1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
//===- llvm/Support/Parallel.cpp - Parallel algorithms --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Parallel.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Threading.h"
#include <atomic>
#include <future>
#include <stack>
#include <thread>
#include <vector>
llvm::ThreadPoolStrategy llvm::parallel::strategy;
#if LLVM_ENABLE_THREADS
namespace llvm {
namespace parallel {
namespace detail {
namespace {
/// An abstract class that takes closures and runs them asynchronously.
class Executor {
public:
virtual ~Executor() = default;
virtual void add(std::function<void()> func) = 0;
static Executor *getDefaultExecutor();
};
/// An implementation of an Executor that runs closures on a thread pool
/// in filo order.
class ThreadPoolExecutor : public Executor {
public:
explicit ThreadPoolExecutor(ThreadPoolStrategy S = hardware_concurrency()) {
unsigned ThreadCount = S.compute_thread_count();
// Spawn all but one of the threads in another thread as spawning threads
// can take a while.
Threads.reserve(ThreadCount);
Threads.resize(1);
std::lock_guard<std::mutex> Lock(Mutex);
Threads[0] = std::thread([this, ThreadCount, S] {
for (unsigned I = 1; I < ThreadCount; ++I) {
Threads.emplace_back([=] { work(S, I); });
if (Stop)
break;
}
ThreadsCreated.set_value();
work(S, 0);
});
}
void stop() {
{
std::lock_guard<std::mutex> Lock(Mutex);
if (Stop)
return;
Stop = true;
}
Cond.notify_all();
ThreadsCreated.get_future().wait();
}
~ThreadPoolExecutor() override {
stop();
std::thread::id CurrentThreadId = std::this_thread::get_id();
for (std::thread &T : Threads)
if (T.get_id() == CurrentThreadId)
T.detach();
else
T.join();
}
struct Creator {
static void *call() { return new ThreadPoolExecutor(strategy); }
};
struct Deleter {
static void call(void *Ptr) { ((ThreadPoolExecutor *)Ptr)->stop(); }
};
void add(std::function<void()> F) override {
{
std::lock_guard<std::mutex> Lock(Mutex);
WorkStack.push(F);
}
Cond.notify_one();
}
private:
void work(ThreadPoolStrategy S, unsigned ThreadID) {
S.apply_thread_strategy(ThreadID);
while (true) {
std::unique_lock<std::mutex> Lock(Mutex);
Cond.wait(Lock, [&] { return Stop || !WorkStack.empty(); });
if (Stop)
break;
auto Task = WorkStack.top();
WorkStack.pop();
Lock.unlock();
Task();
}
}
std::atomic<bool> Stop{false};
std::stack<std::function<void()>> WorkStack;
std::mutex Mutex;
std::condition_variable Cond;
std::promise<void> ThreadsCreated;
std::vector<std::thread> Threads;
};
Executor *Executor::getDefaultExecutor() {
// The ManagedStatic enables the ThreadPoolExecutor to be stopped via
// llvm_shutdown() which allows a "clean" fast exit, e.g. via _exit(). This
// stops the thread pool and waits for any worker thread creation to complete
// but does not wait for the threads to finish. The wait for worker thread
// creation to complete is important as it prevents intermittent crashes on
// Windows due to a race condition between thread creation and process exit.
//
// The ThreadPoolExecutor will only be destroyed when the static unique_ptr to
// it is destroyed, i.e. in a normal full exit. The ThreadPoolExecutor
// destructor ensures it has been stopped and waits for worker threads to
// finish. The wait is important as it prevents intermittent crashes on
// Windows when the process is doing a full exit.
//
// The Windows crashes appear to only occur with the MSVC static runtimes and
// are more frequent with the debug static runtime.
//
// This also prevents intermittent deadlocks on exit with the MinGW runtime.
static ManagedStatic<ThreadPoolExecutor, ThreadPoolExecutor::Creator,
ThreadPoolExecutor::Deleter>
ManagedExec;
static std::unique_ptr<ThreadPoolExecutor> Exec(&(*ManagedExec));
return Exec.get();
}
} // namespace
static std::atomic<int> TaskGroupInstances;
// Latch::sync() called by the dtor may cause one thread to block. If is a dead
// lock if all threads in the default executor are blocked. To prevent the dead
// lock, only allow the first TaskGroup to run tasks parallelly. In the scenario
// of nested parallel_for_each(), only the outermost one runs parallelly.
TaskGroup::TaskGroup() : Parallel(TaskGroupInstances++ == 0) {}
TaskGroup::~TaskGroup() {
// We must ensure that all the workloads have finished before decrementing the
// instances count.
L.sync();
--TaskGroupInstances;
}
void TaskGroup::spawn(std::function<void()> F) {
if (Parallel) {
L.inc();
Executor::getDefaultExecutor()->add([&, F] {
F();
L.dec();
});
} else {
F();
}
}
} // namespace detail
} // namespace parallel
} // namespace llvm
#endif // LLVM_ENABLE_THREADS
void llvm::parallelForEachN(size_t Begin, size_t End,
llvm::function_ref<void(size_t)> Fn) {
// If we have zero or one items, then do not incur the overhead of spinning up
// a task group. They are surprisingly expensive, and because they do not
// support nested parallelism, a single entry task group can block parallel
// execution underneath them.
#if LLVM_ENABLE_THREADS
auto NumItems = End - Begin;
if (NumItems > 1 && parallel::strategy.ThreadsRequested != 1) {
// Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
// overhead on large inputs.
auto TaskSize = NumItems / parallel::detail::MaxTasksPerGroup;
if (TaskSize == 0)
TaskSize = 1;
parallel::detail::TaskGroup TG;
for (; Begin + TaskSize < End; Begin += TaskSize) {
TG.spawn([=, &Fn] {
for (size_t I = Begin, E = Begin + TaskSize; I != E; ++I)
Fn(I);
});
}
for (; Begin != End; ++Begin)
Fn(Begin);
return;
}
#endif
for (; Begin != End; ++Begin)
Fn(Begin);
}
|