aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/IR/Value.cpp
blob: 18aef37e202352872587c58375307eb8cc63a2a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
//===-- Value.cpp - Implement the Value class -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Value, ValueHandle, and User classes.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Value.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DerivedUser.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;

static cl::opt<unsigned> UseDerefAtPointSemantics(
    "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false),
    cl::desc("Deref attributes and metadata infer facts at definition only"));

//===----------------------------------------------------------------------===//
//                                Value Class
//===----------------------------------------------------------------------===//
static inline Type *checkType(Type *Ty) {
  assert(Ty && "Value defined with a null type: Error!");
  return Ty;
}

Value::Value(Type *ty, unsigned scid)
    : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
      SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
      IsUsedByMD(false), HasName(false), HasMetadata(false) {
  static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
  // FIXME: Why isn't this in the subclass gunk??
  // Note, we cannot call isa<CallInst> before the CallInst has been
  // constructed.
  unsigned OpCode = 0;
  if (SubclassID >= InstructionVal)
    OpCode = SubclassID - InstructionVal;
  if (OpCode == Instruction::Call || OpCode == Instruction::Invoke ||
      OpCode == Instruction::CallBr)
    assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
           "invalid CallBase type!");
  else if (SubclassID != BasicBlockVal &&
           (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
    assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
           "Cannot create non-first-class values except for constants!");
  static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
                "Value too big");
}

Value::~Value() {
  // Notify all ValueHandles (if present) that this value is going away.
  if (HasValueHandle)
    ValueHandleBase::ValueIsDeleted(this);
  if (isUsedByMetadata())
    ValueAsMetadata::handleDeletion(this);

  // Remove associated metadata from context.
  if (HasMetadata)
    clearMetadata();

#ifndef NDEBUG      // Only in -g mode...
  // Check to make sure that there are no uses of this value that are still
  // around when the value is destroyed.  If there are, then we have a dangling
  // reference and something is wrong.  This code is here to print out where
  // the value is still being referenced.
  //
  // Note that use_empty() cannot be called here, as it eventually downcasts
  // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
  // been destructed, so accessing it is UB.
  //
  if (!materialized_use_empty()) {
    dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
    for (auto *U : users())
      dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
  }
#endif
  assert(materialized_use_empty() && "Uses remain when a value is destroyed!");

  // If this value is named, destroy the name.  This should not be in a symtab
  // at this point.
  destroyValueName();
}

void Value::deleteValue() {
  switch (getValueID()) {
#define HANDLE_VALUE(Name)                                                     \
  case Value::Name##Val:                                                       \
    delete static_cast<Name *>(this);                                          \
    break;
#define HANDLE_MEMORY_VALUE(Name)                                              \
  case Value::Name##Val:                                                       \
    static_cast<DerivedUser *>(this)->DeleteValue(                             \
        static_cast<DerivedUser *>(this));                                     \
    break;
#define HANDLE_CONSTANT(Name)                                                  \
  case Value::Name##Val:                                                       \
    llvm_unreachable("constants should be destroyed with destroyConstant");    \
    break;
#define HANDLE_INSTRUCTION(Name)  /* nothing */
#include "llvm/IR/Value.def"

#define HANDLE_INST(N, OPC, CLASS)                                             \
  case Value::InstructionVal + Instruction::OPC:                               \
    delete static_cast<CLASS *>(this);                                         \
    break;
#define HANDLE_USER_INST(N, OPC, CLASS)
#include "llvm/IR/Instruction.def"

  default:
    llvm_unreachable("attempting to delete unknown value kind");
  }
}

void Value::destroyValueName() {
  ValueName *Name = getValueName();
  if (Name) {
    MallocAllocator Allocator;
    Name->Destroy(Allocator);
  }
  setValueName(nullptr);
}

bool Value::hasNUses(unsigned N) const {
  return hasNItems(use_begin(), use_end(), N);
}

bool Value::hasNUsesOrMore(unsigned N) const {
  return hasNItemsOrMore(use_begin(), use_end(), N);
}

bool Value::hasOneUser() const {
  if (use_empty())
    return false;
  if (hasOneUse())
    return true;
  return std::equal(++user_begin(), user_end(), user_begin());
}

static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }

Use *Value::getSingleUndroppableUse() {
  Use *Result = nullptr;
  for (Use &U : uses()) {
    if (!U.getUser()->isDroppable()) {
      if (Result)
        return nullptr;
      Result = &U;
    }
  }
  return Result;
}

User *Value::getUniqueUndroppableUser() {
  User *Result = nullptr;
  for (auto *U : users()) {
    if (!U->isDroppable()) {
      if (Result && Result != U)
        return nullptr;
      Result = U;
    }
  }
  return Result;
}

bool Value::hasNUndroppableUses(unsigned int N) const {
  return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
}

bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
  return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
}

void Value::dropDroppableUses(
    llvm::function_ref<bool(const Use *)> ShouldDrop) {
  SmallVector<Use *, 8> ToBeEdited;
  for (Use &U : uses())
    if (U.getUser()->isDroppable() && ShouldDrop(&U))
      ToBeEdited.push_back(&U);
  for (Use *U : ToBeEdited)
    dropDroppableUse(*U);
}

void Value::dropDroppableUsesIn(User &Usr) {
  assert(Usr.isDroppable() && "Expected a droppable user!");
  for (Use &UsrOp : Usr.operands()) {
    if (UsrOp.get() == this)
      dropDroppableUse(UsrOp);
  }
}

void Value::dropDroppableUse(Use &U) {
  U.removeFromList();
  if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) {
    unsigned OpNo = U.getOperandNo();
    if (OpNo == 0)
      U.set(ConstantInt::getTrue(Assume->getContext()));
    else {
      U.set(UndefValue::get(U.get()->getType()));
      CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
      BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
    }
    return;
  }

  llvm_unreachable("unkown droppable use");
}

bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
  // This can be computed either by scanning the instructions in BB, or by
  // scanning the use list of this Value. Both lists can be very long, but
  // usually one is quite short.
  //
  // Scan both lists simultaneously until one is exhausted. This limits the
  // search to the shorter list.
  BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
  const_user_iterator UI = user_begin(), UE = user_end();
  for (; BI != BE && UI != UE; ++BI, ++UI) {
    // Scan basic block: Check if this Value is used by the instruction at BI.
    if (is_contained(BI->operands(), this))
      return true;
    // Scan use list: Check if the use at UI is in BB.
    const auto *User = dyn_cast<Instruction>(*UI);
    if (User && User->getParent() == BB)
      return true;
  }
  return false;
}

unsigned Value::getNumUses() const {
  return (unsigned)std::distance(use_begin(), use_end());
}

static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
  ST = nullptr;
  if (Instruction *I = dyn_cast<Instruction>(V)) {
    if (BasicBlock *P = I->getParent())
      if (Function *PP = P->getParent())
        ST = PP->getValueSymbolTable();
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    if (Function *P = BB->getParent())
      ST = P->getValueSymbolTable();
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    if (Module *P = GV->getParent())
      ST = &P->getValueSymbolTable();
  } else if (Argument *A = dyn_cast<Argument>(V)) {
    if (Function *P = A->getParent())
      ST = P->getValueSymbolTable();
  } else {
    assert(isa<Constant>(V) && "Unknown value type!");
    return true;  // no name is setable for this.
  }
  return false;
}

ValueName *Value::getValueName() const {
  if (!HasName) return nullptr;

  LLVMContext &Ctx = getContext();
  auto I = Ctx.pImpl->ValueNames.find(this);
  assert(I != Ctx.pImpl->ValueNames.end() &&
         "No name entry found!");

  return I->second;
}

void Value::setValueName(ValueName *VN) {
  LLVMContext &Ctx = getContext();

  assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
         "HasName bit out of sync!");

  if (!VN) {
    if (HasName)
      Ctx.pImpl->ValueNames.erase(this);
    HasName = false;
    return;
  }

  HasName = true;
  Ctx.pImpl->ValueNames[this] = VN;
}

StringRef Value::getName() const {
  // Make sure the empty string is still a C string. For historical reasons,
  // some clients want to call .data() on the result and expect it to be null
  // terminated.
  if (!hasName())
    return StringRef("", 0);
  return getValueName()->getKey();
}

void Value::setNameImpl(const Twine &NewName) {
  // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
  if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
    return;

  // Fast path for common IRBuilder case of setName("") when there is no name.
  if (NewName.isTriviallyEmpty() && !hasName())
    return;

  SmallString<256> NameData;
  StringRef NameRef = NewName.toStringRef(NameData);
  assert(NameRef.find_first_of(0) == StringRef::npos &&
         "Null bytes are not allowed in names");

  // Name isn't changing?
  if (getName() == NameRef)
    return;

  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");

  // Get the symbol table to update for this object.
  ValueSymbolTable *ST;
  if (getSymTab(this, ST))
    return;  // Cannot set a name on this value (e.g. constant).

  if (!ST) { // No symbol table to update?  Just do the change.
    if (NameRef.empty()) {
      // Free the name for this value.
      destroyValueName();
      return;
    }

    // NOTE: Could optimize for the case the name is shrinking to not deallocate
    // then reallocated.
    destroyValueName();

    // Create the new name.
    MallocAllocator Allocator;
    setValueName(ValueName::Create(NameRef, Allocator));
    getValueName()->setValue(this);
    return;
  }

  // NOTE: Could optimize for the case the name is shrinking to not deallocate
  // then reallocated.
  if (hasName()) {
    // Remove old name.
    ST->removeValueName(getValueName());
    destroyValueName();

    if (NameRef.empty())
      return;
  }

  // Name is changing to something new.
  setValueName(ST->createValueName(NameRef, this));
}

void Value::setName(const Twine &NewName) {
  setNameImpl(NewName);
  if (Function *F = dyn_cast<Function>(this))
    F->recalculateIntrinsicID();
}

void Value::takeName(Value *V) {
  ValueSymbolTable *ST = nullptr;
  // If this value has a name, drop it.
  if (hasName()) {
    // Get the symtab this is in.
    if (getSymTab(this, ST)) {
      // We can't set a name on this value, but we need to clear V's name if
      // it has one.
      if (V->hasName()) V->setName("");
      return;  // Cannot set a name on this value (e.g. constant).
    }

    // Remove old name.
    if (ST)
      ST->removeValueName(getValueName());
    destroyValueName();
  }

  // Now we know that this has no name.

  // If V has no name either, we're done.
  if (!V->hasName()) return;

  // Get this's symtab if we didn't before.
  if (!ST) {
    if (getSymTab(this, ST)) {
      // Clear V's name.
      V->setName("");
      return;  // Cannot set a name on this value (e.g. constant).
    }
  }

  // Get V's ST, this should always succed, because V has a name.
  ValueSymbolTable *VST;
  bool Failure = getSymTab(V, VST);
  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;

  // If these values are both in the same symtab, we can do this very fast.
  // This works even if both values have no symtab yet.
  if (ST == VST) {
    // Take the name!
    setValueName(V->getValueName());
    V->setValueName(nullptr);
    getValueName()->setValue(this);
    return;
  }

  // Otherwise, things are slightly more complex.  Remove V's name from VST and
  // then reinsert it into ST.

  if (VST)
    VST->removeValueName(V->getValueName());
  setValueName(V->getValueName());
  V->setValueName(nullptr);
  getValueName()->setValue(this);

  if (ST)
    ST->reinsertValue(this);
}

#ifndef NDEBUG
std::string Value::getNameOrAsOperand() const {
  if (!getName().empty())
    return std::string(getName());

  std::string BBName;
  raw_string_ostream OS(BBName);
  printAsOperand(OS, false);
  return OS.str();
}
#endif

void Value::assertModuleIsMaterializedImpl() const {
#ifndef NDEBUG
  const GlobalValue *GV = dyn_cast<GlobalValue>(this);
  if (!GV)
    return;
  const Module *M = GV->getParent();
  if (!M)
    return;
  assert(M->isMaterialized());
#endif
}

#ifndef NDEBUG
static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
                     Constant *C) {
  if (!Cache.insert(Expr).second)
    return false;

  for (auto &O : Expr->operands()) {
    if (O == C)
      return true;
    auto *CE = dyn_cast<ConstantExpr>(O);
    if (!CE)
      continue;
    if (contains(Cache, CE, C))
      return true;
  }
  return false;
}

static bool contains(Value *Expr, Value *V) {
  if (Expr == V)
    return true;

  auto *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  auto *CE = dyn_cast<ConstantExpr>(Expr);
  if (!CE)
    return false;

  SmallPtrSet<ConstantExpr *, 4> Cache;
  return contains(Cache, CE, C);
}
#endif // NDEBUG

void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
  assert(!contains(New, this) &&
         "this->replaceAllUsesWith(expr(this)) is NOT valid!");
  assert(New->getType() == getType() &&
         "replaceAllUses of value with new value of different type!");

  // Notify all ValueHandles (if present) that this value is going away.
  if (HasValueHandle)
    ValueHandleBase::ValueIsRAUWd(this, New);
  if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
    ValueAsMetadata::handleRAUW(this, New);

  while (!materialized_use_empty()) {
    Use &U = *UseList;
    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    // constant because they are uniqued.
    if (auto *C = dyn_cast<Constant>(U.getUser())) {
      if (!isa<GlobalValue>(C)) {
        C->handleOperandChange(this, New);
        continue;
      }
    }

    U.set(New);
  }

  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
    BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
}

void Value::replaceAllUsesWith(Value *New) {
  doRAUW(New, ReplaceMetadataUses::Yes);
}

void Value::replaceNonMetadataUsesWith(Value *New) {
  doRAUW(New, ReplaceMetadataUses::No);
}

void Value::replaceUsesWithIf(Value *New,
                              llvm::function_ref<bool(Use &U)> ShouldReplace) {
  assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
  assert(New->getType() == getType() &&
         "replaceUses of value with new value of different type!");

  SmallVector<TrackingVH<Constant>, 8> Consts;
  SmallPtrSet<Constant *, 8> Visited;

  for (Use &U : llvm::make_early_inc_range(uses())) {
    if (!ShouldReplace(U))
      continue;
    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    // constant because they are uniqued.
    if (auto *C = dyn_cast<Constant>(U.getUser())) {
      if (!isa<GlobalValue>(C)) {
        if (Visited.insert(C).second)
          Consts.push_back(TrackingVH<Constant>(C));
        continue;
      }
    }
    U.set(New);
  }

  while (!Consts.empty()) {
    // FIXME: handleOperandChange() updates all the uses in a given Constant,
    //        not just the one passed to ShouldReplace
    Consts.pop_back_val()->handleOperandChange(this, New);
  }
}

/// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
/// with New.
static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
  SmallVector<DbgVariableIntrinsic *> DbgUsers;
  findDbgUsers(DbgUsers, V);
  for (auto *DVI : DbgUsers) {
    if (DVI->getParent() != BB)
      DVI->replaceVariableLocationOp(V, New);
  }
}

// Like replaceAllUsesWith except it does not handle constants or basic blocks.
// This routine leaves uses within BB.
void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
  assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
  assert(!contains(New, this) &&
         "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
  assert(New->getType() == getType() &&
         "replaceUses of value with new value of different type!");
  assert(BB && "Basic block that may contain a use of 'New' must be defined\n");

  replaceDbgUsesOutsideBlock(this, New, BB);
  replaceUsesWithIf(New, [BB](Use &U) {
    auto *I = dyn_cast<Instruction>(U.getUser());
    // Don't replace if it's an instruction in the BB basic block.
    return !I || I->getParent() != BB;
  });
}

namespace {
// Various metrics for how much to strip off of pointers.
enum PointerStripKind {
  PSK_ZeroIndices,
  PSK_ZeroIndicesAndAliases,
  PSK_ZeroIndicesSameRepresentation,
  PSK_ForAliasAnalysis,
  PSK_InBoundsConstantIndices,
  PSK_InBounds
};

template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}

template <PointerStripKind StripKind>
static const Value *stripPointerCastsAndOffsets(
    const Value *V,
    function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
  if (!V->getType()->isPointerTy())
    return V;

  // Even though we don't look through PHI nodes, we could be called on an
  // instruction in an unreachable block, which may be on a cycle.
  SmallPtrSet<const Value *, 4> Visited;

  Visited.insert(V);
  do {
    Func(V);
    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
      switch (StripKind) {
      case PSK_ZeroIndices:
      case PSK_ZeroIndicesAndAliases:
      case PSK_ZeroIndicesSameRepresentation:
      case PSK_ForAliasAnalysis:
        if (!GEP->hasAllZeroIndices())
          return V;
        break;
      case PSK_InBoundsConstantIndices:
        if (!GEP->hasAllConstantIndices())
          return V;
        LLVM_FALLTHROUGH;
      case PSK_InBounds:
        if (!GEP->isInBounds())
          return V;
        break;
      }
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
      V = cast<Operator>(V)->getOperand(0);
      if (!V->getType()->isPointerTy())
        return V;
    } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
      // TODO: If we know an address space cast will not change the
      //       representation we could look through it here as well.
      V = cast<Operator>(V)->getOperand(0);
    } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
      V = cast<GlobalAlias>(V)->getAliasee();
    } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) &&
               cast<PHINode>(V)->getNumIncomingValues() == 1) {
      V = cast<PHINode>(V)->getIncomingValue(0);
    } else {
      if (const auto *Call = dyn_cast<CallBase>(V)) {
        if (const Value *RV = Call->getReturnedArgOperand()) {
          V = RV;
          continue;
        }
        // The result of launder.invariant.group must alias it's argument,
        // but it can't be marked with returned attribute, that's why it needs
        // special case.
        if (StripKind == PSK_ForAliasAnalysis &&
            (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
             Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
          V = Call->getArgOperand(0);
          continue;
        }
      }
      return V;
    }
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
  } while (Visited.insert(V).second);

  return V;
}
} // end anonymous namespace

const Value *Value::stripPointerCasts() const {
  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
}

const Value *Value::stripPointerCastsAndAliases() const {
  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
}

const Value *Value::stripPointerCastsSameRepresentation() const {
  return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
}

const Value *Value::stripInBoundsConstantOffsets() const {
  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
}

const Value *Value::stripPointerCastsForAliasAnalysis() const {
  return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this);
}

const Value *Value::stripAndAccumulateConstantOffsets(
    const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
    bool AllowInvariantGroup,
    function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
  if (!getType()->isPtrOrPtrVectorTy())
    return this;

  unsigned BitWidth = Offset.getBitWidth();
  assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
         "The offset bit width does not match the DL specification.");

  // Even though we don't look through PHI nodes, we could be called on an
  // instruction in an unreachable block, which may be on a cycle.
  SmallPtrSet<const Value *, 4> Visited;
  Visited.insert(this);
  const Value *V = this;
  do {
    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
      // If in-bounds was requested, we do not strip non-in-bounds GEPs.
      if (!AllowNonInbounds && !GEP->isInBounds())
        return V;

      // If one of the values we have visited is an addrspacecast, then
      // the pointer type of this GEP may be different from the type
      // of the Ptr parameter which was passed to this function.  This
      // means when we construct GEPOffset, we need to use the size
      // of GEP's pointer type rather than the size of the original
      // pointer type.
      APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
      if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
        return V;

      // Stop traversal if the pointer offset wouldn't fit in the bit-width
      // provided by the Offset argument. This can happen due to AddrSpaceCast
      // stripping.
      if (GEPOffset.getMinSignedBits() > BitWidth)
        return V;

      // External Analysis can return a result higher/lower than the value
      // represents. We need to detect overflow/underflow.
      APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
      if (!ExternalAnalysis) {
        Offset += GEPOffsetST;
      } else {
        bool Overflow = false;
        APInt OldOffset = Offset;
        Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
        if (Overflow) {
          Offset = OldOffset;
          return V;
        }
      }
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
      if (!GA->isInterposable())
        V = GA->getAliasee();
    } else if (const auto *Call = dyn_cast<CallBase>(V)) {
        if (const Value *RV = Call->getReturnedArgOperand())
          V = RV;
        if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup())
          V = Call->getArgOperand(0);
    }
    assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
  } while (Visited.insert(V).second);

  return V;
}

const Value *
Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
  return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
}

bool Value::canBeFreed() const {
  assert(getType()->isPointerTy());

  // Cases that can simply never be deallocated
  // *) Constants aren't allocated per se, thus not deallocated either.
  if (isa<Constant>(this))
    return false;

  // Handle byval/byref/sret/inalloca/preallocated arguments.  The storage
  // lifetime is guaranteed to be longer than the callee's lifetime.
  if (auto *A = dyn_cast<Argument>(this)) {
    if (A->hasPointeeInMemoryValueAttr())
      return false;
    // A pointer to an object in a function which neither frees, nor can arrange
    // for another thread to free on its behalf, can not be freed in the scope
    // of the function.  Note that this logic is restricted to memory
    // allocations in existance before the call; a nofree function *is* allowed
    // to free memory it allocated.
    const Function *F = A->getParent();
    if (F->doesNotFreeMemory() && F->hasNoSync())
      return false;
  }

  const Function *F = nullptr;
  if (auto *I = dyn_cast<Instruction>(this))
    F = I->getFunction();
  if (auto *A = dyn_cast<Argument>(this))
    F = A->getParent();

  if (!F)
    return true;

  // With garbage collection, deallocation typically occurs solely at or after
  // safepoints.  If we're compiling for a collector which uses the
  // gc.statepoint infrastructure, safepoints aren't explicitly present
  // in the IR until after lowering from abstract to physical machine model.
  // The collector could chose to mix explicit deallocation and gc'd objects
  // which is why we need the explicit opt in on a per collector basis.
  if (!F->hasGC())
    return true;
  
  const auto &GCName = F->getGC();
  if (GCName == "statepoint-example") {
    auto *PT = cast<PointerType>(this->getType());
    if (PT->getAddressSpace() != 1)
      // For the sake of this example GC, we arbitrarily pick addrspace(1) as
      // our GC managed heap.  This must match the same check in
      // RewriteStatepointsForGC (and probably needs better factored.)
      return true;

    // It is cheaper to scan for a declaration than to scan for a use in this
    // function.  Note that gc.statepoint is a type overloaded function so the
    // usual trick of requesting declaration of the intrinsic from the module
    // doesn't work.
    for (auto &Fn : *F->getParent())
      if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
        return true;
    return false;
  }
  return true;
}

uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
                                               bool &CanBeNull,
                                               bool &CanBeFreed) const {
  assert(getType()->isPointerTy() && "must be pointer");

  uint64_t DerefBytes = 0;
  CanBeNull = false;
  CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
  if (const Argument *A = dyn_cast<Argument>(this)) {
    DerefBytes = A->getDereferenceableBytes();
    if (DerefBytes == 0) {
      // Handle byval/byref/inalloca/preallocated arguments
      if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
        if (ArgMemTy->isSized()) {
          // FIXME: Why isn't this the type alloc size?
          DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize();
        }
      }
    }

    if (DerefBytes == 0) {
      DerefBytes = A->getDereferenceableOrNullBytes();
      CanBeNull = true;
    }
  } else if (const auto *Call = dyn_cast<CallBase>(this)) {
    DerefBytes = Call->getRetDereferenceableBytes();
    if (DerefBytes == 0) {
      DerefBytes = Call->getRetDereferenceableOrNullBytes();
      CanBeNull = true;
    }
  } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
    if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
      DerefBytes = CI->getLimitedValue();
    }
    if (DerefBytes == 0) {
      if (MDNode *MD =
              LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
        DerefBytes = CI->getLimitedValue();
      }
      CanBeNull = true;
    }
  } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
    if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
      DerefBytes = CI->getLimitedValue();
    }
    if (DerefBytes == 0) {
      if (MDNode *MD =
              IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
        DerefBytes = CI->getLimitedValue();
      }
      CanBeNull = true;
    }
  } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
    if (!AI->isArrayAllocation()) {
      DerefBytes =
          DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize();
      CanBeNull = false;
      CanBeFreed = false;
    }
  } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
    if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
      // TODO: Don't outright reject hasExternalWeakLinkage but set the
      // CanBeNull flag.
      DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize();
      CanBeNull = false;
      CanBeFreed = false;
    }
  }
  return DerefBytes;
}

Align Value::getPointerAlignment(const DataLayout &DL) const {
  assert(getType()->isPointerTy() && "must be pointer");
  if (auto *GO = dyn_cast<GlobalObject>(this)) {
    if (isa<Function>(GO)) {
      Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
      switch (DL.getFunctionPtrAlignType()) {
      case DataLayout::FunctionPtrAlignType::Independent:
        return FunctionPtrAlign;
      case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
        return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
      }
      llvm_unreachable("Unhandled FunctionPtrAlignType");
    }
    const MaybeAlign Alignment(GO->getAlign());
    if (!Alignment) {
      if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
        Type *ObjectType = GVar->getValueType();
        if (ObjectType->isSized()) {
          // If the object is defined in the current Module, we'll be giving
          // it the preferred alignment. Otherwise, we have to assume that it
          // may only have the minimum ABI alignment.
          if (GVar->isStrongDefinitionForLinker())
            return DL.getPreferredAlign(GVar);
          else
            return DL.getABITypeAlign(ObjectType);
        }
      }
    }
    return Alignment.valueOrOne();
  } else if (const Argument *A = dyn_cast<Argument>(this)) {
    const MaybeAlign Alignment = A->getParamAlign();
    if (!Alignment && A->hasStructRetAttr()) {
      // An sret parameter has at least the ABI alignment of the return type.
      Type *EltTy = A->getParamStructRetType();
      if (EltTy->isSized())
        return DL.getABITypeAlign(EltTy);
    }
    return Alignment.valueOrOne();
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
    return AI->getAlign();
  } else if (const auto *Call = dyn_cast<CallBase>(this)) {
    MaybeAlign Alignment = Call->getRetAlign();
    if (!Alignment && Call->getCalledFunction())
      Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
    return Alignment.valueOrOne();
  } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
    if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
      return Align(CI->getLimitedValue());
    }
  } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
    if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
            const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
            /*OnlyIfReduced=*/true))) {
      size_t TrailingZeros = CstInt->getValue().countTrailingZeros();
      // While the actual alignment may be large, elsewhere we have
      // an arbitrary upper alignmet limit, so let's clamp to it.
      return Align(TrailingZeros < Value::MaxAlignmentExponent
                       ? uint64_t(1) << TrailingZeros
                       : Value::MaximumAlignment);
    }
  }
  return Align(1);
}

const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
                                     const BasicBlock *PredBB) const {
  auto *PN = dyn_cast<PHINode>(this);
  if (PN && PN->getParent() == CurBB)
    return PN->getIncomingValueForBlock(PredBB);
  return this;
}

LLVMContext &Value::getContext() const { return VTy->getContext(); }

void Value::reverseUseList() {
  if (!UseList || !UseList->Next)
    // No need to reverse 0 or 1 uses.
    return;

  Use *Head = UseList;
  Use *Current = UseList->Next;
  Head->Next = nullptr;
  while (Current) {
    Use *Next = Current->Next;
    Current->Next = Head;
    Head->Prev = &Current->Next;
    Head = Current;
    Current = Next;
  }
  UseList = Head;
  Head->Prev = &UseList;
}

bool Value::isSwiftError() const {
  auto *Arg = dyn_cast<Argument>(this);
  if (Arg)
    return Arg->hasSwiftErrorAttr();
  auto *Alloca = dyn_cast<AllocaInst>(this);
  if (!Alloca)
    return false;
  return Alloca->isSwiftError();
}

bool Value::isTransitiveUsedByMetadataOnly() const {
  if (use_empty())
    return false;
  llvm::SmallVector<const User *, 32> WorkList;
  llvm::SmallPtrSet<const User *, 32> Visited;
  WorkList.insert(WorkList.begin(), user_begin(), user_end());
  while (!WorkList.empty()) {
    const User *U = WorkList.pop_back_val();
    Visited.insert(U);
    // If it is transitively used by a global value or a non-constant value,
    // it's obviously not only used by metadata.
    if (!isa<Constant>(U) || isa<GlobalValue>(U))
      return false;
    for (const User *UU : U->users())
      if (!Visited.count(UU))
        WorkList.push_back(UU);
  }
  return true;
}

//===----------------------------------------------------------------------===//
//                             ValueHandleBase Class
//===----------------------------------------------------------------------===//

void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
  assert(List && "Handle list is null?");

  // Splice ourselves into the list.
  Next = *List;
  *List = this;
  setPrevPtr(List);
  if (Next) {
    Next->setPrevPtr(&Next);
    assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
  }
}

void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
  assert(List && "Must insert after existing node");

  Next = List->Next;
  setPrevPtr(&List->Next);
  List->Next = this;
  if (Next)
    Next->setPrevPtr(&Next);
}

void ValueHandleBase::AddToUseList() {
  assert(getValPtr() && "Null pointer doesn't have a use list!");

  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;

  if (getValPtr()->HasValueHandle) {
    // If this value already has a ValueHandle, then it must be in the
    // ValueHandles map already.
    ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
    assert(Entry && "Value doesn't have any handles?");
    AddToExistingUseList(&Entry);
    return;
  }

  // Ok, it doesn't have any handles yet, so we must insert it into the
  // DenseMap.  However, doing this insertion could cause the DenseMap to
  // reallocate itself, which would invalidate all of the PrevP pointers that
  // point into the old table.  Handle this by checking for reallocation and
  // updating the stale pointers only if needed.
  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();

  ValueHandleBase *&Entry = Handles[getValPtr()];
  assert(!Entry && "Value really did already have handles?");
  AddToExistingUseList(&Entry);
  getValPtr()->HasValueHandle = true;

  // If reallocation didn't happen or if this was the first insertion, don't
  // walk the table.
  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
      Handles.size() == 1) {
    return;
  }

  // Okay, reallocation did happen.  Fix the Prev Pointers.
  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
       E = Handles.end(); I != E; ++I) {
    assert(I->second && I->first == I->second->getValPtr() &&
           "List invariant broken!");
    I->second->setPrevPtr(&I->second);
  }
}

void ValueHandleBase::RemoveFromUseList() {
  assert(getValPtr() && getValPtr()->HasValueHandle &&
         "Pointer doesn't have a use list!");

  // Unlink this from its use list.
  ValueHandleBase **PrevPtr = getPrevPtr();
  assert(*PrevPtr == this && "List invariant broken");

  *PrevPtr = Next;
  if (Next) {
    assert(Next->getPrevPtr() == &Next && "List invariant broken");
    Next->setPrevPtr(PrevPtr);
    return;
  }

  // If the Next pointer was null, then it is possible that this was the last
  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
  // map.
  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
    Handles.erase(getValPtr());
    getValPtr()->HasValueHandle = false;
  }
}

void ValueHandleBase::ValueIsDeleted(Value *V) {
  assert(V->HasValueHandle && "Should only be called if ValueHandles present");

  // Get the linked list base, which is guaranteed to exist since the
  // HasValueHandle flag is set.
  LLVMContextImpl *pImpl = V->getContext().pImpl;
  ValueHandleBase *Entry = pImpl->ValueHandles[V];
  assert(Entry && "Value bit set but no entries exist");

  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
  // and remove themselves from the list without breaking our iteration.  This
  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
  // Note that we deliberately do not the support the case when dropping a value
  // handle results in a new value handle being permanently added to the list
  // (as might occur in theory for CallbackVH's): the new value handle will not
  // be processed and the checking code will mete out righteous punishment if
  // the handle is still present once we have finished processing all the other
  // value handles (it is fine to momentarily add then remove a value handle).
  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    Iterator.RemoveFromUseList();
    Iterator.AddToExistingUseListAfter(Entry);
    assert(Entry->Next == &Iterator && "Loop invariant broken.");

    switch (Entry->getKind()) {
    case Assert:
      break;
    case Weak:
    case WeakTracking:
      // WeakTracking and Weak just go to null, which unlinks them
      // from the list.
      Entry->operator=(nullptr);
      break;
    case Callback:
      // Forward to the subclass's implementation.
      static_cast<CallbackVH*>(Entry)->deleted();
      break;
    }
  }

  // All callbacks, weak references, and assertingVHs should be dropped by now.
  if (V->HasValueHandle) {
#ifndef NDEBUG      // Only in +Asserts mode...
    dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
           << "\n";
    if (pImpl->ValueHandles[V]->getKind() == Assert)
      llvm_unreachable("An asserting value handle still pointed to this"
                       " value!");

#endif
    llvm_unreachable("All references to V were not removed?");
  }
}

void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
  assert(Old != New && "Changing value into itself!");
  assert(Old->getType() == New->getType() &&
         "replaceAllUses of value with new value of different type!");

  // Get the linked list base, which is guaranteed to exist since the
  // HasValueHandle flag is set.
  LLVMContextImpl *pImpl = Old->getContext().pImpl;
  ValueHandleBase *Entry = pImpl->ValueHandles[Old];

  assert(Entry && "Value bit set but no entries exist");

  // We use a local ValueHandleBase as an iterator so that
  // ValueHandles can add and remove themselves from the list without
  // breaking our iteration.  This is not really an AssertingVH; we
  // just have to give ValueHandleBase some kind.
  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    Iterator.RemoveFromUseList();
    Iterator.AddToExistingUseListAfter(Entry);
    assert(Entry->Next == &Iterator && "Loop invariant broken.");

    switch (Entry->getKind()) {
    case Assert:
    case Weak:
      // Asserting and Weak handles do not follow RAUW implicitly.
      break;
    case WeakTracking:
      // Weak goes to the new value, which will unlink it from Old's list.
      Entry->operator=(New);
      break;
    case Callback:
      // Forward to the subclass's implementation.
      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
      break;
    }
  }

#ifndef NDEBUG
  // If any new weak value handles were added while processing the
  // list, then complain about it now.
  if (Old->HasValueHandle)
    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
      switch (Entry->getKind()) {
      case WeakTracking:
        dbgs() << "After RAUW from " << *Old->getType() << " %"
               << Old->getName() << " to " << *New->getType() << " %"
               << New->getName() << "\n";
        llvm_unreachable(
            "A weak tracking value handle still pointed to the old value!\n");
      default:
        break;
      }
#endif
}

// Pin the vtable to this file.
void CallbackVH::anchor() {}