aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Target/AArch64/AArch64RegisterInfo.cpp
blob: d1b901e58d2733e20b8a233a9d73247c2b11dacc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//

#include "AArch64RegisterInfo.h"
#include "AArch64FrameLowering.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"

using namespace llvm;

#define GET_REGINFO_TARGET_DESC
#include "AArch64GenRegisterInfo.inc"

AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
    : AArch64GenRegisterInfo(AArch64::LR), TT(TT) {
  AArch64_MC::initLLVMToCVRegMapping(this);
}

/// Return whether the register needs a CFI entry. Not all unwinders may know
/// about SVE registers, so we assume the lowest common denominator, i.e. the
/// callee-saves required by the base ABI. For the SVE registers z8-z15 only the
/// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is
/// returned in \p RegToUseForCFI.
bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg,
                                      unsigned &RegToUseForCFI) const {
  if (AArch64::PPRRegClass.contains(Reg))
    return false;

  if (AArch64::ZPRRegClass.contains(Reg)) {
    RegToUseForCFI = getSubReg(Reg, AArch64::dsub);
    for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) {
      if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI)
        return true;
    }
    return false;
  }

  RegToUseForCFI = Reg;
  return true;
}

bool AArch64RegisterInfo::hasSVEArgsOrReturn(const MachineFunction *MF) {
  const Function &F = MF->getFunction();
  return isa<ScalableVectorType>(F.getReturnType()) ||
         any_of(F.args(), [](const Argument &Arg) {
           return isa<ScalableVectorType>(Arg.getType());
         });
}

const MCPhysReg *
AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");

  if (MF->getFunction().getCallingConv() == CallingConv::GHC)
    // GHC set of callee saved regs is empty as all those regs are
    // used for passing STG regs around
    return CSR_AArch64_NoRegs_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
    return CSR_AArch64_AllRegs_SaveList;

  // Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save
  // lists depending on that will need to have their Darwin variant as well.
  if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
    return getDarwinCalleeSavedRegs(MF);

  if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
    return CSR_Win_AArch64_CFGuard_Check_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows())
    return CSR_Win_AArch64_AAPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
    return CSR_AArch64_AAVPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
    return CSR_AArch64_SVE_AAPCS_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
          ->supportSwiftError() &&
      MF->getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_AArch64_AAPCS_SwiftError_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
    return CSR_AArch64_AAPCS_SwiftTail_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
    return CSR_AArch64_RT_MostRegs_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::Win64)
    // This is for OSes other than Windows; Windows is a separate case further
    // above.
    return CSR_AArch64_AAPCS_X18_SaveList;
  if (hasSVEArgsOrReturn(MF))
    return CSR_AArch64_SVE_AAPCS_SaveList;
  return CSR_AArch64_AAPCS_SaveList;
}

const MCPhysReg *
AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
         "Invalid subtarget for getDarwinCalleeSavedRegs");

  if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
    report_fatal_error(
        "Calling convention CFGuard_Check is unsupported on Darwin.");
  if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
    return CSR_Darwin_AArch64_AAVPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
    report_fatal_error(
        "Calling convention SVE_VectorCall is unsupported on Darwin.");
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
    return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()
               ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList
               : CSR_Darwin_AArch64_CXX_TLS_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
          ->supportSwiftError() &&
      MF->getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
    return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
    return CSR_Darwin_AArch64_RT_MostRegs_SaveList;
  return CSR_Darwin_AArch64_AAPCS_SaveList;
}

const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
    const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
      MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
    return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList;
  return nullptr;
}

void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
    MachineFunction &MF) const {
  const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
  SmallVector<MCPhysReg, 32> UpdatedCSRs;
  for (const MCPhysReg *I = CSRs; *I; ++I)
    UpdatedCSRs.push_back(*I);

  for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
      UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
    }
  }
  // Register lists are zero-terminated.
  UpdatedCSRs.push_back(0);
  MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
}

const TargetRegisterClass *
AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
                                       unsigned Idx) const {
  // edge case for GPR/FPR register classes
  if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
    return &AArch64::FPR32RegClass;
  else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
    return &AArch64::FPR64RegClass;

  // Forward to TableGen's default version.
  return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
}

const uint32_t *
AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF,
                                                CallingConv::ID CC) const {
  assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
         "Invalid subtarget for getDarwinCallPreservedMask");

  if (CC == CallingConv::CXX_FAST_TLS)
    return CSR_Darwin_AArch64_CXX_TLS_RegMask;
  if (CC == CallingConv::AArch64_VectorCall)
    return CSR_Darwin_AArch64_AAVPCS_RegMask;
  if (CC == CallingConv::AArch64_SVE_VectorCall)
    report_fatal_error(
        "Calling convention SVE_VectorCall is unsupported on Darwin.");
  if (CC == CallingConv::CFGuard_Check)
    report_fatal_error(
        "Calling convention CFGuard_Check is unsupported on Darwin.");
  if (MF.getSubtarget<AArch64Subtarget>()
          .getTargetLowering()
          ->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask;
  if (CC == CallingConv::SwiftTail)
    return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask;
  if (CC == CallingConv::PreserveMost)
    return CSR_Darwin_AArch64_RT_MostRegs_RegMask;
  return CSR_Darwin_AArch64_AAPCS_RegMask;
}

const uint32_t *
AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                          CallingConv::ID CC) const {
  bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
  if (CC == CallingConv::GHC)
    // This is academic because all GHC calls are (supposed to be) tail calls
    return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
  if (CC == CallingConv::AnyReg)
    return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;

  // All the following calling conventions are handled differently on Darwin.
  if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) {
    if (SCS)
      report_fatal_error("ShadowCallStack attribute not supported on Darwin.");
    return getDarwinCallPreservedMask(MF, CC);
  }

  if (CC == CallingConv::AArch64_VectorCall)
    return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
  if (CC == CallingConv::AArch64_SVE_VectorCall)
    return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
               : CSR_AArch64_SVE_AAPCS_RegMask;
  if (CC == CallingConv::CFGuard_Check)
    return CSR_Win_AArch64_CFGuard_Check_RegMask;
  if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
          ->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
               : CSR_AArch64_AAPCS_SwiftError_RegMask;
  if (CC == CallingConv::SwiftTail) {
    if (SCS)
      report_fatal_error("ShadowCallStack attribute not supported with swifttail");
    return CSR_AArch64_AAPCS_SwiftTail_RegMask;
  }
  if (CC == CallingConv::PreserveMost)
    return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
               : CSR_AArch64_RT_MostRegs_RegMask;
  else
    return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
}

const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask(
    const MachineFunction &MF) const {
  if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux())
    return CSR_AArch64_AAPCS_RegMask;

  return nullptr;
}

const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
  if (TT.isOSDarwin())
    return CSR_Darwin_AArch64_TLS_RegMask;

  assert(TT.isOSBinFormatELF() && "Invalid target");
  return CSR_AArch64_TLS_ELF_RegMask;
}

void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
                                                 const uint32_t **Mask) const {
  uint32_t *UpdatedMask = MF.allocateRegMask();
  unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
  memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);

  for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
      for (MCSubRegIterator SubReg(AArch64::GPR64commonRegClass.getRegister(i),
                                   this, true);
           SubReg.isValid(); ++SubReg) {
        // See TargetRegisterInfo::getCallPreservedMask for how to interpret the
        // register mask.
        UpdatedMask[*SubReg / 32] |= 1u << (*SubReg % 32);
      }
    }
  }
  *Mask = UpdatedMask;
}

const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
  return CSR_AArch64_NoRegs_RegMask;
}

const uint32_t *
AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
                                                CallingConv::ID CC) const {
  // This should return a register mask that is the same as that returned by
  // getCallPreservedMask but that additionally preserves the register used for
  // the first i64 argument (which must also be the register used to return a
  // single i64 return value)
  //
  // In case that the calling convention does not use the same register for
  // both, the function should return NULL (does not currently apply)
  assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
  if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin())
    return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask;
  return CSR_AArch64_AAPCS_ThisReturn_RegMask;
}

const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
  return CSR_AArch64_StackProbe_Windows_RegMask;
}

BitVector
AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  // FIXME: avoid re-calculating this every time.
  BitVector Reserved(getNumRegs());
  markSuperRegs(Reserved, AArch64::WSP);
  markSuperRegs(Reserved, AArch64::WZR);

  if (TFI->hasFP(MF) || TT.isOSDarwin())
    markSuperRegs(Reserved, AArch64::W29);

  for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
      markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
  }

  if (hasBasePointer(MF))
    markSuperRegs(Reserved, AArch64::W19);

  // SLH uses register W16/X16 as the taint register.
  if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
    markSuperRegs(Reserved, AArch64::W16);

  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved;
}

bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
                                        MCRegister Reg) const {
  return getReservedRegs(MF)[Reg];
}

bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
  return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) {
    return isReservedReg(MF, r);
  });
}

void AArch64RegisterInfo::emitReservedArgRegCallError(
    const MachineFunction &MF) const {
  const Function &F = MF.getFunction();
  F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support"
    " function calls if any of the argument registers is reserved.")});
}

bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
                                          MCRegister PhysReg) const {
  return !isReservedReg(MF, PhysReg);
}

bool AArch64RegisterInfo::isConstantPhysReg(MCRegister PhysReg) const {
  return PhysReg == AArch64::WZR || PhysReg == AArch64::XZR;
}

const TargetRegisterClass *
AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
                                      unsigned Kind) const {
  return &AArch64::GPR64spRegClass;
}

const TargetRegisterClass *
AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &AArch64::CCRRegClass)
    return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
  return RC;
}

unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }

bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // In the presence of variable sized objects or funclets, if the fixed stack
  // size is large enough that referencing from the FP won't result in things
  // being in range relatively often, we can use a base pointer to allow access
  // from the other direction like the SP normally works.
  //
  // Furthermore, if both variable sized objects are present, and the
  // stack needs to be dynamically re-aligned, the base pointer is the only
  // reliable way to reference the locals.
  if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
    if (hasStackRealignment(MF))
      return true;

    if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
      const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
      // Frames that have variable sized objects and scalable SVE objects,
      // should always use a basepointer.
      if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE())
        return true;
    }

    // Conservatively estimate whether the negative offset from the frame
    // pointer will be sufficient to reach. If a function has a smallish
    // frame, it's less likely to have lots of spills and callee saved
    // space, so it's all more likely to be within range of the frame pointer.
    // If it's wrong, we'll materialize the constant and still get to the
    // object; it's just suboptimal. Negative offsets use the unscaled
    // load/store instructions, which have a 9-bit signed immediate.
    return MFI.getLocalFrameSize() >= 256;
  }

  return false;
}

Register
AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);
  return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
}

bool AArch64RegisterInfo::requiresRegisterScavenging(
    const MachineFunction &MF) const {
  return true;
}

bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
    const MachineFunction &MF) const {
  return true;
}

bool
AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
  // This function indicates whether the emergency spillslot should be placed
  // close to the beginning of the stackframe (closer to FP) or the end
  // (closer to SP).
  //
  // The beginning works most reliably if we have a frame pointer.
  // In the presence of any non-constant space between FP and locals,
  // (e.g. in case of stack realignment or a scalable SVE area), it is
  // better to use SP or BP.
  const AArch64FrameLowering &TFI = *getFrameLowering(MF);
  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
  assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() ||
          AFI->hasCalculatedStackSizeSVE()) &&
         "Expected SVE area to be calculated by this point");
  return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->getStackSizeSVE();
}

bool AArch64RegisterInfo::requiresFrameIndexScavenging(
    const MachineFunction &MF) const {
  return true;
}

bool
AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
    return true;
  return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
}

/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
                                            int64_t Offset) const {
  for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
    assert(i < MI->getNumOperands() &&
           "Instr doesn't have FrameIndex operand!");

  // It's the load/store FI references that cause issues, as it can be difficult
  // to materialize the offset if it won't fit in the literal field. Estimate
  // based on the size of the local frame and some conservative assumptions
  // about the rest of the stack frame (note, this is pre-regalloc, so
  // we don't know everything for certain yet) whether this offset is likely
  // to be out of range of the immediate. Return true if so.

  // We only generate virtual base registers for loads and stores, so
  // return false for everything else.
  if (!MI->mayLoad() && !MI->mayStore())
    return false;

  // Without a virtual base register, if the function has variable sized
  // objects, all fixed-size local references will be via the frame pointer,
  // Approximate the offset and see if it's legal for the instruction.
  // Note that the incoming offset is based on the SP value at function entry,
  // so it'll be negative.
  MachineFunction &MF = *MI->getParent()->getParent();
  const AArch64FrameLowering *TFI = getFrameLowering(MF);
  MachineFrameInfo &MFI = MF.getFrameInfo();

  // Estimate an offset from the frame pointer.
  // Conservatively assume all GPR callee-saved registers get pushed.
  // FP, LR, X19-X28, D8-D15. 64-bits each.
  int64_t FPOffset = Offset - 16 * 20;
  // Estimate an offset from the stack pointer.
  // The incoming offset is relating to the SP at the start of the function,
  // but when we access the local it'll be relative to the SP after local
  // allocation, so adjust our SP-relative offset by that allocation size.
  Offset += MFI.getLocalFrameSize();
  // Assume that we'll have at least some spill slots allocated.
  // FIXME: This is a total SWAG number. We should run some statistics
  //        and pick a real one.
  Offset += 128; // 128 bytes of spill slots

  // If there is a frame pointer, try using it.
  // The FP is only available if there is no dynamic realignment. We
  // don't know for sure yet whether we'll need that, so we guess based
  // on whether there are any local variables that would trigger it.
  if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
    return false;

  // If we can reference via the stack pointer or base pointer, try that.
  // FIXME: This (and the code that resolves the references) can be improved
  //        to only disallow SP relative references in the live range of
  //        the VLA(s). In practice, it's unclear how much difference that
  //        would make, but it may be worth doing.
  if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
    return false;

  // If even offset 0 is illegal, we don't want a virtual base register.
  if (!isFrameOffsetLegal(MI, AArch64::SP, 0))
    return false;

  // The offset likely isn't legal; we want to allocate a virtual base register.
  return true;
}

bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
                                             Register BaseReg,
                                             int64_t Offset) const {
  assert(MI && "Unable to get the legal offset for nil instruction.");
  StackOffset SaveOffset = StackOffset::getFixed(Offset);
  return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
}

/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
/// at the beginning of the basic block.
Register
AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
                                                  int FrameIdx,
                                                  int64_t Offset) const {
  MachineBasicBlock::iterator Ins = MBB->begin();
  DebugLoc DL; // Defaults to "unknown"
  if (Ins != MBB->end())
    DL = Ins->getDebugLoc();
  const MachineFunction &MF = *MBB->getParent();
  const AArch64InstrInfo *TII =
      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
  const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
  MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
  unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);

  BuildMI(*MBB, Ins, DL, MCID, BaseReg)
      .addFrameIndex(FrameIdx)
      .addImm(Offset)
      .addImm(Shifter);

  return BaseReg;
}

void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
                                            int64_t Offset) const {
  // ARM doesn't need the general 64-bit offsets
  StackOffset Off = StackOffset::getFixed(Offset);

  unsigned i = 0;
  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }

  const MachineFunction *MF = MI.getParent()->getParent();
  const AArch64InstrInfo *TII =
      MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
  bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
  assert(Done && "Unable to resolve frame index!");
  (void)Done;
}

// Create a scratch register for the frame index elimination in an instruction.
// This function has special handling of stack tagging loop pseudos, in which
// case it can also change the instruction opcode (but not the operands).
static Register
createScratchRegisterForInstruction(MachineInstr &MI,
                                    const AArch64InstrInfo *TII) {
  // ST*Gloop have a reserved scratch register in operand 1. Use it, and also
  // replace the instruction with the writeback variant because it will now
  // satisfy the operand constraints for it.
  if (MI.getOpcode() == AArch64::STGloop) {
    MI.setDesc(TII->get(AArch64::STGloop_wback));
    return MI.getOperand(1).getReg();
  } else if (MI.getOpcode() == AArch64::STZGloop) {
    MI.setDesc(TII->get(AArch64::STZGloop_wback));
    return MI.getOperand(1).getReg();
  } else {
    return MI.getMF()->getRegInfo().createVirtualRegister(
        &AArch64::GPR64RegClass);
  }
}

void AArch64RegisterInfo::getOffsetOpcodes(
    const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
  // The smallest scalable element supported by scaled SVE addressing
  // modes are predicates, which are 2 scalable bytes in size. So the scalable
  // byte offset must always be a multiple of 2.
  assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");

  // Add fixed-sized offset using existing DIExpression interface.
  DIExpression::appendOffset(Ops, Offset.getFixed());

  unsigned VG = getDwarfRegNum(AArch64::VG, true);
  int64_t VGSized = Offset.getScalable() / 2;
  if (VGSized > 0) {
    Ops.push_back(dwarf::DW_OP_constu);
    Ops.push_back(VGSized);
    Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
    Ops.push_back(dwarf::DW_OP_mul);
    Ops.push_back(dwarf::DW_OP_plus);
  } else if (VGSized < 0) {
    Ops.push_back(dwarf::DW_OP_constu);
    Ops.push_back(-VGSized);
    Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
    Ops.push_back(dwarf::DW_OP_mul);
    Ops.push_back(dwarf::DW_OP_minus);
  }
}

void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                              int SPAdj, unsigned FIOperandNum,
                                              RegScavenger *RS) const {
  assert(SPAdj == 0 && "Unexpected");

  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AArch64InstrInfo *TII =
      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
  const AArch64FrameLowering *TFI = getFrameLowering(MF);
  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
  bool Tagged =
      MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
  Register FrameReg;

  // Special handling of dbg_value, stackmap patchpoint statepoint instructions.
  if (MI.getOpcode() == TargetOpcode::STACKMAP ||
      MI.getOpcode() == TargetOpcode::PATCHPOINT ||
      MI.getOpcode() == TargetOpcode::STATEPOINT) {
    StackOffset Offset =
        TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
                                        /*PreferFP=*/true,
                                        /*ForSimm=*/false);
    Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
    MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
    MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
    return;
  }

  if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
    MachineOperand &FI = MI.getOperand(FIOperandNum);
    StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
    assert(!Offset.getScalable() &&
           "Frame offsets with a scalable component are not supported");
    FI.ChangeToImmediate(Offset.getFixed());
    return;
  }

  StackOffset Offset;
  if (MI.getOpcode() == AArch64::TAGPstack) {
    // TAGPstack must use the virtual frame register in its 3rd operand.
    const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
    FrameReg = MI.getOperand(3).getReg();
    Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
                                      AFI->getTaggedBasePointerOffset());
  } else if (Tagged) {
    StackOffset SPOffset = StackOffset::getFixed(
        MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize());
    if (MFI.hasVarSizedObjects() ||
        isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
            (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
      // Can't update to SP + offset in place. Precalculate the tagged pointer
      // in a scratch register.
      Offset = TFI->resolveFrameIndexReference(
          MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
      Register ScratchReg =
          MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
      emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
                      TII);
      BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
          .addReg(ScratchReg)
          .addReg(ScratchReg)
          .addImm(0);
      MI.getOperand(FIOperandNum)
          .ChangeToRegister(ScratchReg, false, false, true);
      return;
    }
    FrameReg = AArch64::SP;
    Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
                                   (int64_t)MFI.getStackSize());
  } else {
    Offset = TFI->resolveFrameIndexReference(
        MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
  }

  // Modify MI as necessary to handle as much of 'Offset' as possible
  if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
    return;

  assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
         "Emergency spill slot is out of reach");

  // If we get here, the immediate doesn't fit into the instruction.  We folded
  // as much as possible above.  Handle the rest, providing a register that is
  // SP+LargeImm.
  Register ScratchReg = createScratchRegisterForInstruction(MI, TII);
  emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
  MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true);
}

unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                                  MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  switch (RC->getID()) {
  default:
    return 0;
  case AArch64::GPR32RegClassID:
  case AArch64::GPR32spRegClassID:
  case AArch64::GPR32allRegClassID:
  case AArch64::GPR64spRegClassID:
  case AArch64::GPR64allRegClassID:
  case AArch64::GPR64RegClassID:
  case AArch64::GPR32commonRegClassID:
  case AArch64::GPR64commonRegClassID:
    return 32 - 1                                   // XZR/SP
              - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
              - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
              - hasBasePointer(MF);  // X19
  case AArch64::FPR8RegClassID:
  case AArch64::FPR16RegClassID:
  case AArch64::FPR32RegClassID:
  case AArch64::FPR64RegClassID:
  case AArch64::FPR128RegClassID:
    return 32;

  case AArch64::MatrixIndexGPR32_12_15RegClassID:
    return 4;

  case AArch64::DDRegClassID:
  case AArch64::DDDRegClassID:
  case AArch64::DDDDRegClassID:
  case AArch64::QQRegClassID:
  case AArch64::QQQRegClassID:
  case AArch64::QQQQRegClassID:
    return 32;

  case AArch64::FPR128_loRegClassID:
  case AArch64::FPR64_loRegClassID:
  case AArch64::FPR16_loRegClassID:
    return 16;
  }
}

unsigned AArch64RegisterInfo::getLocalAddressRegister(
  const MachineFunction &MF) const {
  const auto &MFI = MF.getFrameInfo();
  if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
    return AArch64::SP;
  else if (hasStackRealignment(MF))
    return getBaseRegister();
  return getFrameRegister(MF);
}

/// SrcRC and DstRC will be morphed into NewRC if this returns true
bool AArch64RegisterInfo::shouldCoalesce(
    MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
    const TargetRegisterClass *DstRC, unsigned DstSubReg,
    const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
  if (MI->isCopy() &&
      ((DstRC->getID() == AArch64::GPR64RegClassID) ||
       (DstRC->getID() == AArch64::GPR64commonRegClassID)) &&
      MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg())
    // Do not coalesce in the case of a 32-bit subregister copy
    // which implements a 32 to 64 bit zero extension
    // which relies on the upper 32 bits being zeroed.
    return false;
  return true;
}