aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/ProfileData/Coverage/CoverageMappingReader.cpp
blob: c6691e321b3c12f1a472a8e5ccb39a00622f73b2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
//===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading coverage mapping data for
// instrumentation based coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>

using namespace llvm;
using namespace coverage;
using namespace object;

#define DEBUG_TYPE "coverage-mapping"

STATISTIC(CovMapNumRecords, "The # of coverage function records");
STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records");

void CoverageMappingIterator::increment() {
  if (ReadErr != coveragemap_error::success)
    return;

  // Check if all the records were read or if an error occurred while reading
  // the next record.
  if (auto E = Reader->readNextRecord(Record))
    handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
      if (CME.get() == coveragemap_error::eof)
        *this = CoverageMappingIterator();
      else
        ReadErr = CME.get();
    });
}

Error RawCoverageReader::readULEB128(uint64_t &Result) {
  if (Data.empty())
    return make_error<CoverageMapError>(coveragemap_error::truncated);
  unsigned N = 0;
  Result = decodeULEB128(Data.bytes_begin(), &N);
  if (N > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  Data = Data.substr(N);
  return Error::success();
}

Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
  if (auto Err = readULEB128(Result))
    return Err;
  if (Result >= MaxPlus1)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  return Error::success();
}

Error RawCoverageReader::readSize(uint64_t &Result) {
  if (auto Err = readULEB128(Result))
    return Err;
  if (Result > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  return Error::success();
}

Error RawCoverageReader::readString(StringRef &Result) {
  uint64_t Length;
  if (auto Err = readSize(Length))
    return Err;
  Result = Data.substr(0, Length);
  Data = Data.substr(Length);
  return Error::success();
}

Error RawCoverageFilenamesReader::read(CovMapVersion Version) {
  uint64_t NumFilenames;
  if (auto Err = readSize(NumFilenames))
    return Err;
  if (!NumFilenames)
    return make_error<CoverageMapError>(coveragemap_error::malformed);

  if (Version < CovMapVersion::Version4)
    return readUncompressed(Version, NumFilenames);

  // The uncompressed length may exceed the size of the encoded filenames.
  // Skip size validation.
  uint64_t UncompressedLen;
  if (auto Err = readULEB128(UncompressedLen))
    return Err;

  uint64_t CompressedLen;
  if (auto Err = readSize(CompressedLen))
    return Err;

  if (CompressedLen > 0) {
    if (!zlib::isAvailable())
      return make_error<CoverageMapError>(
          coveragemap_error::decompression_failed);

    // Allocate memory for the decompressed filenames.
    SmallVector<char, 0> StorageBuf;

    // Read compressed filenames.
    StringRef CompressedFilenames = Data.substr(0, CompressedLen);
    Data = Data.substr(CompressedLen);
    auto Err =
        zlib::uncompress(CompressedFilenames, StorageBuf, UncompressedLen);
    if (Err) {
      consumeError(std::move(Err));
      return make_error<CoverageMapError>(
          coveragemap_error::decompression_failed);
    }

    StringRef UncompressedFilenames(StorageBuf.data(), StorageBuf.size());
    RawCoverageFilenamesReader Delegate(UncompressedFilenames, Filenames,
                                        CompilationDir);
    return Delegate.readUncompressed(Version, NumFilenames);
  }

  return readUncompressed(Version, NumFilenames);
}

Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version,
                                                   uint64_t NumFilenames) {
  // Read uncompressed filenames.
  if (Version < CovMapVersion::Version6) {
    for (size_t I = 0; I < NumFilenames; ++I) {
      StringRef Filename;
      if (auto Err = readString(Filename))
        return Err;
      Filenames.push_back(Filename.str());
    }
  } else {
    StringRef CWD;
    if (auto Err = readString(CWD))
      return Err;
    Filenames.push_back(CWD.str());

    for (size_t I = 1; I < NumFilenames; ++I) {
      StringRef Filename;
      if (auto Err = readString(Filename))
        return Err;
      if (sys::path::is_absolute(Filename)) {
        Filenames.push_back(Filename.str());
      } else {
        SmallString<256> P;
        if (!CompilationDir.empty())
          P.assign(CompilationDir);
        else
          P.assign(CWD);
        llvm::sys::path::append(P, Filename);
        Filenames.push_back(static_cast<std::string>(P));
      }
    }
  }
  return Error::success();
}

Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
  auto Tag = Value & Counter::EncodingTagMask;
  switch (Tag) {
  case Counter::Zero:
    C = Counter::getZero();
    return Error::success();
  case Counter::CounterValueReference:
    C = Counter::getCounter(Value >> Counter::EncodingTagBits);
    return Error::success();
  default:
    break;
  }
  Tag -= Counter::Expression;
  switch (Tag) {
  case CounterExpression::Subtract:
  case CounterExpression::Add: {
    auto ID = Value >> Counter::EncodingTagBits;
    if (ID >= Expressions.size())
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
    C = Counter::getExpression(ID);
    break;
  }
  default:
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  }
  return Error::success();
}

Error RawCoverageMappingReader::readCounter(Counter &C) {
  uint64_t EncodedCounter;
  if (auto Err =
          readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
    return Err;
  if (auto Err = decodeCounter(EncodedCounter, C))
    return Err;
  return Error::success();
}

static const unsigned EncodingExpansionRegionBit = 1
                                                   << Counter::EncodingTagBits;

/// Read the sub-array of regions for the given inferred file id.
/// \param NumFileIDs the number of file ids that are defined for this
/// function.
Error RawCoverageMappingReader::readMappingRegionsSubArray(
    std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
    size_t NumFileIDs) {
  uint64_t NumRegions;
  if (auto Err = readSize(NumRegions))
    return Err;
  unsigned LineStart = 0;
  for (size_t I = 0; I < NumRegions; ++I) {
    Counter C, C2;
    CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;

    // Read the combined counter + region kind.
    uint64_t EncodedCounterAndRegion;
    if (auto Err = readIntMax(EncodedCounterAndRegion,
                              std::numeric_limits<unsigned>::max()))
      return Err;
    unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
    uint64_t ExpandedFileID = 0;

    // If Tag does not represent a ZeroCounter, then it is understood to refer
    // to a counter or counter expression with region kind assumed to be
    // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the
    // referenced counter or counter expression (and nothing else).
    //
    // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set,
    // then EncodedCounterAndRegion is interpreted to represent an
    // ExpansionRegion. In all other cases, EncodedCounterAndRegion is
    // interpreted to refer to a specific region kind, after which additional
    // fields may be read (e.g. BranchRegions have two encoded counters that
    // follow an encoded region kind value).
    if (Tag != Counter::Zero) {
      if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
        return Err;
    } else {
      // Is it an expansion region?
      if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
        Kind = CounterMappingRegion::ExpansionRegion;
        ExpandedFileID = EncodedCounterAndRegion >>
                         Counter::EncodingCounterTagAndExpansionRegionTagBits;
        if (ExpandedFileID >= NumFileIDs)
          return make_error<CoverageMapError>(coveragemap_error::malformed);
      } else {
        switch (EncodedCounterAndRegion >>
                Counter::EncodingCounterTagAndExpansionRegionTagBits) {
        case CounterMappingRegion::CodeRegion:
          // Don't do anything when we have a code region with a zero counter.
          break;
        case CounterMappingRegion::SkippedRegion:
          Kind = CounterMappingRegion::SkippedRegion;
          break;
        case CounterMappingRegion::BranchRegion:
          // For a Branch Region, read two successive counters.
          Kind = CounterMappingRegion::BranchRegion;
          if (auto Err = readCounter(C))
            return Err;
          if (auto Err = readCounter(C2))
            return Err;
          break;
        default:
          return make_error<CoverageMapError>(coveragemap_error::malformed);
        }
      }
    }

    // Read the source range.
    uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
    if (auto Err =
            readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
      return Err;
    if (auto Err = readULEB128(ColumnStart))
      return Err;
    if (ColumnStart > std::numeric_limits<unsigned>::max())
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
      return Err;
    if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
      return Err;
    LineStart += LineStartDelta;

    // If the high bit of ColumnEnd is set, this is a gap region.
    if (ColumnEnd & (1U << 31)) {
      Kind = CounterMappingRegion::GapRegion;
      ColumnEnd &= ~(1U << 31);
    }

    // Adjust the column locations for the empty regions that are supposed to
    // cover whole lines. Those regions should be encoded with the
    // column range (1 -> std::numeric_limits<unsigned>::max()), but because
    // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
    // we set the column range to (0 -> 0) to ensure that the column start and
    // column end take up one byte each.
    // The std::numeric_limits<unsigned>::max() is used to represent a column
    // position at the end of the line without knowing the length of that line.
    if (ColumnStart == 0 && ColumnEnd == 0) {
      ColumnStart = 1;
      ColumnEnd = std::numeric_limits<unsigned>::max();
    }

    LLVM_DEBUG({
      dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
             << ColumnStart << " -> " << (LineStart + NumLines) << ":"
             << ColumnEnd << ", ";
      if (Kind == CounterMappingRegion::ExpansionRegion)
        dbgs() << "Expands to file " << ExpandedFileID;
      else
        CounterMappingContext(Expressions).dump(C, dbgs());
      dbgs() << "\n";
    });

    auto CMR = CounterMappingRegion(C, C2, InferredFileID, ExpandedFileID,
                                    LineStart, ColumnStart,
                                    LineStart + NumLines, ColumnEnd, Kind);
    if (CMR.startLoc() > CMR.endLoc())
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    MappingRegions.push_back(CMR);
  }
  return Error::success();
}

Error RawCoverageMappingReader::read() {
  // Read the virtual file mapping.
  SmallVector<unsigned, 8> VirtualFileMapping;
  uint64_t NumFileMappings;
  if (auto Err = readSize(NumFileMappings))
    return Err;
  for (size_t I = 0; I < NumFileMappings; ++I) {
    uint64_t FilenameIndex;
    if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
      return Err;
    VirtualFileMapping.push_back(FilenameIndex);
  }

  // Construct the files using unique filenames and virtual file mapping.
  for (auto I : VirtualFileMapping) {
    Filenames.push_back(TranslationUnitFilenames[I]);
  }

  // Read the expressions.
  uint64_t NumExpressions;
  if (auto Err = readSize(NumExpressions))
    return Err;
  // Create an array of dummy expressions that get the proper counters
  // when the expressions are read, and the proper kinds when the counters
  // are decoded.
  Expressions.resize(
      NumExpressions,
      CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
  for (size_t I = 0; I < NumExpressions; ++I) {
    if (auto Err = readCounter(Expressions[I].LHS))
      return Err;
    if (auto Err = readCounter(Expressions[I].RHS))
      return Err;
  }

  // Read the mapping regions sub-arrays.
  for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
       InferredFileID < S; ++InferredFileID) {
    if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
                                              VirtualFileMapping.size()))
      return Err;
  }

  // Set the counters for the expansion regions.
  // i.e. Counter of expansion region = counter of the first region
  // from the expanded file.
  // Perform multiple passes to correctly propagate the counters through
  // all the nested expansion regions.
  SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
  FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
  for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
    for (auto &R : MappingRegions) {
      if (R.Kind != CounterMappingRegion::ExpansionRegion)
        continue;
      assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
      FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
    }
    for (auto &R : MappingRegions) {
      if (FileIDExpansionRegionMapping[R.FileID]) {
        FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
        FileIDExpansionRegionMapping[R.FileID] = nullptr;
      }
    }
  }

  return Error::success();
}

Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
  // A dummy coverage mapping data consists of just one region with zero count.
  uint64_t NumFileMappings;
  if (Error Err = readSize(NumFileMappings))
    return std::move(Err);
  if (NumFileMappings != 1)
    return false;
  // We don't expect any specific value for the filename index, just skip it.
  uint64_t FilenameIndex;
  if (Error Err =
          readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
    return std::move(Err);
  uint64_t NumExpressions;
  if (Error Err = readSize(NumExpressions))
    return std::move(Err);
  if (NumExpressions != 0)
    return false;
  uint64_t NumRegions;
  if (Error Err = readSize(NumRegions))
    return std::move(Err);
  if (NumRegions != 1)
    return false;
  uint64_t EncodedCounterAndRegion;
  if (Error Err = readIntMax(EncodedCounterAndRegion,
                             std::numeric_limits<unsigned>::max()))
    return std::move(Err);
  unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
  return Tag == Counter::Zero;
}

Error InstrProfSymtab::create(SectionRef &Section) {
  Expected<StringRef> DataOrErr = Section.getContents();
  if (!DataOrErr)
    return DataOrErr.takeError();
  Data = *DataOrErr;
  Address = Section.getAddress();

  // If this is a linked PE/COFF file, then we have to skip over the null byte
  // that is allocated in the .lprfn$A section in the LLVM profiling runtime.
  const ObjectFile *Obj = Section.getObject();
  if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject())
    Data = Data.drop_front(1);

  return Error::success();
}

StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
  if (Pointer < Address)
    return StringRef();
  auto Offset = Pointer - Address;
  if (Offset + Size > Data.size())
    return StringRef();
  return Data.substr(Pointer - Address, Size);
}

// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
  // The hash value of dummy mapping records is always zero.
  if (Hash)
    return false;
  return RawCoverageMappingDummyChecker(Mapping).isDummy();
}

/// A range of filename indices. Used to specify the location of a batch of
/// filenames in a vector-like container.
struct FilenameRange {
  unsigned StartingIndex;
  unsigned Length;

  FilenameRange(unsigned StartingIndex, unsigned Length)
      : StartingIndex(StartingIndex), Length(Length) {}

  void markInvalid() { Length = 0; }
  bool isInvalid() const { return Length == 0; }
};

namespace {

/// The interface to read coverage mapping function records for a module.
struct CovMapFuncRecordReader {
  virtual ~CovMapFuncRecordReader() = default;

  // Read a coverage header.
  //
  // \p CovBuf points to the buffer containing the \c CovHeader of the coverage
  // mapping data associated with the module.
  //
  // Returns a pointer to the next \c CovHeader if it exists, or to an address
  // greater than \p CovEnd if not.
  virtual Expected<const char *> readCoverageHeader(const char *CovBuf,
                                                    const char *CovBufEnd) = 0;

  // Read function records.
  //
  // \p FuncRecBuf points to the buffer containing a batch of function records.
  // \p FuncRecBufEnd points past the end of the batch of records.
  //
  // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames
  // associated with the function records. It is unused in Version4.
  //
  // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage
  // mappings associated with the function records. It is unused in Version4.
  virtual Error readFunctionRecords(const char *FuncRecBuf,
                                    const char *FuncRecBufEnd,
                                    Optional<FilenameRange> OutOfLineFileRange,
                                    const char *OutOfLineMappingBuf,
                                    const char *OutOfLineMappingBufEnd) = 0;

  template <class IntPtrT, support::endianness Endian>
  static Expected<std::unique_ptr<CovMapFuncRecordReader>>
  get(CovMapVersion Version, InstrProfSymtab &P,
      std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
      std::vector<std::string> &F);
};

// A class for reading coverage mapping function records for a module.
template <CovMapVersion Version, class IntPtrT, support::endianness Endian>
class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
  using FuncRecordType =
      typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
  using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;

  // Maps function's name references to the indexes of their records
  // in \c Records.
  DenseMap<NameRefType, size_t> FunctionRecords;
  InstrProfSymtab &ProfileNames;
  StringRef CompilationDir;
  std::vector<std::string> &Filenames;
  std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;

  // Maps a hash of the filenames in a TU to a \c FileRange. The range
  // specifies the location of the hashed filenames in \c Filenames.
  DenseMap<uint64_t, FilenameRange> FileRangeMap;

  // Add the record to the collection if we don't already have a record that
  // points to the same function name. This is useful to ignore the redundant
  // records for the functions with ODR linkage.
  // In addition, prefer records with real coverage mapping data to dummy
  // records, which were emitted for inline functions which were seen but
  // not used in the corresponding translation unit.
  Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
                                     StringRef Mapping,
                                     FilenameRange FileRange) {
    ++CovMapNumRecords;
    uint64_t FuncHash = CFR->template getFuncHash<Endian>();
    NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
    auto InsertResult =
        FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
    if (InsertResult.second) {
      StringRef FuncName;
      if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
        return Err;
      if (FuncName.empty())
        return make_error<InstrProfError>(instrprof_error::malformed,
                                          "function name is empty");
      ++CovMapNumUsedRecords;
      Records.emplace_back(Version, FuncName, FuncHash, Mapping,
                           FileRange.StartingIndex, FileRange.Length);
      return Error::success();
    }
    // Update the existing record if it's a dummy and the new record is real.
    size_t OldRecordIndex = InsertResult.first->second;
    BinaryCoverageReader::ProfileMappingRecord &OldRecord =
        Records[OldRecordIndex];
    Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
        OldRecord.FunctionHash, OldRecord.CoverageMapping);
    if (Error Err = OldIsDummyExpected.takeError())
      return Err;
    if (!*OldIsDummyExpected)
      return Error::success();
    Expected<bool> NewIsDummyExpected =
        isCoverageMappingDummy(FuncHash, Mapping);
    if (Error Err = NewIsDummyExpected.takeError())
      return Err;
    if (*NewIsDummyExpected)
      return Error::success();
    ++CovMapNumUsedRecords;
    OldRecord.FunctionHash = FuncHash;
    OldRecord.CoverageMapping = Mapping;
    OldRecord.FilenamesBegin = FileRange.StartingIndex;
    OldRecord.FilenamesSize = FileRange.Length;
    return Error::success();
  }

public:
  VersionedCovMapFuncRecordReader(
      InstrProfSymtab &P,
      std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
      std::vector<std::string> &F)
      : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {}

  ~VersionedCovMapFuncRecordReader() override = default;

  Expected<const char *> readCoverageHeader(const char *CovBuf,
                                            const char *CovBufEnd) override {
    using namespace support;

    if (CovBuf + sizeof(CovMapHeader) > CovBufEnd)
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf);
    uint32_t NRecords = CovHeader->getNRecords<Endian>();
    uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
    uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
    assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
    CovBuf = reinterpret_cast<const char *>(CovHeader + 1);

    // Skip past the function records, saving the start and end for later.
    // This is a no-op in Version4 (function records are read after all headers
    // are read).
    const char *FuncRecBuf = nullptr;
    const char *FuncRecBufEnd = nullptr;
    if (Version < CovMapVersion::Version4)
      FuncRecBuf = CovBuf;
    CovBuf += NRecords * sizeof(FuncRecordType);
    if (Version < CovMapVersion::Version4)
      FuncRecBufEnd = CovBuf;

    // Get the filenames.
    if (CovBuf + FilenamesSize > CovBufEnd)
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    size_t FilenamesBegin = Filenames.size();
    StringRef FilenameRegion(CovBuf, FilenamesSize);
    RawCoverageFilenamesReader Reader(FilenameRegion, Filenames,
                                      CompilationDir);
    if (auto Err = Reader.read(Version))
      return std::move(Err);
    CovBuf += FilenamesSize;
    FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin);

    if (Version >= CovMapVersion::Version4) {
      // Map a hash of the filenames region to the filename range associated
      // with this coverage header.
      int64_t FilenamesRef =
          llvm::IndexedInstrProf::ComputeHash(FilenameRegion);
      auto Insert =
          FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange));
      if (!Insert.second) {
        // The same filenames ref was encountered twice. It's possible that
        // the associated filenames are the same.
        auto It = Filenames.begin();
        FilenameRange &OrigRange = Insert.first->getSecond();
        if (std::equal(It + OrigRange.StartingIndex,
                       It + OrigRange.StartingIndex + OrigRange.Length,
                       It + FileRange.StartingIndex,
                       It + FileRange.StartingIndex + FileRange.Length))
          // Map the new range to the original one.
          FileRange = OrigRange;
        else
          // This is a hash collision. Mark the filenames ref invalid.
          OrigRange.markInvalid();
      }
    }

    // We'll read the coverage mapping records in the loop below.
    // This is a no-op in Version4 (coverage mappings are not affixed to the
    // coverage header).
    const char *MappingBuf = CovBuf;
    if (Version >= CovMapVersion::Version4 && CoverageSize != 0)
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    CovBuf += CoverageSize;
    const char *MappingEnd = CovBuf;

    if (CovBuf > CovBufEnd)
      return make_error<CoverageMapError>(coveragemap_error::malformed);

    if (Version < CovMapVersion::Version4) {
      // Read each function record.
      if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange,
                                        MappingBuf, MappingEnd))
        return std::move(E);
    }

    // Each coverage map has an alignment of 8, so we need to adjust alignment
    // before reading the next map.
    CovBuf += offsetToAlignedAddr(CovBuf, Align(8));

    return CovBuf;
  }

  Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd,
                            Optional<FilenameRange> OutOfLineFileRange,
                            const char *OutOfLineMappingBuf,
                            const char *OutOfLineMappingBufEnd) override {
    auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf);
    while ((const char *)CFR < FuncRecBufEnd) {
      // Validate the length of the coverage mapping for this function.
      const char *NextMappingBuf;
      const FuncRecordType *NextCFR;
      std::tie(NextMappingBuf, NextCFR) =
          CFR->template advanceByOne<Endian>(OutOfLineMappingBuf);
      if (Version < CovMapVersion::Version4)
        if (NextMappingBuf > OutOfLineMappingBufEnd)
          return make_error<CoverageMapError>(coveragemap_error::malformed);

      // Look up the set of filenames associated with this function record.
      Optional<FilenameRange> FileRange;
      if (Version < CovMapVersion::Version4) {
        FileRange = OutOfLineFileRange;
      } else {
        uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>();
        auto It = FileRangeMap.find(FilenamesRef);
        if (It == FileRangeMap.end())
          return make_error<CoverageMapError>(coveragemap_error::malformed);
        else
          FileRange = It->getSecond();
      }

      // Now, read the coverage data.
      if (FileRange && !FileRange->isInvalid()) {
        StringRef Mapping =
            CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf);
        if (Version >= CovMapVersion::Version4 &&
            Mapping.data() + Mapping.size() > FuncRecBufEnd)
          return make_error<CoverageMapError>(coveragemap_error::malformed);
        if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange))
          return Err;
      }

      std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR);
    }
    return Error::success();
  }
};

} // end anonymous namespace

template <class IntPtrT, support::endianness Endian>
Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
    CovMapVersion Version, InstrProfSymtab &P,
    std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
    std::vector<std::string> &F) {
  using namespace coverage;

  switch (Version) {
  case CovMapVersion::Version1:
    return std::make_unique<VersionedCovMapFuncRecordReader<
        CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F);
  case CovMapVersion::Version2:
  case CovMapVersion::Version3:
  case CovMapVersion::Version4:
  case CovMapVersion::Version5:
  case CovMapVersion::Version6:
    // Decompress the name data.
    if (Error E = P.create(P.getNameData()))
      return std::move(E);
    if (Version == CovMapVersion::Version2)
      return std::make_unique<VersionedCovMapFuncRecordReader<
          CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F);
    else if (Version == CovMapVersion::Version3)
      return std::make_unique<VersionedCovMapFuncRecordReader<
          CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F);
    else if (Version == CovMapVersion::Version4)
      return std::make_unique<VersionedCovMapFuncRecordReader<
          CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F);
    else if (Version == CovMapVersion::Version5)
      return std::make_unique<VersionedCovMapFuncRecordReader<
          CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F);
    else if (Version == CovMapVersion::Version6)
      return std::make_unique<VersionedCovMapFuncRecordReader<
          CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F);
  }
  llvm_unreachable("Unsupported version");
}

template <typename T, support::endianness Endian>
static Error readCoverageMappingData(
    InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords,
    std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
    StringRef CompilationDir, std::vector<std::string> &Filenames) {
  using namespace coverage;

  // Read the records in the coverage data section.
  auto CovHeader =
      reinterpret_cast<const CovMapHeader *>(CovMap.data());
  CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
  if (Version > CovMapVersion::CurrentVersion)
    return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
  Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
      CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
                                             CompilationDir, Filenames);
  if (Error E = ReaderExpected.takeError())
    return E;
  auto Reader = std::move(ReaderExpected.get());
  const char *CovBuf = CovMap.data();
  const char *CovBufEnd = CovBuf + CovMap.size();
  const char *FuncRecBuf = FuncRecords.data();
  const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size();
  while (CovBuf < CovBufEnd) {
    // Read the current coverage header & filename data.
    //
    // Prior to Version4, this also reads all function records affixed to the
    // header.
    //
    // Return a pointer to the next coverage header.
    auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd);
    if (auto E = NextOrErr.takeError())
      return E;
    CovBuf = NextOrErr.get();
  }
  // In Version4, function records are not affixed to coverage headers. Read
  // the records from their dedicated section.
  if (Version >= CovMapVersion::Version4)
    return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, None, nullptr,
                                       nullptr);
  return Error::success();
}

static const char *TestingFormatMagic = "llvmcovmtestdata";

Expected<std::unique_ptr<BinaryCoverageReader>>
BinaryCoverageReader::createCoverageReaderFromBuffer(
    StringRef Coverage, FuncRecordsStorage &&FuncRecords,
    InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress,
    support::endianness Endian, StringRef CompilationDir) {
  std::unique_ptr<BinaryCoverageReader> Reader(
      new BinaryCoverageReader(std::move(FuncRecords)));
  Reader->ProfileNames = std::move(ProfileNames);
  StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer();
  if (BytesInAddress == 4 && Endian == support::endianness::little) {
    if (Error E =
            readCoverageMappingData<uint32_t, support::endianness::little>(
                Reader->ProfileNames, Coverage, FuncRecordsRef,
                Reader->MappingRecords, CompilationDir, Reader->Filenames))
      return std::move(E);
  } else if (BytesInAddress == 4 && Endian == support::endianness::big) {
    if (Error E = readCoverageMappingData<uint32_t, support::endianness::big>(
            Reader->ProfileNames, Coverage, FuncRecordsRef,
            Reader->MappingRecords, CompilationDir, Reader->Filenames))
      return std::move(E);
  } else if (BytesInAddress == 8 && Endian == support::endianness::little) {
    if (Error E =
            readCoverageMappingData<uint64_t, support::endianness::little>(
                Reader->ProfileNames, Coverage, FuncRecordsRef,
                Reader->MappingRecords, CompilationDir, Reader->Filenames))
      return std::move(E);
  } else if (BytesInAddress == 8 && Endian == support::endianness::big) {
    if (Error E = readCoverageMappingData<uint64_t, support::endianness::big>(
            Reader->ProfileNames, Coverage, FuncRecordsRef,
            Reader->MappingRecords, CompilationDir, Reader->Filenames))
      return std::move(E);
  } else
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  return std::move(Reader);
}

static Expected<std::unique_ptr<BinaryCoverageReader>>
loadTestingFormat(StringRef Data, StringRef CompilationDir) {
  uint8_t BytesInAddress = 8;
  support::endianness Endian = support::endianness::little;

  Data = Data.substr(StringRef(TestingFormatMagic).size());
  if (Data.empty())
    return make_error<CoverageMapError>(coveragemap_error::truncated);
  unsigned N = 0;
  uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N);
  if (N > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  Data = Data.substr(N);
  if (Data.empty())
    return make_error<CoverageMapError>(coveragemap_error::truncated);
  N = 0;
  uint64_t Address = decodeULEB128(Data.bytes_begin(), &N);
  if (N > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  Data = Data.substr(N);
  if (Data.size() < ProfileNamesSize)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  InstrProfSymtab ProfileNames;
  if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
    return std::move(E);
  Data = Data.substr(ProfileNamesSize);
  // Skip the padding bytes because coverage map data has an alignment of 8.
  size_t Pad = offsetToAlignedAddr(Data.data(), Align(8));
  if (Data.size() < Pad)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  Data = Data.substr(Pad);
  if (Data.size() < sizeof(CovMapHeader))
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  auto const *CovHeader = reinterpret_cast<const CovMapHeader *>(
      Data.substr(0, sizeof(CovMapHeader)).data());
  CovMapVersion Version =
      (CovMapVersion)CovHeader->getVersion<support::endianness::little>();
  StringRef CoverageMapping;
  BinaryCoverageReader::FuncRecordsStorage CoverageRecords;
  if (Version < CovMapVersion::Version4) {
    CoverageMapping = Data;
    if (CoverageMapping.empty())
      return make_error<CoverageMapError>(coveragemap_error::truncated);
    CoverageRecords = MemoryBuffer::getMemBuffer("");
  } else {
    uint32_t FilenamesSize =
        CovHeader->getFilenamesSize<support::endianness::little>();
    uint32_t CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize;
    CoverageMapping = Data.substr(0, CoverageMappingSize);
    if (CoverageMapping.empty())
      return make_error<CoverageMapError>(coveragemap_error::truncated);
    Data = Data.substr(CoverageMappingSize);
    // Skip the padding bytes because coverage records data has an alignment
    // of 8.
    Pad = offsetToAlignedAddr(Data.data(), Align(8));
    if (Data.size() < Pad)
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    CoverageRecords = MemoryBuffer::getMemBuffer(Data.substr(Pad));
    if (CoverageRecords->getBufferSize() == 0)
      return make_error<CoverageMapError>(coveragemap_error::truncated);
  }
  return BinaryCoverageReader::createCoverageReaderFromBuffer(
      CoverageMapping, std::move(CoverageRecords), std::move(ProfileNames),
      BytesInAddress, Endian, CompilationDir);
}

/// Find all sections that match \p Name. There may be more than one if comdats
/// are in use, e.g. for the __llvm_covfun section on ELF.
static Expected<std::vector<SectionRef>> lookupSections(ObjectFile &OF,
                                                        StringRef Name) {
  // On COFF, the object file section name may end in "$M". This tells the
  // linker to sort these sections between "$A" and "$Z". The linker removes the
  // dollar and everything after it in the final binary. Do the same to match.
  bool IsCOFF = isa<COFFObjectFile>(OF);
  auto stripSuffix = [IsCOFF](StringRef N) {
    return IsCOFF ? N.split('$').first : N;
  };
  Name = stripSuffix(Name);

  std::vector<SectionRef> Sections;
  for (const auto &Section : OF.sections()) {
    Expected<StringRef> NameOrErr = Section.getName();
    if (!NameOrErr)
      return NameOrErr.takeError();
    if (stripSuffix(*NameOrErr) == Name)
      Sections.push_back(Section);
  }
  if (Sections.empty())
    return make_error<CoverageMapError>(coveragemap_error::no_data_found);
  return Sections;
}

static Expected<std::unique_ptr<BinaryCoverageReader>>
loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch,
                 StringRef CompilationDir = "") {
  std::unique_ptr<ObjectFile> OF;
  if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
    // If we have a universal binary, try to look up the object for the
    // appropriate architecture.
    auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch);
    if (!ObjectFileOrErr)
      return ObjectFileOrErr.takeError();
    OF = std::move(ObjectFileOrErr.get());
  } else if (isa<ObjectFile>(Bin.get())) {
    // For any other object file, upcast and take ownership.
    OF.reset(cast<ObjectFile>(Bin.release()));
    // If we've asked for a particular arch, make sure they match.
    if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
      return errorCodeToError(object_error::arch_not_found);
  } else
    // We can only handle object files.
    return make_error<CoverageMapError>(coveragemap_error::malformed);

  // The coverage uses native pointer sizes for the object it's written in.
  uint8_t BytesInAddress = OF->getBytesInAddress();
  support::endianness Endian = OF->isLittleEndian()
                                   ? support::endianness::little
                                   : support::endianness::big;

  // Look for the sections that we are interested in.
  auto ObjFormat = OF->getTripleObjectFormat();
  auto NamesSection =
      lookupSections(*OF, getInstrProfSectionName(IPSK_name, ObjFormat,
                                                 /*AddSegmentInfo=*/false));
  if (auto E = NamesSection.takeError())
    return std::move(E);
  auto CoverageSection =
      lookupSections(*OF, getInstrProfSectionName(IPSK_covmap, ObjFormat,
                                                  /*AddSegmentInfo=*/false));
  if (auto E = CoverageSection.takeError())
    return std::move(E);
  std::vector<SectionRef> CoverageSectionRefs = *CoverageSection;
  if (CoverageSectionRefs.size() != 1)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents();
  if (!CoverageMappingOrErr)
    return CoverageMappingOrErr.takeError();
  StringRef CoverageMapping = CoverageMappingOrErr.get();

  InstrProfSymtab ProfileNames;
  std::vector<SectionRef> NamesSectionRefs = *NamesSection;
  if (NamesSectionRefs.size() != 1)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  if (Error E = ProfileNames.create(NamesSectionRefs.back()))
    return std::move(E);

  // Look for the coverage records section (Version4 only).
  auto CoverageRecordsSections =
      lookupSections(*OF, getInstrProfSectionName(IPSK_covfun, ObjFormat,
                                                  /*AddSegmentInfo=*/false));

  BinaryCoverageReader::FuncRecordsStorage FuncRecords;
  if (auto E = CoverageRecordsSections.takeError()) {
    consumeError(std::move(E));
    FuncRecords = MemoryBuffer::getMemBuffer("");
  } else {
    // Compute the FuncRecordsBuffer of the buffer, taking into account the
    // padding between each record, and making sure the first block is aligned
    // in memory to maintain consistency between buffer address and size
    // alignment.
    const Align RecordAlignment(8);
    uint64_t FuncRecordsSize = 0;
    for (SectionRef Section : *CoverageRecordsSections) {
      auto CoverageRecordsOrErr = Section.getContents();
      if (!CoverageRecordsOrErr)
        return CoverageRecordsOrErr.takeError();
      FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment);
    }
    auto WritableBuffer =
        WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize);
    char *FuncRecordsBuffer = WritableBuffer->getBufferStart();
    assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) &&
           "Allocated memory is correctly aligned");

    for (SectionRef Section : *CoverageRecordsSections) {
      auto CoverageRecordsOrErr = Section.getContents();
      if (!CoverageRecordsOrErr)
        return CoverageRecordsOrErr.takeError();
      const auto &CoverageRecords = CoverageRecordsOrErr.get();
      FuncRecordsBuffer = std::copy(CoverageRecords.begin(),
                                    CoverageRecords.end(), FuncRecordsBuffer);
      FuncRecordsBuffer =
          std::fill_n(FuncRecordsBuffer,
                      alignAddr(FuncRecordsBuffer, RecordAlignment) -
                          (uintptr_t)FuncRecordsBuffer,
                      '\0');
    }
    assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() &&
           "consistent init");
    FuncRecords = std::move(WritableBuffer);
  }

  return BinaryCoverageReader::createCoverageReaderFromBuffer(
      CoverageMapping, std::move(FuncRecords), std::move(ProfileNames),
      BytesInAddress, Endian, CompilationDir);
}

/// Determine whether \p Arch is invalid or empty, given \p Bin.
static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) {
  // If we have a universal binary and Arch doesn't identify any of its slices,
  // it's user error.
  if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) {
    for (auto &ObjForArch : Universal->objects())
      if (Arch == ObjForArch.getArchFlagName())
        return false;
    return true;
  }
  return false;
}

Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>>
BinaryCoverageReader::create(
    MemoryBufferRef ObjectBuffer, StringRef Arch,
    SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers,
    StringRef CompilationDir) {
  std::vector<std::unique_ptr<BinaryCoverageReader>> Readers;

  if (ObjectBuffer.getBuffer().startswith(TestingFormatMagic)) {
    // This is a special format used for testing.
    auto ReaderOrErr =
        loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir);
    if (!ReaderOrErr)
      return ReaderOrErr.takeError();
    Readers.push_back(std::move(ReaderOrErr.get()));
    return std::move(Readers);
  }

  auto BinOrErr = createBinary(ObjectBuffer);
  if (!BinOrErr)
    return BinOrErr.takeError();
  std::unique_ptr<Binary> Bin = std::move(BinOrErr.get());

  if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch))
    return make_error<CoverageMapError>(
        coveragemap_error::invalid_or_missing_arch_specifier);

  // MachO universal binaries which contain archives need to be treated as
  // archives, not as regular binaries.
  if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
    for (auto &ObjForArch : Universal->objects()) {
      // Skip slices within the universal binary which target the wrong arch.
      std::string ObjArch = ObjForArch.getArchFlagName();
      if (Arch != ObjArch)
        continue;

      auto ArchiveOrErr = ObjForArch.getAsArchive();
      if (!ArchiveOrErr) {
        // If this is not an archive, try treating it as a regular object.
        consumeError(ArchiveOrErr.takeError());
        break;
      }

      return BinaryCoverageReader::create(
          ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers,
          CompilationDir);
    }
  }

  // Load coverage out of archive members.
  if (auto *Ar = dyn_cast<Archive>(Bin.get())) {
    Error Err = Error::success();
    for (auto &Child : Ar->children(Err)) {
      Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef();
      if (!ChildBufOrErr)
        return ChildBufOrErr.takeError();

      auto ChildReadersOrErr = BinaryCoverageReader::create(
          ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir);
      if (!ChildReadersOrErr)
        return ChildReadersOrErr.takeError();
      for (auto &Reader : ChildReadersOrErr.get())
        Readers.push_back(std::move(Reader));
    }
    if (Err)
      return std::move(Err);

    // Thin archives reference object files outside of the archive file, i.e.
    // files which reside in memory not owned by the caller. Transfer ownership
    // to the caller.
    if (Ar->isThin())
      for (auto &Buffer : Ar->takeThinBuffers())
        ObjectFileBuffers.push_back(std::move(Buffer));

    return std::move(Readers);
  }

  auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir);
  if (!ReaderOrErr)
    return ReaderOrErr.takeError();
  Readers.push_back(std::move(ReaderOrErr.get()));
  return std::move(Readers);
}

Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
  if (CurrentRecord >= MappingRecords.size())
    return make_error<CoverageMapError>(coveragemap_error::eof);

  FunctionsFilenames.clear();
  Expressions.clear();
  MappingRegions.clear();
  auto &R = MappingRecords[CurrentRecord];
  auto F = makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize);
  RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames,
                                  Expressions, MappingRegions);
  if (auto Err = Reader.read())
    return Err;

  Record.FunctionName = R.FunctionName;
  Record.FunctionHash = R.FunctionHash;
  Record.Filenames = FunctionsFilenames;
  Record.Expressions = Expressions;
  Record.MappingRegions = MappingRegions;

  ++CurrentRecord;
  return Error::success();
}