aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/FuzzMutate/IRMutator.cpp
blob: 0cd0f538fdbcb39d344b1b400c8a725eece2d32a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//===-- IRMutator.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/FuzzMutate/IRMutator.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/FuzzMutate/Random.h"
#include "llvm/FuzzMutate/RandomIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar/DCE.h"

using namespace llvm;

static void createEmptyFunction(Module &M) {
  // TODO: Some arguments and a return value would probably be more interesting.
  LLVMContext &Context = M.getContext();
  Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Context), {},
                                                   /*isVarArg=*/false),
                                 GlobalValue::ExternalLinkage, "f", &M);
  BasicBlock *BB = BasicBlock::Create(Context, "BB", F);
  ReturnInst::Create(Context, BB);
}

void IRMutationStrategy::mutate(Module &M, RandomIRBuilder &IB) {
  if (M.empty())
    createEmptyFunction(M);

  auto RS = makeSampler<Function *>(IB.Rand);
  for (Function &F : M)
    if (!F.isDeclaration())
      RS.sample(&F, /*Weight=*/1);
  mutate(*RS.getSelection(), IB);
}

void IRMutationStrategy::mutate(Function &F, RandomIRBuilder &IB) {
  mutate(*makeSampler(IB.Rand, make_pointer_range(F)).getSelection(), IB);
}

void IRMutationStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
  mutate(*makeSampler(IB.Rand, make_pointer_range(BB)).getSelection(), IB);
}

void IRMutator::mutateModule(Module &M, int Seed, size_t CurSize,
                             size_t MaxSize) {
  std::vector<Type *> Types;
  for (const auto &Getter : AllowedTypes)
    Types.push_back(Getter(M.getContext()));
  RandomIRBuilder IB(Seed, Types);

  auto RS = makeSampler<IRMutationStrategy *>(IB.Rand);
  for (const auto &Strategy : Strategies)
    RS.sample(Strategy.get(),
              Strategy->getWeight(CurSize, MaxSize, RS.totalWeight()));
  auto Strategy = RS.getSelection();

  Strategy->mutate(M, IB);
}

static void eliminateDeadCode(Function &F) {
  FunctionPassManager FPM;
  FPM.addPass(DCEPass());
  FunctionAnalysisManager FAM;
  FAM.registerPass([&] { return TargetLibraryAnalysis(); });
  FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
  FPM.run(F, FAM);
}

void InjectorIRStrategy::mutate(Function &F, RandomIRBuilder &IB) {
  IRMutationStrategy::mutate(F, IB);
  eliminateDeadCode(F);
}

std::vector<fuzzerop::OpDescriptor> InjectorIRStrategy::getDefaultOps() {
  std::vector<fuzzerop::OpDescriptor> Ops;
  describeFuzzerIntOps(Ops);
  describeFuzzerFloatOps(Ops);
  describeFuzzerControlFlowOps(Ops);
  describeFuzzerPointerOps(Ops);
  describeFuzzerAggregateOps(Ops);
  describeFuzzerVectorOps(Ops);
  return Ops;
}

Optional<fuzzerop::OpDescriptor>
InjectorIRStrategy::chooseOperation(Value *Src, RandomIRBuilder &IB) {
  auto OpMatchesPred = [&Src](fuzzerop::OpDescriptor &Op) {
    return Op.SourcePreds[0].matches({}, Src);
  };
  auto RS = makeSampler(IB.Rand, make_filter_range(Operations, OpMatchesPred));
  if (RS.isEmpty())
    return None;
  return *RS;
}

void InjectorIRStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
  SmallVector<Instruction *, 32> Insts;
  for (auto I = BB.getFirstInsertionPt(), E = BB.end(); I != E; ++I)
    Insts.push_back(&*I);
  if (Insts.size() < 1)
    return;

  // Choose an insertion point for our new instruction.
  size_t IP = uniform<size_t>(IB.Rand, 0, Insts.size() - 1);

  auto InstsBefore = makeArrayRef(Insts).slice(0, IP);
  auto InstsAfter = makeArrayRef(Insts).slice(IP);

  // Choose a source, which will be used to constrain the operation selection.
  SmallVector<Value *, 2> Srcs;
  Srcs.push_back(IB.findOrCreateSource(BB, InstsBefore));

  // Choose an operation that's constrained to be valid for the type of the
  // source, collect any other sources it needs, and then build it.
  auto OpDesc = chooseOperation(Srcs[0], IB);
  // Bail if no operation was found
  if (!OpDesc)
    return;

  for (const auto &Pred : makeArrayRef(OpDesc->SourcePreds).slice(1))
    Srcs.push_back(IB.findOrCreateSource(BB, InstsBefore, Srcs, Pred));

  if (Value *Op = OpDesc->BuilderFunc(Srcs, Insts[IP])) {
    // Find a sink and wire up the results of the operation.
    IB.connectToSink(BB, InstsAfter, Op);
  }
}

uint64_t InstDeleterIRStrategy::getWeight(size_t CurrentSize, size_t MaxSize,
                                          uint64_t CurrentWeight) {
  // If we have less than 200 bytes, panic and try to always delete.
  if (CurrentSize > MaxSize - 200)
    return CurrentWeight ? CurrentWeight * 100 : 1;
  // Draw a line starting from when we only have 1k left and increasing linearly
  // to double the current weight.
  int64_t Line = (-2 * static_cast<int64_t>(CurrentWeight)) *
                 (static_cast<int64_t>(MaxSize) -
                  static_cast<int64_t>(CurrentSize) - 1000) /
                 1000;
  // Clamp negative weights to zero.
  if (Line < 0)
    return 0;
  return Line;
}

void InstDeleterIRStrategy::mutate(Function &F, RandomIRBuilder &IB) {
  auto RS = makeSampler<Instruction *>(IB.Rand);
  for (Instruction &Inst : instructions(F)) {
    // TODO: We can't handle these instructions.
    if (Inst.isTerminator() || Inst.isEHPad() ||
        Inst.isSwiftError() || isa<PHINode>(Inst))
      continue;

    RS.sample(&Inst, /*Weight=*/1);
  }
  if (RS.isEmpty())
    return;

  // Delete the instruction.
  mutate(*RS.getSelection(), IB);
  // Clean up any dead code that's left over after removing the instruction.
  eliminateDeadCode(F);
}

void InstDeleterIRStrategy::mutate(Instruction &Inst, RandomIRBuilder &IB) {
  assert(!Inst.isTerminator() && "Deleting terminators invalidates CFG");

  if (Inst.getType()->isVoidTy()) {
    // Instructions with void type (ie, store) have no uses to worry about. Just
    // erase it and move on.
    Inst.eraseFromParent();
    return;
  }

  // Otherwise we need to find some other value with the right type to keep the
  // users happy.
  auto Pred = fuzzerop::onlyType(Inst.getType());
  auto RS = makeSampler<Value *>(IB.Rand);
  SmallVector<Instruction *, 32> InstsBefore;
  BasicBlock *BB = Inst.getParent();
  for (auto I = BB->getFirstInsertionPt(), E = Inst.getIterator(); I != E;
       ++I) {
    if (Pred.matches({}, &*I))
      RS.sample(&*I, /*Weight=*/1);
    InstsBefore.push_back(&*I);
  }
  if (!RS)
    RS.sample(IB.newSource(*BB, InstsBefore, {}, Pred), /*Weight=*/1);

  Inst.replaceAllUsesWith(RS.getSelection());
  Inst.eraseFromParent();
}

void InstModificationIRStrategy::mutate(Instruction &Inst,
                                        RandomIRBuilder &IB) {
  SmallVector<std::function<void()>, 8> Modifications;
  CmpInst *CI = nullptr;
  GetElementPtrInst *GEP = nullptr;
  switch (Inst.getOpcode()) {
  default:
    break;
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::Sub:
  case Instruction::Shl:
    Modifications.push_back([&Inst]() { Inst.setHasNoSignedWrap(true); }),
        Modifications.push_back([&Inst]() { Inst.setHasNoSignedWrap(false); });
    Modifications.push_back([&Inst]() { Inst.setHasNoUnsignedWrap(true); });
    Modifications.push_back([&Inst]() { Inst.setHasNoUnsignedWrap(false); });

    break;
  case Instruction::ICmp:
    CI = cast<ICmpInst>(&Inst);
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_EQ); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_NE); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_UGT); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_UGE); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_ULT); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_ULE); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_SGT); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_SGE); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_SLT); });
    Modifications.push_back([CI]() { CI->setPredicate(CmpInst::ICMP_SLE); });
    break;
  case Instruction::GetElementPtr:
    GEP = cast<GetElementPtrInst>(&Inst);
    Modifications.push_back([GEP]() { GEP->setIsInBounds(true); });
    Modifications.push_back([GEP]() { GEP->setIsInBounds(false); });
    break;
  }

  auto RS = makeSampler(IB.Rand, Modifications);
  if (RS)
    RS.getSelection()();
}