aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/ProfileData/Coverage/CoverageMapping.cpp
blob: 94c2bee3590cb52d25d3f255f5979c584d96f4b0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;
using namespace coverage;

#define DEBUG_TYPE "coverage-mapping"

Counter CounterExpressionBuilder::get(const CounterExpression &E) {
  auto It = ExpressionIndices.find(E);
  if (It != ExpressionIndices.end())
    return Counter::getExpression(It->second);
  unsigned I = Expressions.size();
  Expressions.push_back(E);
  ExpressionIndices[E] = I;
  return Counter::getExpression(I);
}

void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
                                            SmallVectorImpl<Term> &Terms) {
  switch (C.getKind()) {
  case Counter::Zero:
    break;
  case Counter::CounterValueReference:
    Terms.emplace_back(C.getCounterID(), Factor);
    break;
  case Counter::Expression:
    const auto &E = Expressions[C.getExpressionID()];
    extractTerms(E.LHS, Factor, Terms);
    extractTerms(
        E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
    break;
  }
}

Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
  // Gather constant terms.
  SmallVector<Term, 32> Terms;
  extractTerms(ExpressionTree, +1, Terms);

  // If there are no terms, this is just a zero. The algorithm below assumes at
  // least one term.
  if (Terms.size() == 0)
    return Counter::getZero();

  // Group the terms by counter ID.
  llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
    return LHS.CounterID < RHS.CounterID;
  });

  // Combine terms by counter ID to eliminate counters that sum to zero.
  auto Prev = Terms.begin();
  for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
    if (I->CounterID == Prev->CounterID) {
      Prev->Factor += I->Factor;
      continue;
    }
    ++Prev;
    *Prev = *I;
  }
  Terms.erase(++Prev, Terms.end());

  Counter C;
  // Create additions. We do this before subtractions to avoid constructs like
  // ((0 - X) + Y), as opposed to (Y - X).
  for (auto T : Terms) {
    if (T.Factor <= 0)
      continue;
    for (int I = 0; I < T.Factor; ++I)
      if (C.isZero())
        C = Counter::getCounter(T.CounterID);
      else
        C = get(CounterExpression(CounterExpression::Add, C,
                                  Counter::getCounter(T.CounterID)));
  }

  // Create subtractions.
  for (auto T : Terms) {
    if (T.Factor >= 0)
      continue;
    for (int I = 0; I < -T.Factor; ++I)
      C = get(CounterExpression(CounterExpression::Subtract, C,
                                Counter::getCounter(T.CounterID)));
  }
  return C;
}

Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
  return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
}

Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
  return simplify(
      get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
}

void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
  switch (C.getKind()) {
  case Counter::Zero:
    OS << '0';
    return;
  case Counter::CounterValueReference:
    OS << '#' << C.getCounterID();
    break;
  case Counter::Expression: {
    if (C.getExpressionID() >= Expressions.size())
      return;
    const auto &E = Expressions[C.getExpressionID()];
    OS << '(';
    dump(E.LHS, OS);
    OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
    dump(E.RHS, OS);
    OS << ')';
    break;
  }
  }
  if (CounterValues.empty())
    return;
  Expected<int64_t> Value = evaluate(C);
  if (auto E = Value.takeError()) {
    consumeError(std::move(E));
    return;
  }
  OS << '[' << *Value << ']';
}

Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
  switch (C.getKind()) {
  case Counter::Zero:
    return 0;
  case Counter::CounterValueReference:
    if (C.getCounterID() >= CounterValues.size())
      return errorCodeToError(errc::argument_out_of_domain);
    return CounterValues[C.getCounterID()];
  case Counter::Expression: {
    if (C.getExpressionID() >= Expressions.size())
      return errorCodeToError(errc::argument_out_of_domain);
    const auto &E = Expressions[C.getExpressionID()];
    Expected<int64_t> LHS = evaluate(E.LHS);
    if (!LHS)
      return LHS;
    Expected<int64_t> RHS = evaluate(E.RHS);
    if (!RHS)
      return RHS;
    return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
  }
  }
  llvm_unreachable("Unhandled CounterKind");
}

unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
  switch (C.getKind()) {
  case Counter::Zero:
    return 0;
  case Counter::CounterValueReference:
    return C.getCounterID();
  case Counter::Expression: {
    if (C.getExpressionID() >= Expressions.size())
      return 0;
    const auto &E = Expressions[C.getExpressionID()];
    return std::max(getMaxCounterID(E.LHS), getMaxCounterID(E.RHS));
  }
  }
  llvm_unreachable("Unhandled CounterKind");
}

void FunctionRecordIterator::skipOtherFiles() {
  while (Current != Records.end() && !Filename.empty() &&
         Filename != Current->Filenames[0])
    ++Current;
  if (Current == Records.end())
    *this = FunctionRecordIterator();
}

ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
    StringRef Filename) const {
  size_t FilenameHash = hash_value(Filename);
  auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
  if (RecordIt == FilenameHash2RecordIndices.end())
    return {};
  return RecordIt->second;
}

static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
                                const CoverageMappingRecord &Record) {
  unsigned MaxCounterID = 0;
  for (const auto &Region : Record.MappingRegions) {
    MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
  }
  return MaxCounterID;
}

Error CoverageMapping::loadFunctionRecord(
    const CoverageMappingRecord &Record,
    IndexedInstrProfReader &ProfileReader) {
  StringRef OrigFuncName = Record.FunctionName;
  if (OrigFuncName.empty())
    return make_error<CoverageMapError>(coveragemap_error::malformed);

  if (Record.Filenames.empty())
    OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
  else
    OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);

  CounterMappingContext Ctx(Record.Expressions);

  std::vector<uint64_t> Counts;
  if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
                                                Record.FunctionHash, Counts)) {
    instrprof_error IPE = InstrProfError::take(std::move(E));
    if (IPE == instrprof_error::hash_mismatch) {
      FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
                                      Record.FunctionHash);
      return Error::success();
    } else if (IPE != instrprof_error::unknown_function)
      return make_error<InstrProfError>(IPE);
    Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
  }
  Ctx.setCounts(Counts);

  assert(!Record.MappingRegions.empty() && "Function has no regions");

  // This coverage record is a zero region for a function that's unused in
  // some TU, but used in a different TU. Ignore it. The coverage maps from the
  // the other TU will either be loaded (providing full region counts) or they
  // won't (in which case we don't unintuitively report functions as uncovered
  // when they have non-zero counts in the profile).
  if (Record.MappingRegions.size() == 1 &&
      Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
    return Error::success();

  FunctionRecord Function(OrigFuncName, Record.Filenames);
  for (const auto &Region : Record.MappingRegions) {
    Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
    if (auto E = ExecutionCount.takeError()) {
      consumeError(std::move(E));
      return Error::success();
    }
    Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
    if (auto E = AltExecutionCount.takeError()) {
      consumeError(std::move(E));
      return Error::success();
    }
    Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount);
  }

  // Don't create records for (filenames, function) pairs we've already seen.
  auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
                                          Record.Filenames.end());
  if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
    return Error::success();

  Functions.push_back(std::move(Function));

  // Performance optimization: keep track of the indices of the function records
  // which correspond to each filename. This can be used to substantially speed
  // up queries for coverage info in a file.
  unsigned RecordIndex = Functions.size() - 1;
  for (StringRef Filename : Record.Filenames) {
    auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
    // Note that there may be duplicates in the filename set for a function
    // record, because of e.g. macro expansions in the function in which both
    // the macro and the function are defined in the same file.
    if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
      RecordIndices.push_back(RecordIndex);
  }

  return Error::success();
}

// This function is for memory optimization by shortening the lifetimes
// of CoverageMappingReader instances.
Error CoverageMapping::loadFromReaders(
    ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
    IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
  for (const auto &CoverageReader : CoverageReaders) {
    for (auto RecordOrErr : *CoverageReader) {
      if (Error E = RecordOrErr.takeError())
        return E;
      const auto &Record = *RecordOrErr;
      if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
        return E;
    }
  }
  return Error::success();
}

Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
    ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
    IndexedInstrProfReader &ProfileReader) {
  auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
  if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
    return std::move(E);
  return std::move(Coverage);
}

// If E is a no_data_found error, returns success. Otherwise returns E.
static Error handleMaybeNoDataFoundError(Error E) {
  return handleErrors(
      std::move(E), [](const CoverageMapError &CME) {
        if (CME.get() == coveragemap_error::no_data_found)
          return static_cast<Error>(Error::success());
        return make_error<CoverageMapError>(CME.get());
      });
}

Expected<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
                      StringRef ProfileFilename, ArrayRef<StringRef> Arches,
                      StringRef CompilationDir) {
  auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
  if (Error E = ProfileReaderOrErr.takeError())
    return std::move(E);
  auto ProfileReader = std::move(ProfileReaderOrErr.get());
  auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
  bool DataFound = false;

  for (const auto &File : llvm::enumerate(ObjectFilenames)) {
    auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
        File.value(), /*IsText=*/false, /*RequiresNullTerminator=*/false);
    if (std::error_code EC = CovMappingBufOrErr.getError())
      return errorCodeToError(EC);
    StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
    MemoryBufferRef CovMappingBufRef =
        CovMappingBufOrErr.get()->getMemBufferRef();
    SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
    auto CoverageReadersOrErr = BinaryCoverageReader::create(
        CovMappingBufRef, Arch, Buffers, CompilationDir);
    if (Error E = CoverageReadersOrErr.takeError()) {
      E = handleMaybeNoDataFoundError(std::move(E));
      if (E)
        return std::move(E);
      // E == success (originally a no_data_found error).
      continue;
    }

    SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
    for (auto &Reader : CoverageReadersOrErr.get())
      Readers.push_back(std::move(Reader));
    DataFound |= !Readers.empty();
    if (Error E = loadFromReaders(Readers, *ProfileReader, *Coverage))
      return std::move(E);
  }
  // If no readers were created, either no objects were provided or none of them
  // had coverage data. Return an error in the latter case.
  if (!DataFound && !ObjectFilenames.empty())
    return make_error<CoverageMapError>(coveragemap_error::no_data_found);
  return std::move(Coverage);
}

namespace {

/// Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
  using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
  MapT InstantiatedFunctions;

public:
  void insert(const FunctionRecord &Function, unsigned FileID) {
    auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
    while (I != E && I->FileID != FileID)
      ++I;
    assert(I != E && "function does not cover the given file");
    auto &Functions = InstantiatedFunctions[I->startLoc()];
    Functions.push_back(&Function);
  }

  MapT::iterator begin() { return InstantiatedFunctions.begin(); }
  MapT::iterator end() { return InstantiatedFunctions.end(); }
};

class SegmentBuilder {
  std::vector<CoverageSegment> &Segments;
  SmallVector<const CountedRegion *, 8> ActiveRegions;

  SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}

  /// Emit a segment with the count from \p Region starting at \p StartLoc.
  //
  /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
  /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
  void startSegment(const CountedRegion &Region, LineColPair StartLoc,
                    bool IsRegionEntry, bool EmitSkippedRegion = false) {
    bool HasCount = !EmitSkippedRegion &&
                    (Region.Kind != CounterMappingRegion::SkippedRegion);

    // If the new segment wouldn't affect coverage rendering, skip it.
    if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
      const auto &Last = Segments.back();
      if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
          !Last.IsRegionEntry)
        return;
    }

    if (HasCount)
      Segments.emplace_back(StartLoc.first, StartLoc.second,
                            Region.ExecutionCount, IsRegionEntry,
                            Region.Kind == CounterMappingRegion::GapRegion);
    else
      Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);

    LLVM_DEBUG({
      const auto &Last = Segments.back();
      dbgs() << "Segment at " << Last.Line << ":" << Last.Col
             << " (count = " << Last.Count << ")"
             << (Last.IsRegionEntry ? ", RegionEntry" : "")
             << (!Last.HasCount ? ", Skipped" : "")
             << (Last.IsGapRegion ? ", Gap" : "") << "\n";
    });
  }

  /// Emit segments for active regions which end before \p Loc.
  ///
  /// \p Loc: The start location of the next region. If None, all active
  /// regions are completed.
  /// \p FirstCompletedRegion: Index of the first completed region.
  void completeRegionsUntil(Optional<LineColPair> Loc,
                            unsigned FirstCompletedRegion) {
    // Sort the completed regions by end location. This makes it simple to
    // emit closing segments in sorted order.
    auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
    std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
                      [](const CountedRegion *L, const CountedRegion *R) {
                        return L->endLoc() < R->endLoc();
                      });

    // Emit segments for all completed regions.
    for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
         ++I) {
      const auto *CompletedRegion = ActiveRegions[I];
      assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
             "Completed region ends after start of new region");

      const auto *PrevCompletedRegion = ActiveRegions[I - 1];
      auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();

      // Don't emit any more segments if they start where the new region begins.
      if (Loc && CompletedSegmentLoc == *Loc)
        break;

      // Don't emit a segment if the next completed region ends at the same
      // location as this one.
      if (CompletedSegmentLoc == CompletedRegion->endLoc())
        continue;

      // Use the count from the last completed region which ends at this loc.
      for (unsigned J = I + 1; J < E; ++J)
        if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
          CompletedRegion = ActiveRegions[J];

      startSegment(*CompletedRegion, CompletedSegmentLoc, false);
    }

    auto Last = ActiveRegions.back();
    if (FirstCompletedRegion && Last->endLoc() != *Loc) {
      // If there's a gap after the end of the last completed region and the
      // start of the new region, use the last active region to fill the gap.
      startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
                   false);
    } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
      // Emit a skipped segment if there are no more active regions. This
      // ensures that gaps between functions are marked correctly.
      startSegment(*Last, Last->endLoc(), false, true);
    }

    // Pop the completed regions.
    ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
  }

  void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
    for (const auto &CR : enumerate(Regions)) {
      auto CurStartLoc = CR.value().startLoc();

      // Active regions which end before the current region need to be popped.
      auto CompletedRegions =
          std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
                                [&](const CountedRegion *Region) {
                                  return !(Region->endLoc() <= CurStartLoc);
                                });
      if (CompletedRegions != ActiveRegions.end()) {
        unsigned FirstCompletedRegion =
            std::distance(ActiveRegions.begin(), CompletedRegions);
        completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
      }

      bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;

      // Try to emit a segment for the current region.
      if (CurStartLoc == CR.value().endLoc()) {
        // Avoid making zero-length regions active. If it's the last region,
        // emit a skipped segment. Otherwise use its predecessor's count.
        const bool Skipped =
            (CR.index() + 1) == Regions.size() ||
            CR.value().Kind == CounterMappingRegion::SkippedRegion;
        startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
                     CurStartLoc, !GapRegion, Skipped);
        // If it is skipped segment, create a segment with last pushed
        // regions's count at CurStartLoc.
        if (Skipped && !ActiveRegions.empty())
          startSegment(*ActiveRegions.back(), CurStartLoc, false);
        continue;
      }
      if (CR.index() + 1 == Regions.size() ||
          CurStartLoc != Regions[CR.index() + 1].startLoc()) {
        // Emit a segment if the next region doesn't start at the same location
        // as this one.
        startSegment(CR.value(), CurStartLoc, !GapRegion);
      }

      // This region is active (i.e not completed).
      ActiveRegions.push_back(&CR.value());
    }

    // Complete any remaining active regions.
    if (!ActiveRegions.empty())
      completeRegionsUntil(None, 0);
  }

  /// Sort a nested sequence of regions from a single file.
  static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
    llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
      if (LHS.startLoc() != RHS.startLoc())
        return LHS.startLoc() < RHS.startLoc();
      if (LHS.endLoc() != RHS.endLoc())
        // When LHS completely contains RHS, we sort LHS first.
        return RHS.endLoc() < LHS.endLoc();
      // If LHS and RHS cover the same area, we need to sort them according
      // to their kinds so that the most suitable region will become "active"
      // in combineRegions(). Because we accumulate counter values only from
      // regions of the same kind as the first region of the area, prefer
      // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
      static_assert(CounterMappingRegion::CodeRegion <
                            CounterMappingRegion::ExpansionRegion &&
                        CounterMappingRegion::ExpansionRegion <
                            CounterMappingRegion::SkippedRegion,
                    "Unexpected order of region kind values");
      return LHS.Kind < RHS.Kind;
    });
  }

  /// Combine counts of regions which cover the same area.
  static ArrayRef<CountedRegion>
  combineRegions(MutableArrayRef<CountedRegion> Regions) {
    if (Regions.empty())
      return Regions;
    auto Active = Regions.begin();
    auto End = Regions.end();
    for (auto I = Regions.begin() + 1; I != End; ++I) {
      if (Active->startLoc() != I->startLoc() ||
          Active->endLoc() != I->endLoc()) {
        // Shift to the next region.
        ++Active;
        if (Active != I)
          *Active = *I;
        continue;
      }
      // Merge duplicate region.
      // If CodeRegions and ExpansionRegions cover the same area, it's probably
      // a macro which is fully expanded to another macro. In that case, we need
      // to accumulate counts only from CodeRegions, or else the area will be
      // counted twice.
      // On the other hand, a macro may have a nested macro in its body. If the
      // outer macro is used several times, the ExpansionRegion for the nested
      // macro will also be added several times. These ExpansionRegions cover
      // the same source locations and have to be combined to reach the correct
      // value for that area.
      // We add counts of the regions of the same kind as the active region
      // to handle the both situations.
      if (I->Kind == Active->Kind)
        Active->ExecutionCount += I->ExecutionCount;
    }
    return Regions.drop_back(std::distance(++Active, End));
  }

public:
  /// Build a sorted list of CoverageSegments from a list of Regions.
  static std::vector<CoverageSegment>
  buildSegments(MutableArrayRef<CountedRegion> Regions) {
    std::vector<CoverageSegment> Segments;
    SegmentBuilder Builder(Segments);

    sortNestedRegions(Regions);
    ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);

    LLVM_DEBUG({
      dbgs() << "Combined regions:\n";
      for (const auto &CR : CombinedRegions)
        dbgs() << "  " << CR.LineStart << ":" << CR.ColumnStart << " -> "
               << CR.LineEnd << ":" << CR.ColumnEnd
               << " (count=" << CR.ExecutionCount << ")\n";
    });

    Builder.buildSegmentsImpl(CombinedRegions);

#ifndef NDEBUG
    for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
      const auto &L = Segments[I - 1];
      const auto &R = Segments[I];
      if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
        if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
          continue;
        LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
                          << " followed by " << R.Line << ":" << R.Col << "\n");
        assert(false && "Coverage segments not unique or sorted");
      }
    }
#endif

    return Segments;
  }
};

} // end anonymous namespace

std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
  std::vector<StringRef> Filenames;
  for (const auto &Function : getCoveredFunctions())
    llvm::append_range(Filenames, Function.Filenames);
  llvm::sort(Filenames);
  auto Last = std::unique(Filenames.begin(), Filenames.end());
  Filenames.erase(Last, Filenames.end());
  return Filenames;
}

static SmallBitVector gatherFileIDs(StringRef SourceFile,
                                    const FunctionRecord &Function) {
  SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
  for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
    if (SourceFile == Function.Filenames[I])
      FilenameEquivalence[I] = true;
  return FilenameEquivalence;
}

/// Return the ID of the file where the definition of the function is located.
static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
  SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
  for (const auto &CR : Function.CountedRegions)
    if (CR.Kind == CounterMappingRegion::ExpansionRegion)
      IsNotExpandedFile[CR.ExpandedFileID] = false;
  int I = IsNotExpandedFile.find_first();
  if (I == -1)
    return None;
  return I;
}

/// Check if SourceFile is the file that contains the definition of
/// the Function. Return the ID of the file in that case or None otherwise.
static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
                                             const FunctionRecord &Function) {
  Optional<unsigned> I = findMainViewFileID(Function);
  if (I && SourceFile == Function.Filenames[*I])
    return I;
  return None;
}

static bool isExpansion(const CountedRegion &R, unsigned FileID) {
  return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}

CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
  CoverageData FileCoverage(Filename);
  std::vector<CountedRegion> Regions;

  // Look up the function records in the given file. Due to hash collisions on
  // the filename, we may get back some records that are not in the file.
  ArrayRef<unsigned> RecordIndices =
      getImpreciseRecordIndicesForFilename(Filename);
  for (unsigned RecordIndex : RecordIndices) {
    const FunctionRecord &Function = Functions[RecordIndex];
    auto MainFileID = findMainViewFileID(Filename, Function);
    auto FileIDs = gatherFileIDs(Filename, Function);
    for (const auto &CR : Function.CountedRegions)
      if (FileIDs.test(CR.FileID)) {
        Regions.push_back(CR);
        if (MainFileID && isExpansion(CR, *MainFileID))
          FileCoverage.Expansions.emplace_back(CR, Function);
      }
    // Capture branch regions specific to the function (excluding expansions).
    for (const auto &CR : Function.CountedBranchRegions)
      if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
        FileCoverage.BranchRegions.push_back(CR);
  }

  LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
  FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);

  return FileCoverage;
}

std::vector<InstantiationGroup>
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
  FunctionInstantiationSetCollector InstantiationSetCollector;
  // Look up the function records in the given file. Due to hash collisions on
  // the filename, we may get back some records that are not in the file.
  ArrayRef<unsigned> RecordIndices =
      getImpreciseRecordIndicesForFilename(Filename);
  for (unsigned RecordIndex : RecordIndices) {
    const FunctionRecord &Function = Functions[RecordIndex];
    auto MainFileID = findMainViewFileID(Filename, Function);
    if (!MainFileID)
      continue;
    InstantiationSetCollector.insert(Function, *MainFileID);
  }

  std::vector<InstantiationGroup> Result;
  for (auto &InstantiationSet : InstantiationSetCollector) {
    InstantiationGroup IG{InstantiationSet.first.first,
                          InstantiationSet.first.second,
                          std::move(InstantiationSet.second)};
    Result.emplace_back(std::move(IG));
  }
  return Result;
}

CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
  auto MainFileID = findMainViewFileID(Function);
  if (!MainFileID)
    return CoverageData();

  CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
  std::vector<CountedRegion> Regions;
  for (const auto &CR : Function.CountedRegions)
    if (CR.FileID == *MainFileID) {
      Regions.push_back(CR);
      if (isExpansion(CR, *MainFileID))
        FunctionCoverage.Expansions.emplace_back(CR, Function);
    }
  // Capture branch regions specific to the function (excluding expansions).
  for (const auto &CR : Function.CountedBranchRegions)
    if (CR.FileID == *MainFileID)
      FunctionCoverage.BranchRegions.push_back(CR);

  LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
                    << "\n");
  FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);

  return FunctionCoverage;
}

CoverageData CoverageMapping::getCoverageForExpansion(
    const ExpansionRecord &Expansion) const {
  CoverageData ExpansionCoverage(
      Expansion.Function.Filenames[Expansion.FileID]);
  std::vector<CountedRegion> Regions;
  for (const auto &CR : Expansion.Function.CountedRegions)
    if (CR.FileID == Expansion.FileID) {
      Regions.push_back(CR);
      if (isExpansion(CR, Expansion.FileID))
        ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
    }
  for (const auto &CR : Expansion.Function.CountedBranchRegions)
    // Capture branch regions that only pertain to the corresponding expansion.
    if (CR.FileID == Expansion.FileID)
      ExpansionCoverage.BranchRegions.push_back(CR);

  LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
                    << Expansion.FileID << "\n");
  ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);

  return ExpansionCoverage;
}

LineCoverageStats::LineCoverageStats(
    ArrayRef<const CoverageSegment *> LineSegments,
    const CoverageSegment *WrappedSegment, unsigned Line)
    : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
      LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
  // Find the minimum number of regions which start in this line.
  unsigned MinRegionCount = 0;
  auto isStartOfRegion = [](const CoverageSegment *S) {
    return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
  };
  for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
    if (isStartOfRegion(LineSegments[I]))
      ++MinRegionCount;

  bool StartOfSkippedRegion = !LineSegments.empty() &&
                              !LineSegments.front()->HasCount &&
                              LineSegments.front()->IsRegionEntry;

  HasMultipleRegions = MinRegionCount > 1;
  Mapped =
      !StartOfSkippedRegion &&
      ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));

  if (!Mapped)
    return;

  // Pick the max count from the non-gap, region entry segments and the
  // wrapped count.
  if (WrappedSegment)
    ExecutionCount = WrappedSegment->Count;
  if (!MinRegionCount)
    return;
  for (const auto *LS : LineSegments)
    if (isStartOfRegion(LS))
      ExecutionCount = std::max(ExecutionCount, LS->Count);
}

LineCoverageIterator &LineCoverageIterator::operator++() {
  if (Next == CD.end()) {
    Stats = LineCoverageStats();
    Ended = true;
    return *this;
  }
  if (Segments.size())
    WrappedSegment = Segments.back();
  Segments.clear();
  while (Next != CD.end() && Next->Line == Line)
    Segments.push_back(&*Next++);
  Stats = LineCoverageStats(Segments, WrappedSegment, Line);
  ++Line;
  return *this;
}

static std::string getCoverageMapErrString(coveragemap_error Err) {
  switch (Err) {
  case coveragemap_error::success:
    return "Success";
  case coveragemap_error::eof:
    return "End of File";
  case coveragemap_error::no_data_found:
    return "No coverage data found";
  case coveragemap_error::unsupported_version:
    return "Unsupported coverage format version";
  case coveragemap_error::truncated:
    return "Truncated coverage data";
  case coveragemap_error::malformed:
    return "Malformed coverage data";
  case coveragemap_error::decompression_failed:
    return "Failed to decompress coverage data (zlib)";
  case coveragemap_error::invalid_or_missing_arch_specifier:
    return "`-arch` specifier is invalid or missing for universal binary";
  }
  llvm_unreachable("A value of coveragemap_error has no message.");
}

namespace {

// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class CoverageMappingErrorCategoryType : public std::error_category {
  const char *name() const noexcept override { return "llvm.coveragemap"; }
  std::string message(int IE) const override {
    return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
  }
};

} // end anonymous namespace

std::string CoverageMapError::message() const {
  return getCoverageMapErrString(Err);
}

static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;

const std::error_category &llvm::coverage::coveragemap_category() {
  return *ErrorCategory;
}

char CoverageMapError::ID = 0;