1);

  if (Opc == ARM::MOVsi)
    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
  else if (Opc == ARM::MOVsr) {
    MIB.addReg(Reg2);
    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
  }

  AddOptionalDefs(MIB);
  updateValueMap(I, ResultReg);
  return true;
}

// TODO: SoftFP support.
bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
  switch (I->getOpcode()) {
    case Instruction::Load:
      return SelectLoad(I);
    case Instruction::Store:
      return SelectStore(I);
    case Instruction::Br:
      return SelectBranch(I);
    case Instruction::IndirectBr:
      return SelectIndirectBr(I);
    case Instruction::ICmp:
    case Instruction::FCmp:
      return SelectCmp(I);
    case Instruction::FPExt:
      return SelectFPExt(I);
    case Instruction::FPTrunc:
      return SelectFPTrunc(I);
    case Instruction::SIToFP:
      return SelectIToFP(I, /*isSigned*/ true);
    case Instruction::UIToFP:
      return SelectIToFP(I, /*isSigned*/ false);
    case Instruction::FPToSI:
      return SelectFPToI(I, /*isSigned*/ true);
    case Instruction::FPToUI:
      return SelectFPToI(I, /*isSigned*/ false);
    case Instruction::Add:
      return SelectBinaryIntOp(I, ISD::ADD);
    case Instruction::Or:
      return SelectBinaryIntOp(I, ISD::OR);
    case Instruction::Sub:
      return SelectBinaryIntOp(I, ISD::SUB);
    case Instruction::FAdd:
      return SelectBinaryFPOp(I, ISD::FADD);
    case Instruction::FSub:
      return SelectBinaryFPOp(I, ISD::FSUB);
    case Instruction::FMul:
      return SelectBinaryFPOp(I, ISD::FMUL);
    case Instruction::SDiv:
      return SelectDiv(I, /*isSigned*/ true);
    case Instruction::UDiv:
      return SelectDiv(I, /*isSigned*/ false);
    case Instruction::SRem:
      return SelectRem(I, /*isSigned*/ true);
    case Instruction::URem:
      return SelectRem(I, /*isSigned*/ false);
    case Instruction::Call:
      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
        return SelectIntrinsicCall(*II);
      return SelectCall(I);
    case Instruction::Select:
      return SelectSelect(I);
    case Instruction::Ret:
      return SelectRet(I);
    case Instruction::Trunc:
      return SelectTrunc(I);
    case Instruction::ZExt:
    case Instruction::SExt:
      return SelectIntExt(I);
    case Instruction::Shl:
      return SelectShift(I, ARM_AM::lsl);
    case Instruction::LShr:
      return SelectShift(I, ARM_AM::lsr);
    case Instruction::AShr:
      return SelectShift(I, ARM_AM::asr);
    default: break;
  }
  return false;
}

// This table describes sign- and zero-extend instructions which can be
// folded into a preceding load. All of these extends have an immediate
// (sometimes a mask and sometimes a shift) that's applied after
// extension.
static const struct FoldableLoadExtendsStruct {
  uint16_t Opc[2];  // ARM, Thumb.
  uint8_t ExpectedImm;
  uint8_t isZExt     : 1;
  uint8_t ExpectedVT : 7;
} FoldableLoadExtends[] = {
  { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
  { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
  { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
  { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
  { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
};

/// The specified machine instr operand is a vreg, and that
/// vreg is being provided by the specified load instruction.  If possible,
/// try to fold the load as an operand to the instruction, returning true if
/// successful.
bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
                                      const LoadInst *LI) {
  // Verify we have a legal type before going any further.
  MVT VT;
  if (!isLoadTypeLegal(LI->getType(), VT))
    return false;

  // Combine load followed by zero- or sign-extend.
  // ldrb r1, [r0]       ldrb r1, [r0]
  // uxtb r2, r1     =>
  // mov  r3, r2         mov  r3, r1
  if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
    return false;
  const uint64_t Imm = MI->getOperand(2).getImm();

  bool Found = false;
  bool isZExt;
  for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
    if (FLE.Opc[isThumb2] == MI->getOpcode() &&
        (uint64_t)FLE.ExpectedImm == Imm &&
        MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
      Found = true;
      isZExt = FLE.isZExt;
    }
  }
  if (!Found) return false;

  // See if we can handle this address.
  Address Addr;
  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;

  Register ResultReg = MI->getOperand(0).getReg();
  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
    return false;
  MachineBasicBlock::iterator I(MI);
  removeDeadCode(I, std::next(I));
  return true;
}

unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
  bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);

  LLVMContext *Context = &MF->getFunction().getContext();
  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
  ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
      GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
      UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
      /*AddCurrentAddress=*/UseGOT_PREL);

  Align ConstAlign =
      MF->getDataLayout().getPrefTypeAlign(Type::getInt32PtrTy(*Context));
  unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
  MachineMemOperand *CPMMO =
      MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
                               MachineMemOperand::MOLoad, 4, Align(4));

  Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
  unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
  MachineInstrBuilder MIB =
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
          .addConstantPoolIndex(Idx)
          .addMemOperand(CPMMO);
  if (Opc == ARM::LDRcp)
    MIB.addImm(0);
  MIB.add(predOps(ARMCC::AL));

  // Fix the address by adding pc.
  Register DestReg = createResultReg(TLI.getRegClassFor(VT));
  Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
                                                          : ARM::PICADD;
  DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
            .addReg(TempReg)
            .addImm(ARMPCLabelIndex);

  if (!Subtarget->isThumb())
    MIB.add(predOps(ARMCC::AL));

  if (UseGOT_PREL && Subtarget->isThumb()) {
    Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                  TII.get(ARM::t2LDRi12), NewDestReg)
              .addReg(DestReg)
              .addImm(0);
    DestReg = NewDestReg;
    AddOptionalDefs(MIB);
  }
  return DestReg;
}

bool ARMFastISel::fastLowerArguments() {
  if (!FuncInfo.CanLowerReturn)
    return false;

  const Function *F = FuncInfo.Fn;
  if (F->isVarArg())
    return false;

  CallingConv::ID CC = F->getCallingConv();
  switch (CC) {
  default:
    return false;
  case CallingConv::Fast:
  case CallingConv::C:
  case CallingConv::ARM_AAPCS_VFP:
  case CallingConv::ARM_AAPCS:
  case CallingConv::ARM_APCS:
  case CallingConv::Swift:
  case CallingConv::SwiftTail:
    break;
  }

  // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
  // which are passed in r0 - r3.
  for (const Argument &Arg : F->args()) {
    if (Arg.getArgNo() >= 4)
      return false;

    if (Arg.hasAttribute(Attribute::InReg) ||
        Arg.hasAttribute(Attribute::StructRet) ||
        Arg.hasAttribute(Attribute::SwiftSelf) ||
        Arg.hasAttribute(Attribute::SwiftError) ||
        Arg.hasAttribute(Attribute::ByVal))
      return false;

    Type *ArgTy = Arg.getType();
    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
      return false;

    EVT ArgVT = TLI.getValueType(DL, ArgTy);
    if (!ArgVT.isSimple()) return false;
    switch (ArgVT.getSimpleVT().SimpleTy) {
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      break;
    default:
      return false;
    }
  }

  static const MCPhysReg GPRArgRegs[] = {
    ARM::R0, ARM::R1, ARM::R2, ARM::R3
  };

  const TargetRegisterClass *RC = &ARM::rGPRRegClass;
  for (const Argument &Arg : F->args()) {
    unsigned ArgNo = Arg.getArgNo();
    unsigned SrcReg = GPRArgRegs[ArgNo];
    Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
    // Without this, EmitLiveInCopies may eliminate the livein if its only
    // use is a bitcast (which isn't turned into an instruction).
    Register ResultReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY),
            ResultReg).addReg(DstReg, getKillRegState(true));
    updateValueMap(&Arg, ResultReg);
  }

  return true;
}

namespace llvm {

  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
                                const TargetLibraryInfo *libInfo) {
    if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
      return new ARMFastISel(funcInfo, libInfo);

    return nullptr;
  }

} // end namespace llvm