aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Support/SHA256.cpp
blob: 3b81506847ec8984023514df8f7f30ce71880488 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
//====- SHA256.cpp - SHA256 implementation ---*- C++ -* ======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/*
 *  The SHA-256 Secure Hash Standard was published by NIST in 2002.
 *
 *  http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
 *
 *   The implementation is based on nacl's sha256 implementation [0] and LLVM's
 *  pre-exsiting SHA1 code [1].
 *
 *   [0] https://hyperelliptic.org/nacl/nacl-20110221.tar.bz2 (public domain
 *       code)
 *   [1] llvm/lib/Support/SHA1.{h,cpp}
 */
//===----------------------------------------------------------------------===//

#include "llvm/Support/SHA256.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Host.h"
#include <string.h>

namespace llvm {

#if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN
#define SHA_BIG_ENDIAN
#endif

#define SHR(x, c) ((x) >> (c))
#define ROTR(x, n) (((x) >> n) | ((x) << (32 - (n))))

#define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

#define SIGMA_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define SIGMA_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))

#define SIGMA_2(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define SIGMA_3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))

#define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k)                    \
  do {                                                                         \
    H += SIGMA_1(E) + CH(E, F, G) + M1 + k;                                    \
    D += H;                                                                    \
    H += SIGMA_0(A) + MAJ(A, B, C);                                            \
    M1 += SIGMA_2(M2) + M3 + SIGMA_3(M4);                                      \
  } while (0);

void SHA256::init() {
  InternalState.State[0] = 0x6A09E667;
  InternalState.State[1] = 0xBB67AE85;
  InternalState.State[2] = 0x3C6EF372;
  InternalState.State[3] = 0xA54FF53A;
  InternalState.State[4] = 0x510E527F;
  InternalState.State[5] = 0x9B05688C;
  InternalState.State[6] = 0x1F83D9AB;
  InternalState.State[7] = 0x5BE0CD19;
  InternalState.ByteCount = 0;
  InternalState.BufferOffset = 0;
}

void SHA256::hashBlock() {
  uint32_t A = InternalState.State[0];
  uint32_t B = InternalState.State[1];
  uint32_t C = InternalState.State[2];
  uint32_t D = InternalState.State[3];
  uint32_t E = InternalState.State[4];
  uint32_t F = InternalState.State[5];
  uint32_t G = InternalState.State[6];
  uint32_t H = InternalState.State[7];

  uint32_t W00 = InternalState.Buffer.L[0];
  uint32_t W01 = InternalState.Buffer.L[1];
  uint32_t W02 = InternalState.Buffer.L[2];
  uint32_t W03 = InternalState.Buffer.L[3];
  uint32_t W04 = InternalState.Buffer.L[4];
  uint32_t W05 = InternalState.Buffer.L[5];
  uint32_t W06 = InternalState.Buffer.L[6];
  uint32_t W07 = InternalState.Buffer.L[7];
  uint32_t W08 = InternalState.Buffer.L[8];
  uint32_t W09 = InternalState.Buffer.L[9];
  uint32_t W10 = InternalState.Buffer.L[10];
  uint32_t W11 = InternalState.Buffer.L[11];
  uint32_t W12 = InternalState.Buffer.L[12];
  uint32_t W13 = InternalState.Buffer.L[13];
  uint32_t W14 = InternalState.Buffer.L[14];
  uint32_t W15 = InternalState.Buffer.L[15];

  F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98);
  F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491);
  F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF);
  F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5);
  F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B);
  F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1);
  F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4);
  F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5);
  F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98);
  F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01);
  F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE);
  F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3);
  F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74);
  F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE);
  F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7);
  F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174);

  F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1);
  F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786);
  F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6);
  F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC);
  F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F);
  F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA);
  F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC);
  F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA);
  F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152);
  F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D);
  F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8);
  F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7);
  F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3);
  F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147);
  F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351);
  F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967);

  F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85);
  F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138);
  F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC);
  F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13);
  F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354);
  F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB);
  F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E);
  F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85);
  F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1);
  F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B);
  F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70);
  F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3);
  F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819);
  F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624);
  F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585);
  F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070);

  F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116);
  F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08);
  F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C);
  F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5);
  F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3);
  F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A);
  F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F);
  F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3);
  F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE);
  F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F);
  F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814);
  F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208);
  F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA);
  F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB);
  F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7);
  F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2);

  InternalState.State[0] += A;
  InternalState.State[1] += B;
  InternalState.State[2] += C;
  InternalState.State[3] += D;
  InternalState.State[4] += E;
  InternalState.State[5] += F;
  InternalState.State[6] += G;
  InternalState.State[7] += H;
}

void SHA256::addUncounted(uint8_t Data) {
#ifdef SHA_BIG_ENDIAN
  InternalState.Buffer.C[InternalState.BufferOffset] = Data;
#else
  InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data;
#endif

  InternalState.BufferOffset++;
  if (InternalState.BufferOffset == BLOCK_LENGTH) {
    hashBlock();
    InternalState.BufferOffset = 0;
  }
}

void SHA256::writebyte(uint8_t Data) {
  ++InternalState.ByteCount;
  addUncounted(Data);
}

void SHA256::update(ArrayRef<uint8_t> Data) {
  InternalState.ByteCount += Data.size();

  // Finish the current block.
  if (InternalState.BufferOffset > 0) {
    const size_t Remainder = std::min<size_t>(
        Data.size(), BLOCK_LENGTH - InternalState.BufferOffset);
    for (size_t I = 0; I < Remainder; ++I)
      addUncounted(Data[I]);
    Data = Data.drop_front(Remainder);
  }

  // Fast buffer filling for large inputs.
  while (Data.size() >= BLOCK_LENGTH) {
    assert(InternalState.BufferOffset == 0);
    static_assert(BLOCK_LENGTH % 4 == 0, "");
    constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4;
    for (size_t I = 0; I < BLOCK_LENGTH_32; ++I)
      InternalState.Buffer.L[I] = support::endian::read32be(&Data[I * 4]);
    hashBlock();
    Data = Data.drop_front(BLOCK_LENGTH);
  }

  // Finish the remainder.
  for (uint8_t C : Data)
    addUncounted(C);
}

void SHA256::update(StringRef Str) {
  update(
      ArrayRef<uint8_t>((uint8_t *)const_cast<char *>(Str.data()), Str.size()));
}

void SHA256::pad() {
  // Implement SHA-2 padding (fips180-2 5.1.1)

  // Pad with 0x80 followed by 0x00 until the end of the block
  addUncounted(0x80);
  while (InternalState.BufferOffset != 56)
    addUncounted(0x00);

  uint64_t len = InternalState.ByteCount << 3; // bit size

  // Append length in the last 8 bytes big edian encoded
  addUncounted(len >> 56);
  addUncounted(len >> 48);
  addUncounted(len >> 40);
  addUncounted(len >> 32);
  addUncounted(len >> 24);
  addUncounted(len >> 16);
  addUncounted(len >> 8);
  addUncounted(len);
}

StringRef SHA256::final() {
  // Pad to complete the last block
  pad();

#ifdef SHA_BIG_ENDIAN
  // Just copy the current state
  for (int i = 0; i < 8; i++) {
    HashResult[i] = InternalState.State[i];
  }
#else
  // Swap byte order back
  for (int i = 0; i < 8; i++) {
    HashResult[i] = (((InternalState.State[i]) << 24) & 0xff000000) |
                    (((InternalState.State[i]) << 8) & 0x00ff0000) |
                    (((InternalState.State[i]) >> 8) & 0x0000ff00) |
                    (((InternalState.State[i]) >> 24) & 0x000000ff);
  }
#endif

  // Return pointer to hash (32 characters)
  return StringRef((char *)HashResult, HASH_LENGTH);
}

StringRef SHA256::result() {
  auto StateToRestore = InternalState;

  auto Hash = final();

  // Restore the state
  InternalState = StateToRestore;

  // Return pointer to hash (32 characters)
  return Hash;
}

std::array<uint8_t, 32> SHA256::hash(ArrayRef<uint8_t> Data) {
  SHA256 Hash;
  Hash.update(Data);
  StringRef S = Hash.final();

  std::array<uint8_t, 32> Arr;
  memcpy(Arr.data(), S.data(), S.size());
  return Arr;
}

} // namespace llvm