1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
//===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a class for representing known zeros and ones used by
// computeKnownBits.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
static KnownBits computeForAddCarry(
const KnownBits &LHS, const KnownBits &RHS,
bool CarryZero, bool CarryOne) {
assert(!(CarryZero && CarryOne) &&
"Carry can't be zero and one at the same time");
APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero;
APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne;
// Compute known bits of the carry.
APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
// Compute set of known bits (where all three relevant bits are known).
APInt LHSKnownUnion = LHS.Zero | LHS.One;
APInt RHSKnownUnion = RHS.Zero | RHS.One;
APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne;
APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion;
assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
"known bits of sum differ");
// Compute known bits of the result.
KnownBits KnownOut;
KnownOut.Zero = ~std::move(PossibleSumZero) & Known;
KnownOut.One = std::move(PossibleSumOne) & Known;
return KnownOut;
}
KnownBits KnownBits::computeForAddCarry(
const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) {
assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit");
return ::computeForAddCarry(
LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue());
}
KnownBits KnownBits::computeForAddSub(bool Add, bool NSW,
const KnownBits &LHS, KnownBits RHS) {
KnownBits KnownOut;
if (Add) {
// Sum = LHS + RHS + 0
KnownOut = ::computeForAddCarry(
LHS, RHS, /*CarryZero*/true, /*CarryOne*/false);
} else {
// Sum = LHS + ~RHS + 1
std::swap(RHS.Zero, RHS.One);
KnownOut = ::computeForAddCarry(
LHS, RHS, /*CarryZero*/false, /*CarryOne*/true);
}
// Are we still trying to solve for the sign bit?
if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) {
if (NSW) {
// Adding two non-negative numbers, or subtracting a negative number from
// a non-negative one, can't wrap into negative.
if (LHS.isNonNegative() && RHS.isNonNegative())
KnownOut.makeNonNegative();
// Adding two negative numbers, or subtracting a non-negative number from
// a negative one, can't wrap into non-negative.
else if (LHS.isNegative() && RHS.isNegative())
KnownOut.makeNegative();
}
}
return KnownOut;
}
KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const {
unsigned BitWidth = getBitWidth();
assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth &&
"Illegal sext-in-register");
if (SrcBitWidth == BitWidth)
return *this;
unsigned ExtBits = BitWidth - SrcBitWidth;
KnownBits Result;
Result.One = One << ExtBits;
Result.Zero = Zero << ExtBits;
Result.One.ashrInPlace(ExtBits);
Result.Zero.ashrInPlace(ExtBits);
return Result;
}
KnownBits KnownBits::makeGE(const APInt &Val) const {
// Count the number of leading bit positions where our underlying value is
// known to be less than or equal to Val.
unsigned N = (Zero | Val).countLeadingOnes();
// For each of those bit positions, if Val has a 1 in that bit then our
// underlying value must also have a 1.
APInt MaskedVal(Val);
MaskedVal.clearLowBits(getBitWidth() - N);
return KnownBits(Zero, One | MaskedVal);
}
KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) {
// If we can prove that LHS >= RHS then use LHS as the result. Likewise for
// RHS. Ideally our caller would already have spotted these cases and
// optimized away the umax operation, but we handle them here for
// completeness.
if (LHS.getMinValue().uge(RHS.getMaxValue()))
return LHS;
if (RHS.getMinValue().uge(LHS.getMaxValue()))
return RHS;
// If the result of the umax is LHS then it must be greater than or equal to
// the minimum possible value of RHS. Likewise for RHS. Any known bits that
// are common to these two values are also known in the result.
KnownBits L = LHS.makeGE(RHS.getMinValue());
KnownBits R = RHS.makeGE(LHS.getMinValue());
return KnownBits::commonBits(L, R);
}
KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) {
// Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0]
auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); };
return Flip(umax(Flip(LHS), Flip(RHS)));
}
KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) {
// Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF]
auto Flip = [](const KnownBits &Val) {
unsigned SignBitPosition = Val.getBitWidth() - 1;
APInt Zero = Val.Zero;
APInt One = Val.One;
Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
return KnownBits(Zero, One);
};
return Flip(umax(Flip(LHS), Flip(RHS)));
}
KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) {
// Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0]
auto Flip = [](const KnownBits &Val) {
unsigned SignBitPosition = Val.getBitWidth() - 1;
APInt Zero = Val.One;
APInt One = Val.Zero;
Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
One.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
return KnownBits(Zero, One);
};
return Flip(umax(Flip(LHS), Flip(RHS)));
}
KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
KnownBits Known(BitWidth);
// If the shift amount is a valid constant then transform LHS directly.
if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) {
unsigned Shift = RHS.getConstant().getZExtValue();
Known = LHS;
Known.Zero <<= Shift;
Known.One <<= Shift;
// Low bits are known zero.
Known.Zero.setLowBits(Shift);
return Known;
}
// No matter the shift amount, the trailing zeros will stay zero.
unsigned MinTrailingZeros = LHS.countMinTrailingZeros();
// Minimum shift amount low bits are known zero.
APInt MinShiftAmount = RHS.getMinValue();
if (MinShiftAmount.ult(BitWidth)) {
MinTrailingZeros += MinShiftAmount.getZExtValue();
MinTrailingZeros = std::min(MinTrailingZeros, BitWidth);
}
// If the maximum shift is in range, then find the common bits from all
// possible shifts.
APInt MaxShiftAmount = RHS.getMaxValue();
if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) {
uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue();
uint64_t ShiftAmtOneMask = RHS.One.getZExtValue();
assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range");
Known.Zero.setAllBits();
Known.One.setAllBits();
for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(),
MaxShiftAmt = MaxShiftAmount.getZExtValue();
ShiftAmt <= MaxShiftAmt; ++ShiftAmt) {
// Skip if the shift amount is impossible.
if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt ||
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
continue;
KnownBits SpecificShift;
SpecificShift.Zero = LHS.Zero << ShiftAmt;
SpecificShift.One = LHS.One << ShiftAmt;
Known = KnownBits::commonBits(Known, SpecificShift);
if (Known.isUnknown())
break;
}
}
Known.Zero.setLowBits(MinTrailingZeros);
return Known;
}
KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
KnownBits Known(BitWidth);
if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) {
unsigned Shift = RHS.getConstant().getZExtValue();
Known = LHS;
Known.Zero.lshrInPlace(Shift);
Known.One.lshrInPlace(Shift);
// High bits are known zero.
Known.Zero.setHighBits(Shift);
return Known;
}
// No matter the shift amount, the leading zeros will stay zero.
unsigned MinLeadingZeros = LHS.countMinLeadingZeros();
// Minimum shift amount high bits are known zero.
APInt MinShiftAmount = RHS.getMinValue();
if (MinShiftAmount.ult(BitWidth)) {
MinLeadingZeros += MinShiftAmount.getZExtValue();
MinLeadingZeros = std::min(MinLeadingZeros, BitWidth);
}
// If the maximum shift is in range, then find the common bits from all
// possible shifts.
APInt MaxShiftAmount = RHS.getMaxValue();
if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) {
uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue();
uint64_t ShiftAmtOneMask = RHS.One.getZExtValue();
assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range");
Known.Zero.setAllBits();
Known.One.setAllBits();
for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(),
MaxShiftAmt = MaxShiftAmount.getZExtValue();
ShiftAmt <= MaxShiftAmt; ++ShiftAmt) {
// Skip if the shift amount is impossible.
if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt ||
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
continue;
KnownBits SpecificShift = LHS;
SpecificShift.Zero.lshrInPlace(ShiftAmt);
SpecificShift.One.lshrInPlace(ShiftAmt);
Known = KnownBits::commonBits(Known, SpecificShift);
if (Known.isUnknown())
break;
}
}
Known.Zero.setHighBits(MinLeadingZeros);
return Known;
}
KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
KnownBits Known(BitWidth);
if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) {
unsigned Shift = RHS.getConstant().getZExtValue();
Known = LHS;
Known.Zero.ashrInPlace(Shift);
Known.One.ashrInPlace(Shift);
return Known;
}
// No matter the shift amount, the leading sign bits will stay.
unsigned MinLeadingZeros = LHS.countMinLeadingZeros();
unsigned MinLeadingOnes = LHS.countMinLeadingOnes();
// Minimum shift amount high bits are known sign bits.
APInt MinShiftAmount = RHS.getMinValue();
if (MinShiftAmount.ult(BitWidth)) {
if (MinLeadingZeros) {
MinLeadingZeros += MinShiftAmount.getZExtValue();
MinLeadingZeros = std::min(MinLeadingZeros, BitWidth);
}
if (MinLeadingOnes) {
MinLeadingOnes += MinShiftAmount.getZExtValue();
MinLeadingOnes = std::min(MinLeadingOnes, BitWidth);
}
}
// If the maximum shift is in range, then find the common bits from all
// possible shifts.
APInt MaxShiftAmount = RHS.getMaxValue();
if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) {
uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue();
uint64_t ShiftAmtOneMask = RHS.One.getZExtValue();
assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range");
Known.Zero.setAllBits();
Known.One.setAllBits();
for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(),
MaxShiftAmt = MaxShiftAmount.getZExtValue();
ShiftAmt <= MaxShiftAmt; ++ShiftAmt) {
// Skip if the shift amount is impossible.
if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt ||
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
continue;
KnownBits SpecificShift = LHS;
SpecificShift.Zero.ashrInPlace(ShiftAmt);
SpecificShift.One.ashrInPlace(ShiftAmt);
Known = KnownBits::commonBits(Known, SpecificShift);
if (Known.isUnknown())
break;
}
}
Known.Zero.setHighBits(MinLeadingZeros);
Known.One.setHighBits(MinLeadingOnes);
return Known;
}
Optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) {
if (LHS.isConstant() && RHS.isConstant())
return Optional<bool>(LHS.getConstant() == RHS.getConstant());
if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero))
return Optional<bool>(false);
return None;
}
Optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) {
if (Optional<bool> KnownEQ = eq(LHS, RHS))
return Optional<bool>(!KnownEQ.getValue());
return None;
}
Optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) {
// LHS >u RHS -> false if umax(LHS) <= umax(RHS)
if (LHS.getMaxValue().ule(RHS.getMinValue()))
return Optional<bool>(false);
// LHS >u RHS -> true if umin(LHS) > umax(RHS)
if (LHS.getMinValue().ugt(RHS.getMaxValue()))
return Optional<bool>(true);
return None;
}
Optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) {
if (Optional<bool> IsUGT = ugt(RHS, LHS))
return Optional<bool>(!IsUGT.getValue());
return None;
}
Optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) {
return ugt(RHS, LHS);
}
Optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) {
return uge(RHS, LHS);
}
Optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) {
// LHS >s RHS -> false if smax(LHS) <= smax(RHS)
if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue()))
return Optional<bool>(false);
// LHS >s RHS -> true if smin(LHS) > smax(RHS)
if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue()))
return Optional<bool>(true);
return None;
}
Optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) {
if (Optional<bool> KnownSGT = sgt(RHS, LHS))
return Optional<bool>(!KnownSGT.getValue());
return None;
}
Optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) {
return sgt(RHS, LHS);
}
Optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) {
return sge(RHS, LHS);
}
KnownBits KnownBits::abs(bool IntMinIsPoison) const {
// If the source's MSB is zero then we know the rest of the bits already.
if (isNonNegative())
return *this;
// Absolute value preserves trailing zero count.
KnownBits KnownAbs(getBitWidth());
KnownAbs.Zero.setLowBits(countMinTrailingZeros());
// We only know that the absolute values's MSB will be zero if INT_MIN is
// poison, or there is a set bit that isn't the sign bit (otherwise it could
// be INT_MIN).
if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue()))
KnownAbs.Zero.setSignBit();
// FIXME: Handle known negative input?
// FIXME: Calculate the negated Known bits and combine them?
return KnownAbs;
}
KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
bool SelfMultiply) {
unsigned BitWidth = LHS.getBitWidth();
assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
!RHS.hasConflict() && "Operand mismatch");
assert((!SelfMultiply || (LHS.One == RHS.One && LHS.Zero == RHS.Zero)) &&
"Self multiplication knownbits mismatch");
// Compute the high known-0 bits by multiplying the unsigned max of each side.
// Conservatively, M active bits * N active bits results in M + N bits in the
// result. But if we know a value is a power-of-2 for example, then this
// computes one more leading zero.
// TODO: This could be generalized to number of sign bits (negative numbers).
APInt UMaxLHS = LHS.getMaxValue();
APInt UMaxRHS = RHS.getMaxValue();
// For leading zeros in the result to be valid, the unsigned max product must
// fit in the bitwidth (it must not overflow).
bool HasOverflow;
APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow);
unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countLeadingZeros();
// The result of the bottom bits of an integer multiply can be
// inferred by looking at the bottom bits of both operands and
// multiplying them together.
// We can infer at least the minimum number of known trailing bits
// of both operands. Depending on number of trailing zeros, we can
// infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
// a and b are divisible by m and n respectively.
// We then calculate how many of those bits are inferrable and set
// the output. For example, the i8 mul:
// a = XXXX1100 (12)
// b = XXXX1110 (14)
// We know the bottom 3 bits are zero since the first can be divided by
// 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
// Applying the multiplication to the trimmed arguments gets:
// XX11 (3)
// X111 (7)
// -------
// XX11
// XX11
// XX11
// XX11
// -------
// XXXXX01
// Which allows us to infer the 2 LSBs. Since we're multiplying the result
// by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
// The proof for this can be described as:
// Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
// (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
// umin(countTrailingZeros(C2), C6) +
// umin(C5 - umin(countTrailingZeros(C1), C5),
// C6 - umin(countTrailingZeros(C2), C6)))) - 1)
// %aa = shl i8 %a, C5
// %bb = shl i8 %b, C6
// %aaa = or i8 %aa, C1
// %bbb = or i8 %bb, C2
// %mul = mul i8 %aaa, %bbb
// %mask = and i8 %mul, C7
// =>
// %mask = i8 ((C1*C2)&C7)
// Where C5, C6 describe the known bits of %a, %b
// C1, C2 describe the known bottom bits of %a, %b.
// C7 describes the mask of the known bits of the result.
const APInt &Bottom0 = LHS.One;
const APInt &Bottom1 = RHS.One;
// How many times we'd be able to divide each argument by 2 (shr by 1).
// This gives us the number of trailing zeros on the multiplication result.
unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countTrailingOnes();
unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countTrailingOnes();
unsigned TrailZero0 = LHS.countMinTrailingZeros();
unsigned TrailZero1 = RHS.countMinTrailingZeros();
unsigned TrailZ = TrailZero0 + TrailZero1;
// Figure out the fewest known-bits operand.
unsigned SmallestOperand =
std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1);
unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
APInt BottomKnown =
Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1);
KnownBits Res(BitWidth);
Res.Zero.setHighBits(LeadZ);
Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
Res.One = BottomKnown.getLoBits(ResultBitsKnown);
// If we're self-multiplying then bit[1] is guaranteed to be zero.
if (SelfMultiply && BitWidth > 1) {
assert(Res.One[1] == 0 &&
"Self-multiplication failed Quadratic Reciprocity!");
Res.Zero.setBit(1);
}
return Res;
}
KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
!RHS.hasConflict() && "Operand mismatch");
KnownBits WideLHS = LHS.sext(2 * BitWidth);
KnownBits WideRHS = RHS.sext(2 * BitWidth);
return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
}
KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
!RHS.hasConflict() && "Operand mismatch");
KnownBits WideLHS = LHS.zext(2 * BitWidth);
KnownBits WideRHS = RHS.zext(2 * BitWidth);
return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
}
KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
assert(!LHS.hasConflict() && !RHS.hasConflict());
KnownBits Known(BitWidth);
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
unsigned LeadZ = LHS.countMinLeadingZeros();
unsigned RHSMaxLeadingZeros = RHS.countMaxLeadingZeros();
if (RHSMaxLeadingZeros != BitWidth)
LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Known.Zero.setHighBits(LeadZ);
return Known;
}
KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
assert(!LHS.hasConflict() && !RHS.hasConflict());
KnownBits Known(BitWidth);
if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
// The upper bits are all zero, the lower ones are unchanged.
APInt LowBits = RHS.getConstant() - 1;
Known.Zero = LHS.Zero | ~LowBits;
Known.One = LHS.One & LowBits;
return Known;
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
uint32_t Leaders =
std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros());
Known.Zero.setHighBits(Leaders);
return Known;
}
KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
assert(!LHS.hasConflict() && !RHS.hasConflict());
KnownBits Known(BitWidth);
if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
// The low bits of the first operand are unchanged by the srem.
APInt LowBits = RHS.getConstant() - 1;
Known.Zero = LHS.Zero & LowBits;
Known.One = LHS.One & LowBits;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero))
Known.Zero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
if (LHS.isNegative() && LowBits.intersects(LHS.One))
Known.One |= ~LowBits;
return Known;
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero. The magnitude of the result should be less than or
// equal to the magnitude of the LHS. Therefore any leading zeros that exist
// in the left hand side must also exist in the result.
Known.Zero.setHighBits(LHS.countMinLeadingZeros());
return Known;
}
KnownBits &KnownBits::operator&=(const KnownBits &RHS) {
// Result bit is 0 if either operand bit is 0.
Zero |= RHS.Zero;
// Result bit is 1 if both operand bits are 1.
One &= RHS.One;
return *this;
}
KnownBits &KnownBits::operator|=(const KnownBits &RHS) {
// Result bit is 0 if both operand bits are 0.
Zero &= RHS.Zero;
// Result bit is 1 if either operand bit is 1.
One |= RHS.One;
return *this;
}
KnownBits &KnownBits::operator^=(const KnownBits &RHS) {
// Result bit is 0 if both operand bits are 0 or both are 1.
APInt Z = (Zero & RHS.Zero) | (One & RHS.One);
// Result bit is 1 if one operand bit is 0 and the other is 1.
One = (Zero & RHS.One) | (One & RHS.Zero);
Zero = std::move(Z);
return *this;
}
void KnownBits::print(raw_ostream &OS) const {
OS << "{Zero=" << Zero << ", One=" << One << "}";
}
void KnownBits::dump() const {
print(dbgs());
dbgs() << "\n";
}
|