aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
blob: e3e05c868102cc7b38682b6105eb95ad01671a5b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the Emit routines for the SelectionDAG class, which creates
// MachineInstrs based on the decisions of the SelectionDAG instruction
// selection.
//
//===----------------------------------------------------------------------===//

#include "InstrEmitter.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;

#define DEBUG_TYPE "instr-emitter"

/// MinRCSize - Smallest register class we allow when constraining virtual
/// registers.  If satisfying all register class constraints would require
/// using a smaller register class, emit a COPY to a new virtual register
/// instead.
const unsigned MinRCSize = 4;

/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional glue operands (which do
/// not go into the resulting MachineInstr).
unsigned InstrEmitter::CountResults(SDNode *Node) {
  unsigned N = Node->getNumValues();
  while (N && Node->getValueType(N - 1) == MVT::Glue)
    --N;
  if (N && Node->getValueType(N - 1) == MVT::Other)
    --N;    // Skip over chain result.
  return N;
}

/// countOperands - The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then an optional glue operand.
/// Compute the number of actual operands that will go into the resulting
/// MachineInstr.
///
/// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
/// the chain and glue. These operands may be implicit on the machine instr.
static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
                              unsigned &NumImpUses) {
  unsigned N = Node->getNumOperands();
  while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
    --N;
  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
    --N; // Ignore chain if it exists.

  // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
  NumImpUses = N - NumExpUses;
  for (unsigned I = N; I > NumExpUses; --I) {
    if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
      continue;
    if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
      if (Register::isPhysicalRegister(RN->getReg()))
        continue;
    NumImpUses = N - I;
    break;
  }

  return N;
}

/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
/// implicit physical register output.
void InstrEmitter::
EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
                Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
  Register VRBase;
  if (SrcReg.isVirtual()) {
    // Just use the input register directly!
    SDValue Op(Node, ResNo);
    if (IsClone)
      VRBaseMap.erase(Op);
    bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
    (void)isNew; // Silence compiler warning.
    assert(isNew && "Node emitted out of order - early");
    return;
  }

  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
  // the CopyToReg'd destination register instead of creating a new vreg.
  bool MatchReg = true;
  const TargetRegisterClass *UseRC = nullptr;
  MVT VT = Node->getSimpleValueType(ResNo);

  // Stick to the preferred register classes for legal types.
  if (TLI->isTypeLegal(VT))
    UseRC = TLI->getRegClassFor(VT, Node->isDivergent());

  if (!IsClone && !IsCloned)
    for (SDNode *User : Node->uses()) {
      bool Match = true;
      if (User->getOpcode() == ISD::CopyToReg &&
          User->getOperand(2).getNode() == Node &&
          User->getOperand(2).getResNo() == ResNo) {
        Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
        if (DestReg.isVirtual()) {
          VRBase = DestReg;
          Match = false;
        } else if (DestReg != SrcReg)
          Match = false;
      } else {
        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
          SDValue Op = User->getOperand(i);
          if (Op.getNode() != Node || Op.getResNo() != ResNo)
            continue;
          MVT VT = Node->getSimpleValueType(Op.getResNo());
          if (VT == MVT::Other || VT == MVT::Glue)
            continue;
          Match = false;
          if (User->isMachineOpcode()) {
            const MCInstrDesc &II = TII->get(User->getMachineOpcode());
            const TargetRegisterClass *RC = nullptr;
            if (i+II.getNumDefs() < II.getNumOperands()) {
              RC = TRI->getAllocatableClass(
                TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
            }
            if (!UseRC)
              UseRC = RC;
            else if (RC) {
              const TargetRegisterClass *ComRC =
                TRI->getCommonSubClass(UseRC, RC);
              // If multiple uses expect disjoint register classes, we emit
              // copies in AddRegisterOperand.
              if (ComRC)
                UseRC = ComRC;
            }
          }
        }
      }
      MatchReg &= Match;
      if (VRBase)
        break;
    }

  const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
  SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);

  // Figure out the register class to create for the destreg.
  if (VRBase) {
    DstRC = MRI->getRegClass(VRBase);
  } else if (UseRC) {
    assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
           "Incompatible phys register def and uses!");
    DstRC = UseRC;
  } else
    DstRC = SrcRC;

  // If all uses are reading from the src physical register and copying the
  // register is either impossible or very expensive, then don't create a copy.
  if (MatchReg && SrcRC->getCopyCost() < 0) {
    VRBase = SrcReg;
  } else {
    // Create the reg, emit the copy.
    VRBase = MRI->createVirtualRegister(DstRC);
    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
            VRBase).addReg(SrcReg);
  }

  SDValue Op(Node, ResNo);
  if (IsClone)
    VRBaseMap.erase(Op);
  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
  (void)isNew; // Silence compiler warning.
  assert(isNew && "Node emitted out of order - early");
}

void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
                                       MachineInstrBuilder &MIB,
                                       const MCInstrDesc &II,
                                       bool IsClone, bool IsCloned,
                                       DenseMap<SDValue, Register> &VRBaseMap) {
  assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
         "IMPLICIT_DEF should have been handled as a special case elsewhere!");

  unsigned NumResults = CountResults(Node);
  bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
                             II.isVariadic() && II.variadicOpsAreDefs();
  unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
  if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
    NumVRegs = NumResults;
  for (unsigned i = 0; i < NumVRegs; ++i) {
    // If the specific node value is only used by a CopyToReg and the dest reg
    // is a vreg in the same register class, use the CopyToReg'd destination
    // register instead of creating a new vreg.
    Register VRBase;
    const TargetRegisterClass *RC =
      TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
    // Always let the value type influence the used register class. The
    // constraints on the instruction may be too lax to represent the value
    // type correctly. For example, a 64-bit float (X86::FR64) can't live in
    // the 32-bit float super-class (X86::FR32).
    if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
      const TargetRegisterClass *VTRC = TLI->getRegClassFor(
          Node->getSimpleValueType(i),
          (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
      if (RC)
        VTRC = TRI->getCommonSubClass(RC, VTRC);
      if (VTRC)
        RC = VTRC;
    }

    if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
      // Optional def must be a physical register.
      VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
      assert(VRBase.isPhysical());
      MIB.addReg(VRBase, RegState::Define);
    }

    if (!VRBase && !IsClone && !IsCloned)
      for (SDNode *User : Node->uses()) {
        if (User->getOpcode() == ISD::CopyToReg &&
            User->getOperand(2).getNode() == Node &&
            User->getOperand(2).getResNo() == i) {
          unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
          if (Register::isVirtualRegister(Reg)) {
            const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
            if (RegRC == RC) {
              VRBase = Reg;
              MIB.addReg(VRBase, RegState::Define);
              break;
            }
          }
        }
      }

    // Create the result registers for this node and add the result regs to
    // the machine instruction.
    if (VRBase == 0) {
      assert(RC && "Isn't a register operand!");
      VRBase = MRI->createVirtualRegister(RC);
      MIB.addReg(VRBase, RegState::Define);
    }

    // If this def corresponds to a result of the SDNode insert the VRBase into
    // the lookup map.
    if (i < NumResults) {
      SDValue Op(Node, i);
      if (IsClone)
        VRBaseMap.erase(Op);
      bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
      (void)isNew; // Silence compiler warning.
      assert(isNew && "Node emitted out of order - early");
    }
  }
}

/// getVR - Return the virtual register corresponding to the specified result
/// of the specified node.
Register InstrEmitter::getVR(SDValue Op,
                             DenseMap<SDValue, Register> &VRBaseMap) {
  if (Op.isMachineOpcode() &&
      Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
    // Add an IMPLICIT_DEF instruction before every use.
    // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
    // does not include operand register class info.
    const TargetRegisterClass *RC = TLI->getRegClassFor(
        Op.getSimpleValueType(), Op.getNode()->isDivergent());
    Register VReg = MRI->createVirtualRegister(RC);
    BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
            TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
    return VReg;
  }

  DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
  assert(I != VRBaseMap.end() && "Node emitted out of order - late");
  return I->second;
}


/// AddRegisterOperand - Add the specified register as an operand to the
/// specified machine instr. Insert register copies if the register is
/// not in the required register class.
void
InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
                                 SDValue Op,
                                 unsigned IIOpNum,
                                 const MCInstrDesc *II,
                                 DenseMap<SDValue, Register> &VRBaseMap,
                                 bool IsDebug, bool IsClone, bool IsCloned) {
  assert(Op.getValueType() != MVT::Other &&
         Op.getValueType() != MVT::Glue &&
         "Chain and glue operands should occur at end of operand list!");
  // Get/emit the operand.
  Register VReg = getVR(Op, VRBaseMap);

  const MCInstrDesc &MCID = MIB->getDesc();
  bool isOptDef = IIOpNum < MCID.getNumOperands() &&
    MCID.OpInfo[IIOpNum].isOptionalDef();

  // If the instruction requires a register in a different class, create
  // a new virtual register and copy the value into it, but first attempt to
  // shrink VReg's register class within reason.  For example, if VReg == GR32
  // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
  if (II) {
    const TargetRegisterClass *OpRC = nullptr;
    if (IIOpNum < II->getNumOperands())
      OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);

    if (OpRC) {
      const TargetRegisterClass *ConstrainedRC
        = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
      if (!ConstrainedRC) {
        OpRC = TRI->getAllocatableClass(OpRC);
        assert(OpRC && "Constraints cannot be fulfilled for allocation");
        Register NewVReg = MRI->createVirtualRegister(OpRC);
        BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
        VReg = NewVReg;
      } else {
        assert(ConstrainedRC->isAllocatable() &&
           "Constraining an allocatable VReg produced an unallocatable class?");
      }
    }
  }

  // If this value has only one use, that use is a kill. This is a
  // conservative approximation. InstrEmitter does trivial coalescing
  // with CopyFromReg nodes, so don't emit kill flags for them.
  // Avoid kill flags on Schedule cloned nodes, since there will be
  // multiple uses.
  // Tied operands are never killed, so we need to check that. And that
  // means we need to determine the index of the operand.
  bool isKill = Op.hasOneUse() &&
                Op.getNode()->getOpcode() != ISD::CopyFromReg &&
                !IsDebug &&
                !(IsClone || IsCloned);
  if (isKill) {
    unsigned Idx = MIB->getNumOperands();
    while (Idx > 0 &&
           MIB->getOperand(Idx-1).isReg() &&
           MIB->getOperand(Idx-1).isImplicit())
      --Idx;
    bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
    if (isTied)
      isKill = false;
  }

  MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
             getDebugRegState(IsDebug));
}

/// AddOperand - Add the specified operand to the specified machine instr.  II
/// specifies the instruction information for the node, and IIOpNum is the
/// operand number (in the II) that we are adding.
void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
                              SDValue Op,
                              unsigned IIOpNum,
                              const MCInstrDesc *II,
                              DenseMap<SDValue, Register> &VRBaseMap,
                              bool IsDebug, bool IsClone, bool IsCloned) {
  if (Op.isMachineOpcode()) {
    AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
                       IsDebug, IsClone, IsCloned);
  } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    MIB.addImm(C->getSExtValue());
  } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
    MIB.addFPImm(F->getConstantFPValue());
  } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
    Register VReg = R->getReg();
    MVT OpVT = Op.getSimpleValueType();
    const TargetRegisterClass *IIRC =
        II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
           : nullptr;
    const TargetRegisterClass *OpRC =
        TLI->isTypeLegal(OpVT)
            ? TLI->getRegClassFor(OpVT,
                                  Op.getNode()->isDivergent() ||
                                      (IIRC && TRI->isDivergentRegClass(IIRC)))
            : nullptr;

    if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
      Register NewVReg = MRI->createVirtualRegister(IIRC);
      BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
               TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
      VReg = NewVReg;
    }
    // Turn additional physreg operands into implicit uses on non-variadic
    // instructions. This is used by call and return instructions passing
    // arguments in registers.
    bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
    MIB.addReg(VReg, getImplRegState(Imp));
  } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
    MIB.addRegMask(RM->getRegMask());
  } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
    MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
                         TGA->getTargetFlags());
  } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
    MIB.addMBB(BBNode->getBasicBlock());
  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
    MIB.addFrameIndex(FI->getIndex());
  } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
    MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
    int Offset = CP->getOffset();
    Align Alignment = CP->getAlign();

    unsigned Idx;
    MachineConstantPool *MCP = MF->getConstantPool();
    if (CP->isMachineConstantPoolEntry())
      Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
    else
      Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
    MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
  } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
    MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
  } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
    MIB.addSym(SymNode->getMCSymbol());
  } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
    MIB.addBlockAddress(BA->getBlockAddress(),
                        BA->getOffset(),
                        BA->getTargetFlags());
  } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
    MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
  } else {
    assert(Op.getValueType() != MVT::Other &&
           Op.getValueType() != MVT::Glue &&
           "Chain and glue operands should occur at end of operand list!");
    AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
                       IsDebug, IsClone, IsCloned);
  }
}

Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
                                          MVT VT, bool isDivergent, const DebugLoc &DL) {
  const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
  const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);

  // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
  // within reason.
  if (RC && RC != VRC)
    RC = MRI->constrainRegClass(VReg, RC, MinRCSize);

  // VReg has been adjusted.  It can be used with SubIdx operands now.
  if (RC)
    return VReg;

  // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
  // register instead.
  RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
  assert(RC && "No legal register class for VT supports that SubIdx");
  Register NewReg = MRI->createVirtualRegister(RC);
  BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
    .addReg(VReg);
  return NewReg;
}

/// EmitSubregNode - Generate machine code for subreg nodes.
///
void InstrEmitter::EmitSubregNode(SDNode *Node,
                                  DenseMap<SDValue, Register> &VRBaseMap,
                                  bool IsClone, bool IsCloned) {
  Register VRBase;
  unsigned Opc = Node->getMachineOpcode();

  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
  // the CopyToReg'd destination register instead of creating a new vreg.
  for (SDNode *User : Node->uses()) {
    if (User->getOpcode() == ISD::CopyToReg &&
        User->getOperand(2).getNode() == Node) {
      Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
      if (DestReg.isVirtual()) {
        VRBase = DestReg;
        break;
      }
    }
  }

  if (Opc == TargetOpcode::EXTRACT_SUBREG) {
    // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
    // constraints on the %dst register, COPY can target all legal register
    // classes.
    unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    const TargetRegisterClass *TRC =
      TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());

    Register Reg;
    MachineInstr *DefMI;
    RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
    if (R && Register::isPhysicalRegister(R->getReg())) {
      Reg = R->getReg();
      DefMI = nullptr;
    } else {
      Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
      DefMI = MRI->getVRegDef(Reg);
    }

    Register SrcReg, DstReg;
    unsigned DefSubIdx;
    if (DefMI &&
        TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
        SubIdx == DefSubIdx &&
        TRC == MRI->getRegClass(SrcReg)) {
      // Optimize these:
      // r1025 = s/zext r1024, 4
      // r1026 = extract_subreg r1025, 4
      // to a copy
      // r1026 = copy r1024
      VRBase = MRI->createVirtualRegister(TRC);
      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
              TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
      MRI->clearKillFlags(SrcReg);
    } else {
      // Reg may not support a SubIdx sub-register, and we may need to
      // constrain its register class or issue a COPY to a compatible register
      // class.
      if (Reg.isVirtual())
        Reg = ConstrainForSubReg(Reg, SubIdx,
                                 Node->getOperand(0).getSimpleValueType(),
                                 Node->isDivergent(), Node->getDebugLoc());
      // Create the destreg if it is missing.
      if (!VRBase)
        VRBase = MRI->createVirtualRegister(TRC);

      // Create the extract_subreg machine instruction.
      MachineInstrBuilder CopyMI =
          BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
                  TII->get(TargetOpcode::COPY), VRBase);
      if (Reg.isVirtual())
        CopyMI.addReg(Reg, 0, SubIdx);
      else
        CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
    }
  } else if (Opc == TargetOpcode::INSERT_SUBREG ||
             Opc == TargetOpcode::SUBREG_TO_REG) {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);
    SDValue N2 = Node->getOperand(2);
    unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();

    // Figure out the register class to create for the destreg.  It should be
    // the largest legal register class supporting SubIdx sub-registers.
    // RegisterCoalescer will constrain it further if it decides to eliminate
    // the INSERT_SUBREG instruction.
    //
    //   %dst = INSERT_SUBREG %src, %sub, SubIdx
    //
    // is lowered by TwoAddressInstructionPass to:
    //
    //   %dst = COPY %src
    //   %dst:SubIdx = COPY %sub
    //
    // There is no constraint on the %src register class.
    //
    const TargetRegisterClass *SRC =
        TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
    SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
    assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");

    if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
      VRBase = MRI->createVirtualRegister(SRC);

    // Create the insert_subreg or subreg_to_reg machine instruction.
    MachineInstrBuilder MIB =
      BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);

    // If creating a subreg_to_reg, then the first input operand
    // is an implicit value immediate, otherwise it's a register
    if (Opc == TargetOpcode::SUBREG_TO_REG) {
      const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
      MIB.addImm(SD->getZExtValue());
    } else
      AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
                 IsClone, IsCloned);
    // Add the subregister being inserted
    AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
               IsClone, IsCloned);
    MIB.addImm(SubIdx);
    MBB->insert(InsertPos, MIB);
  } else
    llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");

  SDValue Op(Node, 0);
  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
  (void)isNew; // Silence compiler warning.
  assert(isNew && "Node emitted out of order - early");
}

/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
/// COPY_TO_REGCLASS is just a normal copy, except that the destination
/// register is constrained to be in a particular register class.
///
void
InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
                                     DenseMap<SDValue, Register> &VRBaseMap) {
  unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);

  // Create the new VReg in the destination class and emit a copy.
  unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
  const TargetRegisterClass *DstRC =
    TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
  Register NewVReg = MRI->createVirtualRegister(DstRC);
  BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
    NewVReg).addReg(VReg);

  SDValue Op(Node, 0);
  bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
  (void)isNew; // Silence compiler warning.
  assert(isNew && "Node emitted out of order - early");
}

/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
///
void InstrEmitter::EmitRegSequence(SDNode *Node,
                                  DenseMap<SDValue, Register> &VRBaseMap,
                                  bool IsClone, bool IsCloned) {
  unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
  const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
  Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
  const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
  MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
  unsigned NumOps = Node->getNumOperands();
  // If the input pattern has a chain, then the root of the corresponding
  // output pattern will get a chain as well. This can happen to be a
  // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
  if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
    --NumOps; // Ignore chain if it exists.

  assert((NumOps & 1) == 1 &&
         "REG_SEQUENCE must have an odd number of operands!");
  for (unsigned i = 1; i != NumOps; ++i) {
    SDValue Op = Node->getOperand(i);
    if ((i & 1) == 0) {
      RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
      // Skip physical registers as they don't have a vreg to get and we'll
      // insert copies for them in TwoAddressInstructionPass anyway.
      if (!R || !Register::isPhysicalRegister(R->getReg())) {
        unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
        unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
        const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
        const TargetRegisterClass *SRC =
        TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
        if (SRC && SRC != RC) {
          MRI->setRegClass(NewVReg, SRC);
          RC = SRC;
        }
      }
    }
    AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
               IsClone, IsCloned);
  }

  MBB->insert(InsertPos, MIB);
  SDValue Op(Node, 0);
  bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
  (void)isNew; // Silence compiler warning.
  assert(isNew && "Node emitted out of order - early");
}

/// EmitDbgValue - Generate machine instruction for a dbg_value node.
///
MachineInstr *
InstrEmitter::EmitDbgValue(SDDbgValue *SD,
                           DenseMap<SDValue, Register> &VRBaseMap) {
  MDNode *Var = SD->getVariable();
  MDNode *Expr = SD->getExpression();
  DebugLoc DL = SD->getDebugLoc();
  assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
         "Expected inlined-at fields to agree");

  SD->setIsEmitted();

  ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
  assert(!LocationOps.empty() && "dbg_value with no location operands?");

  if (SD->isInvalidated())
    return EmitDbgNoLocation(SD);

  // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
  if (SD->isVariadic()) {
    // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
    const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
    // Build the DBG_VALUE_LIST instruction base.
    auto MIB = BuildMI(*MF, DL, DbgValDesc);
    MIB.addMetadata(Var);
    MIB.addMetadata(Expr);
    AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
    return &*MIB;
  }

  // Attempt to produce a DBG_INSTR_REF if we've been asked to.
  // We currently exclude the possibility of instruction references for
  // variadic nodes; if at some point we enable them, this should be moved
  // above the variadic block.
  if (EmitDebugInstrRefs)
    if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
      return InstrRef;

  return EmitDbgValueFromSingleOp(SD, VRBaseMap);
}

void InstrEmitter::AddDbgValueLocationOps(
    MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
    ArrayRef<SDDbgOperand> LocationOps,
    DenseMap<SDValue, Register> &VRBaseMap) {
  for (const SDDbgOperand &Op : LocationOps) {
    switch (Op.getKind()) {
    case SDDbgOperand::FRAMEIX:
      MIB.addFrameIndex(Op.getFrameIx());
      break;
    case SDDbgOperand::VREG:
      MIB.addReg(Op.getVReg());
      break;
    case SDDbgOperand::SDNODE: {
      SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
      // It's possible we replaced this SDNode with other(s) and therefore
      // didn't generate code for it. It's better to catch these cases where
      // they happen and transfer the debug info, but trying to guarantee that
      // in all cases would be very fragile; this is a safeguard for any
      // that were missed.
      if (VRBaseMap.count(V) == 0)
        MIB.addReg(0U); // undef
      else
        AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
                   /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
    } break;
    case SDDbgOperand::CONST: {
      const Value *V = Op.getConst();
      if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
        if (CI->getBitWidth() > 64)
          MIB.addCImm(CI);
        else
          MIB.addImm(CI->getSExtValue());
      } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
        MIB.addFPImm(CF);
      } else if (isa<ConstantPointerNull>(V)) {
        // Note: This assumes that all nullptr constants are zero-valued.
        MIB.addImm(0);
      } else {
        // Could be an Undef. In any case insert an Undef so we can see what we
        // dropped.
        MIB.addReg(0U);
      }
    } break;
    }
  }
}

MachineInstr *
InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
                              DenseMap<SDValue, Register> &VRBaseMap) {
  assert(!SD->isVariadic());
  SDDbgOperand DbgOperand = SD->getLocationOps()[0];
  MDNode *Var = SD->getVariable();
  DIExpression *Expr = (DIExpression*)SD->getExpression();
  DebugLoc DL = SD->getDebugLoc();
  const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);

  // Handle variable locations that don't actually depend on the instructions
  // in the program: constants and stack locations.
  if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
      DbgOperand.getKind() == SDDbgOperand::CONST)
    return EmitDbgValueFromSingleOp(SD, VRBaseMap);

  // Immediately fold any indirectness from the LLVM-IR intrinsic into the
  // expression:
  if (SD->isIndirect()) {
    std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
    Expr = DIExpression::append(Expr, Elts);
  }

  // It may not be immediately possible to identify the MachineInstr that
  // defines a VReg, it can depend for example on the order blocks are
  // emitted in. When this happens, or when further analysis is needed later,
  // produce an instruction like this:
  //
  //    DBG_INSTR_REF %0:gr64, 0, !123, !456
  //
  // i.e., point the instruction at the vreg, and patch it up later in
  // MachineFunction::finalizeDebugInstrRefs.
  auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
    auto MIB = BuildMI(*MF, DL, RefII);
    MIB.addReg(VReg);
    MIB.addImm(0);
    MIB.addMetadata(Var);
    MIB.addMetadata(Expr);
    return MIB;
  };

  // Try to find both the defined register and the instruction defining it.
  MachineInstr *DefMI = nullptr;
  unsigned VReg;

  if (DbgOperand.getKind() == SDDbgOperand::VREG) {
    VReg = DbgOperand.getVReg();

    // No definition means that block hasn't been emitted yet. Leave a vreg
    // reference to be fixed later.
    if (!MRI->hasOneDef(VReg))
      return EmitHalfDoneInstrRef(VReg);

    DefMI = &*MRI->def_instr_begin(VReg);
  } else {
    assert(DbgOperand.getKind() == SDDbgOperand::SDNODE);
    // Look up the corresponding VReg for the given SDNode, if any.
    SDNode *Node = DbgOperand.getSDNode();
    SDValue Op = SDValue(Node, DbgOperand.getResNo());
    DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
    // No VReg -> produce a DBG_VALUE $noreg instead.
    if (I==VRBaseMap.end())
      return EmitDbgNoLocation(SD);

    // Try to pick out a defining instruction at this point.
    VReg = getVR(Op, VRBaseMap);

    // Again, if there's no instruction defining the VReg right now, fix it up
    // later.
    if (!MRI->hasOneDef(VReg))
      return EmitHalfDoneInstrRef(VReg);

    DefMI = &*MRI->def_instr_begin(VReg);
  }

  // Avoid copy like instructions: they don't define values, only move them.
  // Leave a virtual-register reference until it can be fixed up later, to find
  // the underlying value definition.
  if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
    return EmitHalfDoneInstrRef(VReg);

  auto MIB = BuildMI(*MF, DL, RefII);

  // Find the operand number which defines the specified VReg.
  unsigned OperandIdx = 0;
  for (const auto &MO : DefMI->operands()) {
    if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
      break;
    ++OperandIdx;
  }
  assert(OperandIdx < DefMI->getNumOperands());

  // Make the DBG_INSTR_REF refer to that instruction, and that operand.
  unsigned InstrNum = DefMI->getDebugInstrNum();
  MIB.addImm(InstrNum);
  MIB.addImm(OperandIdx);
  MIB.addMetadata(Var);
  MIB.addMetadata(Expr);
  return &*MIB;
}

MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
  // An invalidated SDNode must generate an undef DBG_VALUE: although the
  // original value is no longer computed, earlier DBG_VALUEs live ranges
  // must not leak into later code.
  MDNode *Var = SD->getVariable();
  MDNode *Expr = SD->getExpression();
  DebugLoc DL = SD->getDebugLoc();
  auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
  MIB.addReg(0U);
  MIB.addReg(0U);
  MIB.addMetadata(Var);
  MIB.addMetadata(Expr);
  return &*MIB;
}

MachineInstr *
InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
                                       DenseMap<SDValue, Register> &VRBaseMap) {
  MDNode *Var = SD->getVariable();
  DIExpression *Expr = SD->getExpression();
  DebugLoc DL = SD->getDebugLoc();
  const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);

  assert(SD->getLocationOps().size() == 1 &&
         "Non variadic dbg_value should have only one location op");

  // See about constant-folding the expression.
  // Copy the location operand in case we replace it.
  SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
  if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
    const Value *V = LocationOps[0].getConst();
    if (auto *C = dyn_cast<ConstantInt>(V)) {
      std::tie(Expr, C) = Expr->constantFold(C);
      LocationOps[0] = SDDbgOperand::fromConst(C);
    }
  }

  // Emit non-variadic dbg_value nodes as DBG_VALUE.
  // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
  auto MIB = BuildMI(*MF, DL, II);
  AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);

  if (SD->isIndirect())
    MIB.addImm(0U);
  else
    MIB.addReg(0U);

  return MIB.addMetadata(Var).addMetadata(Expr);
}

MachineInstr *
InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
  MDNode *Label = SD->getLabel();
  DebugLoc DL = SD->getDebugLoc();
  assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
         "Expected inlined-at fields to agree");

  const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
  MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
  MIB.addMetadata(Label);

  return &*MIB;
}

/// EmitMachineNode - Generate machine code for a target-specific node and
/// needed dependencies.
///
void InstrEmitter::
EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
                DenseMap<SDValue, Register> &VRBaseMap) {
  unsigned Opc = Node->getMachineOpcode();

  // Handle subreg insert/extract specially
  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
      Opc == TargetOpcode::INSERT_SUBREG ||
      Opc == TargetOpcode::SUBREG_TO_REG) {
    EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
    return;
  }

  // Handle COPY_TO_REGCLASS specially.
  if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
    EmitCopyToRegClassNode(Node, VRBaseMap);
    return;
  }

  // Handle REG_SEQUENCE specially.
  if (Opc == TargetOpcode::REG_SEQUENCE) {
    EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
    return;
  }

  if (Opc == TargetOpcode::IMPLICIT_DEF)
    // We want a unique VR for each IMPLICIT_DEF use.
    return;

  const MCInstrDesc &II = TII->get(Opc);
  unsigned NumResults = CountResults(Node);
  unsigned NumDefs = II.getNumDefs();
  const MCPhysReg *ScratchRegs = nullptr;

  // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
  if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
    // Stackmaps do not have arguments and do not preserve their calling
    // convention. However, to simplify runtime support, they clobber the same
    // scratch registers as AnyRegCC.
    unsigned CC = CallingConv::AnyReg;
    if (Opc == TargetOpcode::PATCHPOINT) {
      CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
      NumDefs = NumResults;
    }
    ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
  } else if (Opc == TargetOpcode::STATEPOINT) {
    NumDefs = NumResults;
  }

  unsigned NumImpUses = 0;
  unsigned NodeOperands =
    countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
  bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
                             II.isVariadic() && II.variadicOpsAreDefs();
  bool HasPhysRegOuts = NumResults > NumDefs &&
                        II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
#ifndef NDEBUG
  unsigned NumMIOperands = NodeOperands + NumResults;
  if (II.isVariadic())
    assert(NumMIOperands >= II.getNumOperands() &&
           "Too few operands for a variadic node!");
  else
    assert(NumMIOperands >= II.getNumOperands() &&
           NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
                            NumImpUses &&
           "#operands for dag node doesn't match .td file!");
#endif

  // Create the new machine instruction.
  MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);

  // Add result register values for things that are defined by this
  // instruction.
  if (NumResults) {
    CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);

    // Transfer any IR flags from the SDNode to the MachineInstr
    MachineInstr *MI = MIB.getInstr();
    const SDNodeFlags Flags = Node->getFlags();
    if (Flags.hasNoSignedZeros())
      MI->setFlag(MachineInstr::MIFlag::FmNsz);

    if (Flags.hasAllowReciprocal())
      MI->setFlag(MachineInstr::MIFlag::FmArcp);

    if (Flags.hasNoNaNs())
      MI->setFlag(MachineInstr::MIFlag::FmNoNans);

    if (Flags.hasNoInfs())
      MI->setFlag(MachineInstr::MIFlag::FmNoInfs);

    if (Flags.hasAllowContract())
      MI->setFlag(MachineInstr::MIFlag::FmContract);

    if (Flags.hasApproximateFuncs())
      MI->setFlag(MachineInstr::MIFlag::FmAfn);

    if (Flags.hasAllowReassociation())
      MI->setFlag(MachineInstr::MIFlag::FmReassoc);

    if (Flags.hasNoUnsignedWrap())
      MI->setFlag(MachineInstr::MIFlag::NoUWrap);

    if (Flags.hasNoSignedWrap())
      MI->setFlag(MachineInstr::MIFlag::NoSWrap);

    if (Flags.hasExact())
      MI->setFlag(MachineInstr::MIFlag::IsExact);

    if (Flags.hasNoFPExcept())
      MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
  }

  // Emit all of the actual operands of this instruction, adding them to the
  // instruction as appropriate.
  bool HasOptPRefs = NumDefs > NumResults;
  assert((!HasOptPRefs || !HasPhysRegOuts) &&
         "Unable to cope with optional defs and phys regs defs!");
  unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
  for (unsigned i = NumSkip; i != NodeOperands; ++i)
    AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
               VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);

  // Add scratch registers as implicit def and early clobber
  if (ScratchRegs)
    for (unsigned i = 0; ScratchRegs[i]; ++i)
      MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
                                 RegState::EarlyClobber);

  // Set the memory reference descriptions of this instruction now that it is
  // part of the function.
  MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());

  // Insert the instruction into position in the block. This needs to
  // happen before any custom inserter hook is called so that the
  // hook knows where in the block to insert the replacement code.
  MBB->insert(InsertPos, MIB);

  // The MachineInstr may also define physregs instead of virtregs.  These
  // physreg values can reach other instructions in different ways:
  //
  // 1. When there is a use of a Node value beyond the explicitly defined
  //    virtual registers, we emit a CopyFromReg for one of the implicitly
  //    defined physregs.  This only happens when HasPhysRegOuts is true.
  //
  // 2. A CopyFromReg reading a physreg may be glued to this instruction.
  //
  // 3. A glued instruction may implicitly use a physreg.
  //
  // 4. A glued instruction may use a RegisterSDNode operand.
  //
  // Collect all the used physreg defs, and make sure that any unused physreg
  // defs are marked as dead.
  SmallVector<Register, 8> UsedRegs;

  // Additional results must be physical register defs.
  if (HasPhysRegOuts) {
    for (unsigned i = NumDefs; i < NumResults; ++i) {
      Register Reg = II.getImplicitDefs()[i - NumDefs];
      if (!Node->hasAnyUseOfValue(i))
        continue;
      // This implicitly defined physreg has a use.
      UsedRegs.push_back(Reg);
      EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
    }
  }

  // Scan the glue chain for any used physregs.
  if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
    for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
      if (F->getOpcode() == ISD::CopyFromReg) {
        UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
        continue;
      } else if (F->getOpcode() == ISD::CopyToReg) {
        // Skip CopyToReg nodes that are internal to the glue chain.
        continue;
      }
      // Collect declared implicit uses.
      const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
      UsedRegs.append(MCID.getImplicitUses(),
                      MCID.getImplicitUses() + MCID.getNumImplicitUses());
      // In addition to declared implicit uses, we must also check for
      // direct RegisterSDNode operands.
      for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
        if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
          Register Reg = R->getReg();
          if (Reg.isPhysical())
            UsedRegs.push_back(Reg);
        }
    }
  }

  // Finally mark unused registers as dead.
  if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
    MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);

  // STATEPOINT is too 'dynamic' to have meaningful machine description.
  // We have to manually tie operands.
  if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
    assert(!HasPhysRegOuts && "STATEPOINT mishandled");
    MachineInstr *MI = MIB;
    unsigned Def = 0;
    int First = StatepointOpers(MI).getFirstGCPtrIdx();
    assert(First > 0 && "Statepoint has Defs but no GC ptr list");
    unsigned Use = (unsigned)First;
    while (Def < NumDefs) {
      if (MI->getOperand(Use).isReg())
        MI->tieOperands(Def++, Use);
      Use = StackMaps::getNextMetaArgIdx(MI, Use);
    }
  }

  // Run post-isel target hook to adjust this instruction if needed.
  if (II.hasPostISelHook())
    TLI->AdjustInstrPostInstrSelection(*MIB, Node);
}

/// EmitSpecialNode - Generate machine code for a target-independent node and
/// needed dependencies.
void InstrEmitter::
EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
                DenseMap<SDValue, Register> &VRBaseMap) {
  switch (Node->getOpcode()) {
  default:
#ifndef NDEBUG
    Node->dump();
#endif
    llvm_unreachable("This target-independent node should have been selected!");
  case ISD::EntryToken:
    llvm_unreachable("EntryToken should have been excluded from the schedule!");
  case ISD::MERGE_VALUES:
  case ISD::TokenFactor: // fall thru
    break;
  case ISD::CopyToReg: {
    Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
    SDValue SrcVal = Node->getOperand(2);
    if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
        SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
      // Instead building a COPY to that vreg destination, build an
      // IMPLICIT_DEF instruction instead.
      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
              TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
      break;
    }
    Register SrcReg;
    if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
      SrcReg = R->getReg();
    else
      SrcReg = getVR(SrcVal, VRBaseMap);

    if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
      break;

    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
            DestReg).addReg(SrcReg);
    break;
  }
  case ISD::CopyFromReg: {
    unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
    EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
    break;
  }
  case ISD::EH_LABEL:
  case ISD::ANNOTATION_LABEL: {
    unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
                       ? TargetOpcode::EH_LABEL
                       : TargetOpcode::ANNOTATION_LABEL;
    MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
    BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
            TII->get(Opc)).addSym(S);
    break;
  }

  case ISD::LIFETIME_START:
  case ISD::LIFETIME_END: {
    unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
                         ? TargetOpcode::LIFETIME_START
                         : TargetOpcode::LIFETIME_END;
    auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
    .addFrameIndex(FI->getIndex());
    break;
  }

  case ISD::PSEUDO_PROBE: {
    unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
    auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
    auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
    auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();

    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
        .addImm(Guid)
        .addImm(Index)
        .addImm((uint8_t)PseudoProbeType::Block)
        .addImm(Attr);
    break;
  }

  case ISD::INLINEASM:
  case ISD::INLINEASM_BR: {
    unsigned NumOps = Node->getNumOperands();
    if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
      --NumOps;  // Ignore the glue operand.

    // Create the inline asm machine instruction.
    unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
                          ? TargetOpcode::INLINEASM_BR
                          : TargetOpcode::INLINEASM;
    MachineInstrBuilder MIB =
        BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));

    // Add the asm string as an external symbol operand.
    SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
    const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
    MIB.addExternalSymbol(AsmStr);

    // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
    // bits.
    int64_t ExtraInfo =
      cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
                          getZExtValue();
    MIB.addImm(ExtraInfo);

    // Remember to operand index of the group flags.
    SmallVector<unsigned, 8> GroupIdx;

    // Remember registers that are part of early-clobber defs.
    SmallVector<unsigned, 8> ECRegs;

    // Add all of the operand registers to the instruction.
    for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
      unsigned Flags =
        cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
      const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);

      GroupIdx.push_back(MIB->getNumOperands());
      MIB.addImm(Flags);
      ++i;  // Skip the ID value.

      switch (InlineAsm::getKind(Flags)) {
      default: llvm_unreachable("Bad flags!");
        case InlineAsm::Kind_RegDef:
        for (unsigned j = 0; j != NumVals; ++j, ++i) {
          unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
          // FIXME: Add dead flags for physical and virtual registers defined.
          // For now, mark physical register defs as implicit to help fast
          // regalloc. This makes inline asm look a lot like calls.
          MIB.addReg(Reg,
                     RegState::Define |
                         getImplRegState(Register::isPhysicalRegister(Reg)));
        }
        break;
      case InlineAsm::Kind_RegDefEarlyClobber:
      case InlineAsm::Kind_Clobber:
        for (unsigned j = 0; j != NumVals; ++j, ++i) {
          unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
          MIB.addReg(Reg,
                     RegState::Define | RegState::EarlyClobber |
                         getImplRegState(Register::isPhysicalRegister(Reg)));
          ECRegs.push_back(Reg);
        }
        break;
      case InlineAsm::Kind_RegUse:  // Use of register.
      case InlineAsm::Kind_Imm:  // Immediate.
      case InlineAsm::Kind_Mem:  // Addressing mode.
        // The addressing mode has been selected, just add all of the
        // operands to the machine instruction.
        for (unsigned j = 0; j != NumVals; ++j, ++i)
          AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
                     /*IsDebug=*/false, IsClone, IsCloned);

        // Manually set isTied bits.
        if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
          unsigned DefGroup = 0;
          if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
            unsigned DefIdx = GroupIdx[DefGroup] + 1;
            unsigned UseIdx = GroupIdx.back() + 1;
            for (unsigned j = 0; j != NumVals; ++j)
              MIB->tieOperands(DefIdx + j, UseIdx + j);
          }
        }
        break;
      }
    }

    // GCC inline assembly allows input operands to also be early-clobber
    // output operands (so long as the operand is written only after it's
    // used), but this does not match the semantics of our early-clobber flag.
    // If an early-clobber operand register is also an input operand register,
    // then remove the early-clobber flag.
    for (unsigned Reg : ECRegs) {
      if (MIB->readsRegister(Reg, TRI)) {
        MachineOperand *MO =
            MIB->findRegisterDefOperand(Reg, false, false, TRI);
        assert(MO && "No def operand for clobbered register?");
        MO->setIsEarlyClobber(false);
      }
    }

    // Get the mdnode from the asm if it exists and add it to the instruction.
    SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
    const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
    if (MD)
      MIB.addMetadata(MD);

    MBB->insert(InsertPos, MIB);
    break;
  }
  }
}

/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
/// at the given position in the given block.
InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
                           MachineBasicBlock::iterator insertpos,
                           bool UseInstrRefDebugInfo)
    : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
      TII(MF->getSubtarget().getInstrInfo()),
      TRI(MF->getSubtarget().getRegisterInfo()),
      TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
      InsertPos(insertpos) {
  EmitDebugInstrRefs = UseInstrRefDebugInfo;
}