aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/MachineVerifier.cpp
blob: c9d3e473062b165bda322720b1a989f75536ffee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Pass to verify generated machine code. The following is checked:
//
// Operand counts: All explicit operands must be present.
//
// Register classes: All physical and virtual register operands must be
// compatible with the register class required by the instruction descriptor.
//
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
// The machine code verifier is enabled with the command-line option
// -verify-machineinstrs.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalCalc.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>

using namespace llvm;

namespace {

  struct MachineVerifier {
    MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}

    unsigned verify(const MachineFunction &MF);

    Pass *const PASS;
    const char *Banner;
    const MachineFunction *MF;
    const TargetMachine *TM;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineRegisterInfo *MRI;

    unsigned foundErrors;

    // Avoid querying the MachineFunctionProperties for each operand.
    bool isFunctionRegBankSelected;
    bool isFunctionSelected;
    bool isFunctionTracksDebugUserValues;

    using RegVector = SmallVector<Register, 16>;
    using RegMaskVector = SmallVector<const uint32_t *, 4>;
    using RegSet = DenseSet<Register>;
    using RegMap = DenseMap<Register, const MachineInstr *>;
    using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;

    const MachineInstr *FirstNonPHI;
    const MachineInstr *FirstTerminator;
    BlockSet FunctionBlocks;

    BitVector regsReserved;
    RegSet regsLive;
    RegVector regsDefined, regsDead, regsKilled;
    RegMaskVector regMasks;

    SlotIndex lastIndex;

    // Add Reg and any sub-registers to RV
    void addRegWithSubRegs(RegVector &RV, Register Reg) {
      RV.push_back(Reg);
      if (Reg.isPhysical())
        append_range(RV, TRI->subregs(Reg.asMCReg()));
    }

    struct BBInfo {
      // Is this MBB reachable from the MF entry point?
      bool reachable = false;

      // Vregs that must be live in because they are used without being
      // defined. Map value is the user. vregsLiveIn doesn't include regs
      // that only are used by PHI nodes.
      RegMap vregsLiveIn;

      // Regs killed in MBB. They may be defined again, and will then be in both
      // regsKilled and regsLiveOut.
      RegSet regsKilled;

      // Regs defined in MBB and live out. Note that vregs passing through may
      // be live out without being mentioned here.
      RegSet regsLiveOut;

      // Vregs that pass through MBB untouched. This set is disjoint from
      // regsKilled and regsLiveOut.
      RegSet vregsPassed;

      // Vregs that must pass through MBB because they are needed by a successor
      // block. This set is disjoint from regsLiveOut.
      RegSet vregsRequired;

      // Set versions of block's predecessor and successor lists.
      BlockSet Preds, Succs;

      BBInfo() = default;

      // Add register to vregsRequired if it belongs there. Return true if
      // anything changed.
      bool addRequired(Register Reg) {
        if (!Reg.isVirtual())
          return false;
        if (regsLiveOut.count(Reg))
          return false;
        return vregsRequired.insert(Reg).second;
      }

      // Same for a full set.
      bool addRequired(const RegSet &RS) {
        bool Changed = false;
        for (Register Reg : RS)
          Changed |= addRequired(Reg);
        return Changed;
      }

      // Same for a full map.
      bool addRequired(const RegMap &RM) {
        bool Changed = false;
        for (const auto &I : RM)
          Changed |= addRequired(I.first);
        return Changed;
      }

      // Live-out registers are either in regsLiveOut or vregsPassed.
      bool isLiveOut(Register Reg) const {
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
      }
    };

    // Extra register info per MBB.
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;

    bool isReserved(Register Reg) {
      return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
    }

    bool isAllocatable(Register Reg) const {
      return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
             !regsReserved.test(Reg.id());
    }

    // Analysis information if available
    LiveVariables *LiveVars;
    LiveIntervals *LiveInts;
    LiveStacks *LiveStks;
    SlotIndexes *Indexes;

    void visitMachineFunctionBefore();
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    void visitMachineBundleBefore(const MachineInstr *MI);

    /// Verify that all of \p MI's virtual register operands are scalars.
    /// \returns True if all virtual register operands are scalar. False
    /// otherwise.
    bool verifyAllRegOpsScalar(const MachineInstr &MI,
                               const MachineRegisterInfo &MRI);
    bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
    void verifyPreISelGenericInstruction(const MachineInstr *MI);
    void visitMachineInstrBefore(const MachineInstr *MI);
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    void visitMachineBundleAfter(const MachineInstr *MI);
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    void visitMachineFunctionAfter();

    void report(const char *msg, const MachineFunction *MF);
    void report(const char *msg, const MachineBasicBlock *MBB);
    void report(const char *msg, const MachineInstr *MI);
    void report(const char *msg, const MachineOperand *MO, unsigned MONum,
                LLT MOVRegType = LLT{});
    void report(const Twine &Msg, const MachineInstr *MI);

    void report_context(const LiveInterval &LI) const;
    void report_context(const LiveRange &LR, Register VRegUnit,
                        LaneBitmask LaneMask) const;
    void report_context(const LiveRange::Segment &S) const;
    void report_context(const VNInfo &VNI) const;
    void report_context(SlotIndex Pos) const;
    void report_context(MCPhysReg PhysReg) const;
    void report_context_liverange(const LiveRange &LR) const;
    void report_context_lanemask(LaneBitmask LaneMask) const;
    void report_context_vreg(Register VReg) const;
    void report_context_vreg_regunit(Register VRegOrUnit) const;

    void verifyInlineAsm(const MachineInstr *MI);

    void checkLiveness(const MachineOperand *MO, unsigned MONum);
    void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
                            SlotIndex UseIdx, const LiveRange &LR,
                            Register VRegOrUnit,
                            LaneBitmask LaneMask = LaneBitmask::getNone());
    void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
                            SlotIndex DefIdx, const LiveRange &LR,
                            Register VRegOrUnit, bool SubRangeCheck = false,
                            LaneBitmask LaneMask = LaneBitmask::getNone());

    void markReachable(const MachineBasicBlock *MBB);
    void calcRegsPassed();
    void checkPHIOps(const MachineBasicBlock &MBB);

    void calcRegsRequired();
    void verifyLiveVariables();
    void verifyLiveIntervals();
    void verifyLiveInterval(const LiveInterval&);
    void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
                              LaneBitmask);
    void verifyLiveRangeSegment(const LiveRange &,
                                const LiveRange::const_iterator I, Register,
                                LaneBitmask);
    void verifyLiveRange(const LiveRange &, Register,
                         LaneBitmask LaneMask = LaneBitmask::getNone());

    void verifyStackFrame();

    void verifySlotIndexes() const;
    void verifyProperties(const MachineFunction &MF);
  };

  struct MachineVerifierPass : public MachineFunctionPass {
    static char ID; // Pass ID, replacement for typeid

    const std::string Banner;

    MachineVerifierPass(std::string banner = std::string())
      : MachineFunctionPass(ID), Banner(std::move(banner)) {
        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
      }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      // Skip functions that have known verification problems.
      // FIXME: Remove this mechanism when all problematic passes have been
      // fixed.
      if (MF.getProperties().hasProperty(
              MachineFunctionProperties::Property::FailsVerification))
        return false;

      unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
      if (FoundErrors)
        report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
      return false;
    }
  };

} // end anonymous namespace

char MachineVerifierPass::ID = 0;

INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
                "Verify generated machine code", false, false)

FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
  return new MachineVerifierPass(Banner);
}

void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
                                 const std::string &Banner,
                                 const MachineFunction &MF) {
  // TODO: Use MFAM after porting below analyses.
  // LiveVariables *LiveVars;
  // LiveIntervals *LiveInts;
  // LiveStacks *LiveStks;
  // SlotIndexes *Indexes;
  unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
  if (FoundErrors)
    report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
}

bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
    const {
  MachineFunction &MF = const_cast<MachineFunction&>(*this);
  unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
  if (AbortOnErrors && FoundErrors)
    report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
  return FoundErrors == 0;
}

void MachineVerifier::verifySlotIndexes() const {
  if (Indexes == nullptr)
    return;

  // Ensure the IdxMBB list is sorted by slot indexes.
  SlotIndex Last;
  for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
       E = Indexes->MBBIndexEnd(); I != E; ++I) {
    assert(!Last.isValid() || I->first > Last);
    Last = I->first;
  }
}

void MachineVerifier::verifyProperties(const MachineFunction &MF) {
  // If a pass has introduced virtual registers without clearing the
  // NoVRegs property (or set it without allocating the vregs)
  // then report an error.
  if (MF.getProperties().hasProperty(
          MachineFunctionProperties::Property::NoVRegs) &&
      MRI->getNumVirtRegs())
    report("Function has NoVRegs property but there are VReg operands", &MF);
}

unsigned MachineVerifier::verify(const MachineFunction &MF) {
  foundErrors = 0;

  this->MF = &MF;
  TM = &MF.getTarget();
  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();

  const bool isFunctionFailedISel = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::FailedISel);

  // If we're mid-GlobalISel and we already triggered the fallback path then
  // it's expected that the MIR is somewhat broken but that's ok since we'll
  // reset it and clear the FailedISel attribute in ResetMachineFunctions.
  if (isFunctionFailedISel)
    return foundErrors;

  isFunctionRegBankSelected = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::RegBankSelected);
  isFunctionSelected = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::Selected);
  isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::TracksDebugUserValues);

  LiveVars = nullptr;
  LiveInts = nullptr;
  LiveStks = nullptr;
  Indexes = nullptr;
  if (PASS) {
    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    // We don't want to verify LiveVariables if LiveIntervals is available.
    if (!LiveInts)
      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
  }

  verifySlotIndexes();

  verifyProperties(MF);

  visitMachineFunctionBefore();
  for (const MachineBasicBlock &MBB : MF) {
    visitMachineBasicBlockBefore(&MBB);
    // Keep track of the current bundle header.
    const MachineInstr *CurBundle = nullptr;
    // Do we expect the next instruction to be part of the same bundle?
    bool InBundle = false;

    for (const MachineInstr &MI : MBB.instrs()) {
      if (MI.getParent() != &MBB) {
        report("Bad instruction parent pointer", &MBB);
        errs() << "Instruction: " << MI;
        continue;
      }

      // Check for consistent bundle flags.
      if (InBundle && !MI.isBundledWithPred())
        report("Missing BundledPred flag, "
               "BundledSucc was set on predecessor",
               &MI);
      if (!InBundle && MI.isBundledWithPred())
        report("BundledPred flag is set, "
               "but BundledSucc not set on predecessor",
               &MI);

      // Is this a bundle header?
      if (!MI.isInsideBundle()) {
        if (CurBundle)
          visitMachineBundleAfter(CurBundle);
        CurBundle = &MI;
        visitMachineBundleBefore(CurBundle);
      } else if (!CurBundle)
        report("No bundle header", &MI);
      visitMachineInstrBefore(&MI);
      for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
        const MachineOperand &Op = MI.getOperand(I);
        if (Op.getParent() != &MI) {
          // Make sure to use correct addOperand / RemoveOperand / ChangeTo
          // functions when replacing operands of a MachineInstr.
          report("Instruction has operand with wrong parent set", &MI);
        }

        visitMachineOperand(&Op, I);
      }

      // Was this the last bundled instruction?
      InBundle = MI.isBundledWithSucc();
    }
    if (CurBundle)
      visitMachineBundleAfter(CurBundle);
    if (InBundle)
      report("BundledSucc flag set on last instruction in block", &MBB.back());
    visitMachineBasicBlockAfter(&MBB);
  }
  visitMachineFunctionAfter();

  // Clean up.
  regsLive.clear();
  regsDefined.clear();
  regsDead.clear();
  regsKilled.clear();
  regMasks.clear();
  MBBInfoMap.clear();

  return foundErrors;
}

void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
  assert(MF);
  errs() << '\n';
  if (!foundErrors++) {
    if (Banner)
      errs() << "# " << Banner << '\n';
    if (LiveInts != nullptr)
      LiveInts->print(errs());
    else
      MF->print(errs(), Indexes);
  }
  errs() << "*** Bad machine code: " << msg << " ***\n"
      << "- function:    " << MF->getName() << "\n";
}

void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
  assert(MBB);
  report(msg, MBB->getParent());
  errs() << "- basic block: " << printMBBReference(*MBB) << ' '
         << MBB->getName() << " (" << (const void *)MBB << ')';
  if (Indexes)
    errs() << " [" << Indexes->getMBBStartIdx(MBB)
        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
  errs() << '\n';
}

void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
  assert(MI);
  report(msg, MI->getParent());
  errs() << "- instruction: ";
  if (Indexes && Indexes->hasIndex(*MI))
    errs() << Indexes->getInstructionIndex(*MI) << '\t';
  MI->print(errs(), /*IsStandalone=*/true);
}

void MachineVerifier::report(const char *msg, const MachineOperand *MO,
                             unsigned MONum, LLT MOVRegType) {
  assert(MO);
  report(msg, MO->getParent());
  errs() << "- operand " << MONum << ":   ";
  MO->print(errs(), MOVRegType, TRI);
  errs() << "\n";
}

void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
  report(Msg.str().c_str(), MI);
}

void MachineVerifier::report_context(SlotIndex Pos) const {
  errs() << "- at:          " << Pos << '\n';
}

void MachineVerifier::report_context(const LiveInterval &LI) const {
  errs() << "- interval:    " << LI << '\n';
}

void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
                                     LaneBitmask LaneMask) const {
  report_context_liverange(LR);
  report_context_vreg_regunit(VRegUnit);
  if (LaneMask.any())
    report_context_lanemask(LaneMask);
}

void MachineVerifier::report_context(const LiveRange::Segment &S) const {
  errs() << "- segment:     " << S << '\n';
}

void MachineVerifier::report_context(const VNInfo &VNI) const {
  errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
}

void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
  errs() << "- liverange:   " << LR << '\n';
}

void MachineVerifier::report_context(MCPhysReg PReg) const {
  errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
}

void MachineVerifier::report_context_vreg(Register VReg) const {
  errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
}

void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
  if (Register::isVirtualRegister(VRegOrUnit)) {
    report_context_vreg(VRegOrUnit);
  } else {
    errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
  }
}

void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
  errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
}

void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
  BBInfo &MInfo = MBBInfoMap[MBB];
  if (!MInfo.reachable) {
    MInfo.reachable = true;
    for (const MachineBasicBlock *Succ : MBB->successors())
      markReachable(Succ);
  }
}

void MachineVerifier::visitMachineFunctionBefore() {
  lastIndex = SlotIndex();
  regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
                                           : TRI->getReservedRegs(*MF);

  if (!MF->empty())
    markReachable(&MF->front());

  // Build a set of the basic blocks in the function.
  FunctionBlocks.clear();
  for (const auto &MBB : *MF) {
    FunctionBlocks.insert(&MBB);
    BBInfo &MInfo = MBBInfoMap[&MBB];

    MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
    if (MInfo.Preds.size() != MBB.pred_size())
      report("MBB has duplicate entries in its predecessor list.", &MBB);

    MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
    if (MInfo.Succs.size() != MBB.succ_size())
      report("MBB has duplicate entries in its successor list.", &MBB);
  }

  // Check that the register use lists are sane.
  MRI->verifyUseLists();

  if (!MF->empty())
    verifyStackFrame();
}

void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
  FirstTerminator = nullptr;
  FirstNonPHI = nullptr;

  if (!MF->getProperties().hasProperty(
      MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
    // If this block has allocatable physical registers live-in, check that
    // it is an entry block or landing pad.
    for (const auto &LI : MBB->liveins()) {
      if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
          MBB->getIterator() != MBB->getParent()->begin()) {
        report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
        report_context(LI.PhysReg);
      }
    }
  }

  // Count the number of landing pad successors.
  SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
  for (const auto *succ : MBB->successors()) {
    if (succ->isEHPad())
      LandingPadSuccs.insert(succ);
    if (!FunctionBlocks.count(succ))
      report("MBB has successor that isn't part of the function.", MBB);
    if (!MBBInfoMap[succ].Preds.count(MBB)) {
      report("Inconsistent CFG", MBB);
      errs() << "MBB is not in the predecessor list of the successor "
             << printMBBReference(*succ) << ".\n";
    }
  }

  // Check the predecessor list.
  for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    if (!FunctionBlocks.count(Pred))
      report("MBB has predecessor that isn't part of the function.", MBB);
    if (!MBBInfoMap[Pred].Succs.count(MBB)) {
      report("Inconsistent CFG", MBB);
      errs() << "MBB is not in the successor list of the predecessor "
             << printMBBReference(*Pred) << ".\n";
    }
  }

  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
  const BasicBlock *BB = MBB->getBasicBlock();
  const Function &F = MF->getFunction();
  if (LandingPadSuccs.size() > 1 &&
      !(AsmInfo &&
        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
        BB && isa<SwitchInst>(BB->getTerminator())) &&
      !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
    report("MBB has more than one landing pad successor", MBB);

  // Call analyzeBranch. If it succeeds, there several more conditions to check.
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
                          Cond)) {
    // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
    // check whether its answers match up with reality.
    if (!TBB && !FBB) {
      // Block falls through to its successor.
      if (!MBB->empty() && MBB->back().isBarrier() &&
          !TII->isPredicated(MBB->back())) {
        report("MBB exits via unconditional fall-through but ends with a "
               "barrier instruction!", MBB);
      }
      if (!Cond.empty()) {
        report("MBB exits via unconditional fall-through but has a condition!",
               MBB);
      }
    } else if (TBB && !FBB && Cond.empty()) {
      // Block unconditionally branches somewhere.
      if (MBB->empty()) {
        report("MBB exits via unconditional branch but doesn't contain "
               "any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via unconditional branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via unconditional branch but the branch isn't a "
               "terminator instruction!", MBB);
      }
    } else if (TBB && !FBB && !Cond.empty()) {
      // Block conditionally branches somewhere, otherwise falls through.
      if (MBB->empty()) {
        report("MBB exits via conditional branch/fall-through but doesn't "
               "contain any instructions!", MBB);
      } else if (MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/fall-through but ends with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/fall-through but the branch "
               "isn't a terminator instruction!", MBB);
      }
    } else if (TBB && FBB) {
      // Block conditionally branches somewhere, otherwise branches
      // somewhere else.
      if (MBB->empty()) {
        report("MBB exits via conditional branch/branch but doesn't "
               "contain any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/branch but the branch "
               "isn't a terminator instruction!", MBB);
      }
      if (Cond.empty()) {
        report("MBB exits via conditional branch/branch but there's no "
               "condition!", MBB);
      }
    } else {
      report("analyzeBranch returned invalid data!", MBB);
    }

    // Now check that the successors match up with the answers reported by
    // analyzeBranch.
    if (TBB && !MBB->isSuccessor(TBB))
      report("MBB exits via jump or conditional branch, but its target isn't a "
             "CFG successor!",
             MBB);
    if (FBB && !MBB->isSuccessor(FBB))
      report("MBB exits via conditional branch, but its target isn't a CFG "
             "successor!",
             MBB);

    // There might be a fallthrough to the next block if there's either no
    // unconditional true branch, or if there's a condition, and one of the
    // branches is missing.
    bool Fallthrough = !TBB || (!Cond.empty() && !FBB);

    // A conditional fallthrough must be an actual CFG successor, not
    // unreachable. (Conversely, an unconditional fallthrough might not really
    // be a successor, because the block might end in unreachable.)
    if (!Cond.empty() && !FBB) {
      MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
      if (MBBI == MF->end()) {
        report("MBB conditionally falls through out of function!", MBB);
      } else if (!MBB->isSuccessor(&*MBBI))
        report("MBB exits via conditional branch/fall-through but the CFG "
               "successors don't match the actual successors!",
               MBB);
    }

    // Verify that there aren't any extra un-accounted-for successors.
    for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
      // If this successor is one of the branch targets, it's okay.
      if (SuccMBB == TBB || SuccMBB == FBB)
        continue;
      // If we might have a fallthrough, and the successor is the fallthrough
      // block, that's also ok.
      if (Fallthrough && SuccMBB == MBB->getNextNode())
        continue;
      // Also accept successors which are for exception-handling or might be
      // inlineasm_br targets.
      if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
        continue;
      report("MBB has unexpected successors which are not branch targets, "
             "fallthrough, EHPads, or inlineasm_br targets.",
             MBB);
    }
  }

  regsLive.clear();
  if (MRI->tracksLiveness()) {
    for (const auto &LI : MBB->liveins()) {
      if (!Register::isPhysicalRegister(LI.PhysReg)) {
        report("MBB live-in list contains non-physical register", MBB);
        continue;
      }
      for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
        regsLive.insert(SubReg);
    }
  }

  const MachineFrameInfo &MFI = MF->getFrameInfo();
  BitVector PR = MFI.getPristineRegs(*MF);
  for (unsigned I : PR.set_bits()) {
    for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
      regsLive.insert(SubReg);
  }

  regsKilled.clear();
  regsDefined.clear();

  if (Indexes)
    lastIndex = Indexes->getMBBStartIdx(MBB);
}

// This function gets called for all bundle headers, including normal
// stand-alone unbundled instructions.
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
  if (Indexes && Indexes->hasIndex(*MI)) {
    SlotIndex idx = Indexes->getInstructionIndex(*MI);
    if (!(idx > lastIndex)) {
      report("Instruction index out of order", MI);
      errs() << "Last instruction was at " << lastIndex << '\n';
    }
    lastIndex = idx;
  }

  // Ensure non-terminators don't follow terminators.
  if (MI->isTerminator()) {
    if (!FirstTerminator)
      FirstTerminator = MI;
  } else if (FirstTerminator) {
    report("Non-terminator instruction after the first terminator", MI);
    errs() << "First terminator was:\t" << *FirstTerminator;
  }
}

// The operands on an INLINEASM instruction must follow a template.
// Verify that the flag operands make sense.
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
  // The first two operands on INLINEASM are the asm string and global flags.
  if (MI->getNumOperands() < 2) {
    report("Too few operands on inline asm", MI);
    return;
  }
  if (!MI->getOperand(0).isSymbol())
    report("Asm string must be an external symbol", MI);
  if (!MI->getOperand(1).isImm())
    report("Asm flags must be an immediate", MI);
  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
  // and Extra_IsConvergent = 32.
  if (!isUInt<6>(MI->getOperand(1).getImm()))
    report("Unknown asm flags", &MI->getOperand(1), 1);

  static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");

  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
  unsigned NumOps;
  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
    const MachineOperand &MO = MI->getOperand(OpNo);
    // There may be implicit ops after the fixed operands.
    if (!MO.isImm())
      break;
    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
  }

  if (OpNo > MI->getNumOperands())
    report("Missing operands in last group", MI);

  // An optional MDNode follows the groups.
  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
    ++OpNo;

  // All trailing operands must be implicit registers.
  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
    const MachineOperand &MO = MI->getOperand(OpNo);
    if (!MO.isReg() || !MO.isImplicit())
      report("Expected implicit register after groups", &MO, OpNo);
  }
}

bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
                                            const MachineRegisterInfo &MRI) {
  if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
        if (!Op.isReg())
          return false;
        const auto Reg = Op.getReg();
        if (Reg.isPhysical())
          return false;
        return !MRI.getType(Reg).isScalar();
      }))
    return true;
  report("All register operands must have scalar types", &MI);
  return false;
}

/// Check that types are consistent when two operands need to have the same
/// number of vector elements.
/// \return true if the types are valid.
bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
                                               const MachineInstr *MI) {
  if (Ty0.isVector() != Ty1.isVector()) {
    report("operand types must be all-vector or all-scalar", MI);
    // Generally we try to report as many issues as possible at once, but in
    // this case it's not clear what should we be comparing the size of the
    // scalar with: the size of the whole vector or its lane. Instead of
    // making an arbitrary choice and emitting not so helpful message, let's
    // avoid the extra noise and stop here.
    return false;
  }

  if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
    report("operand types must preserve number of vector elements", MI);
    return false;
  }

  return true;
}

void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
  if (isFunctionSelected)
    report("Unexpected generic instruction in a Selected function", MI);

  const MCInstrDesc &MCID = MI->getDesc();
  unsigned NumOps = MI->getNumOperands();

  // Branches must reference a basic block if they are not indirect
  if (MI->isBranch() && !MI->isIndirectBranch()) {
    bool HasMBB = false;
    for (const MachineOperand &Op : MI->operands()) {
      if (Op.isMBB()) {
        HasMBB = true;
        break;
      }
    }

    if (!HasMBB) {
      report("Branch instruction is missing a basic block operand or "
             "isIndirectBranch property",
             MI);
    }
  }

  // Check types.
  SmallVector<LLT, 4> Types;
  for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
       I != E; ++I) {
    if (!MCID.OpInfo[I].isGenericType())
      continue;
    // Generic instructions specify type equality constraints between some of
    // their operands. Make sure these are consistent.
    size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
    Types.resize(std::max(TypeIdx + 1, Types.size()));

    const MachineOperand *MO = &MI->getOperand(I);
    if (!MO->isReg()) {
      report("generic instruction must use register operands", MI);
      continue;
    }

    LLT OpTy = MRI->getType(MO->getReg());
    // Don't report a type mismatch if there is no actual mismatch, only a
    // type missing, to reduce noise:
    if (OpTy.isValid()) {
      // Only the first valid type for a type index will be printed: don't
      // overwrite it later so it's always clear which type was expected:
      if (!Types[TypeIdx].isValid())
        Types[TypeIdx] = OpTy;
      else if (Types[TypeIdx] != OpTy)
        report("Type mismatch in generic instruction", MO, I, OpTy);
    } else {
      // Generic instructions must have types attached to their operands.
      report("Generic instruction is missing a virtual register type", MO, I);
    }
  }

  // Generic opcodes must not have physical register operands.
  for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
    const MachineOperand *MO = &MI->getOperand(I);
    if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
      report("Generic instruction cannot have physical register", MO, I);
  }

  // Avoid out of bounds in checks below. This was already reported earlier.
  if (MI->getNumOperands() < MCID.getNumOperands())
    return;

  StringRef ErrorInfo;
  if (!TII->verifyInstruction(*MI, ErrorInfo))
    report(ErrorInfo.data(), MI);

  // Verify properties of various specific instruction types
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
  case TargetOpcode::G_ASSERT_SEXT:
  case TargetOpcode::G_ASSERT_ZEXT: {
    std::string OpcName =
        Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
    if (!MI->getOperand(2).isImm()) {
      report(Twine(OpcName, " expects an immediate operand #2"), MI);
      break;
    }

    Register Dst = MI->getOperand(0).getReg();
    Register Src = MI->getOperand(1).getReg();
    LLT SrcTy = MRI->getType(Src);
    int64_t Imm = MI->getOperand(2).getImm();
    if (Imm <= 0) {
      report(Twine(OpcName, " size must be >= 1"), MI);
      break;
    }

    if (Imm >= SrcTy.getScalarSizeInBits()) {
      report(Twine(OpcName, " size must be less than source bit width"), MI);
      break;
    }

    if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
      report(
          Twine(OpcName, " source and destination register banks must match"),
          MI);
      break;
    }

    if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
      report(
          Twine(OpcName, " source and destination register classes must match"),
          MI);

    break;
  }

  case TargetOpcode::G_CONSTANT:
  case TargetOpcode::G_FCONSTANT: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (DstTy.isVector())
      report("Instruction cannot use a vector result type", MI);

    if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
      if (!MI->getOperand(1).isCImm()) {
        report("G_CONSTANT operand must be cimm", MI);
        break;
      }

      const ConstantInt *CI = MI->getOperand(1).getCImm();
      if (CI->getBitWidth() != DstTy.getSizeInBits())
        report("inconsistent constant size", MI);
    } else {
      if (!MI->getOperand(1).isFPImm()) {
        report("G_FCONSTANT operand must be fpimm", MI);
        break;
      }
      const ConstantFP *CF = MI->getOperand(1).getFPImm();

      if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
          DstTy.getSizeInBits()) {
        report("inconsistent constant size", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_LOAD:
  case TargetOpcode::G_STORE:
  case TargetOpcode::G_ZEXTLOAD:
  case TargetOpcode::G_SEXTLOAD: {
    LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
    if (!PtrTy.isPointer())
      report("Generic memory instruction must access a pointer", MI);

    // Generic loads and stores must have a single MachineMemOperand
    // describing that access.
    if (!MI->hasOneMemOperand()) {
      report("Generic instruction accessing memory must have one mem operand",
             MI);
    } else {
      const MachineMemOperand &MMO = **MI->memoperands_begin();
      if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
          MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
        if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
          report("Generic extload must have a narrower memory type", MI);
      } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
        if (MMO.getSize() > ValTy.getSizeInBytes())
          report("load memory size cannot exceed result size", MI);
      } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
        if (ValTy.getSizeInBytes() < MMO.getSize())
          report("store memory size cannot exceed value size", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_PHI: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
                                    [this, &DstTy](const MachineOperand &MO) {
                                      if (!MO.isReg())
                                        return true;
                                      LLT Ty = MRI->getType(MO.getReg());
                                      if (!Ty.isValid() || (Ty != DstTy))
                                        return false;
                                      return true;
                                    }))
      report("Generic Instruction G_PHI has operands with incompatible/missing "
             "types",
             MI);
    break;
  }
  case TargetOpcode::G_BITCAST: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    if (SrcTy.isPointer() != DstTy.isPointer())
      report("bitcast cannot convert between pointers and other types", MI);

    if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
      report("bitcast sizes must match", MI);

    if (SrcTy == DstTy)
      report("bitcast must change the type", MI);

    break;
  }
  case TargetOpcode::G_INTTOPTR:
  case TargetOpcode::G_PTRTOINT:
  case TargetOpcode::G_ADDRSPACE_CAST: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    verifyVectorElementMatch(DstTy, SrcTy, MI);

    DstTy = DstTy.getScalarType();
    SrcTy = SrcTy.getScalarType();

    if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
      if (!DstTy.isPointer())
        report("inttoptr result type must be a pointer", MI);
      if (SrcTy.isPointer())
        report("inttoptr source type must not be a pointer", MI);
    } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
      if (!SrcTy.isPointer())
        report("ptrtoint source type must be a pointer", MI);
      if (DstTy.isPointer())
        report("ptrtoint result type must not be a pointer", MI);
    } else {
      assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
      if (!SrcTy.isPointer() || !DstTy.isPointer())
        report("addrspacecast types must be pointers", MI);
      else {
        if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
          report("addrspacecast must convert different address spaces", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_PTR_ADD: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
    LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
    if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
      break;

    if (!PtrTy.getScalarType().isPointer())
      report("gep first operand must be a pointer", MI);

    if (OffsetTy.getScalarType().isPointer())
      report("gep offset operand must not be a pointer", MI);

    // TODO: Is the offset allowed to be a scalar with a vector?
    break;
  }
  case TargetOpcode::G_PTRMASK: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
      break;

    if (!DstTy.getScalarType().isPointer())
      report("ptrmask result type must be a pointer", MI);

    if (!MaskTy.getScalarType().isScalar())
      report("ptrmask mask type must be an integer", MI);

    verifyVectorElementMatch(DstTy, MaskTy, MI);
    break;
  }
  case TargetOpcode::G_SEXT:
  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_ANYEXT:
  case TargetOpcode::G_TRUNC:
  case TargetOpcode::G_FPEXT:
  case TargetOpcode::G_FPTRUNC: {
    // Number of operands and presense of types is already checked (and
    // reported in case of any issues), so no need to report them again. As
    // we're trying to report as many issues as possible at once, however, the
    // instructions aren't guaranteed to have the right number of operands or
    // types attached to them at this point
    assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    LLT DstElTy = DstTy.getScalarType();
    LLT SrcElTy = SrcTy.getScalarType();
    if (DstElTy.isPointer() || SrcElTy.isPointer())
      report("Generic extend/truncate can not operate on pointers", MI);

    verifyVectorElementMatch(DstTy, SrcTy, MI);

    unsigned DstSize = DstElTy.getSizeInBits();
    unsigned SrcSize = SrcElTy.getSizeInBits();
    switch (MI->getOpcode()) {
    default:
      if (DstSize <= SrcSize)
        report("Generic extend has destination type no larger than source", MI);
      break;
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_FPTRUNC:
      if (DstSize >= SrcSize)
        report("Generic truncate has destination type no smaller than source",
               MI);
      break;
    }
    break;
  }
  case TargetOpcode::G_SELECT: {
    LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
    LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
    if (!SelTy.isValid() || !CondTy.isValid())
      break;

    // Scalar condition select on a vector is valid.
    if (CondTy.isVector())
      verifyVectorElementMatch(SelTy, CondTy, MI);
    break;
  }
  case TargetOpcode::G_MERGE_VALUES: {
    // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
    // e.g. s2N = MERGE sN, sN
    // Merging multiple scalars into a vector is not allowed, should use
    // G_BUILD_VECTOR for that.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (DstTy.isVector() || SrcTy.isVector())
      report("G_MERGE_VALUES cannot operate on vectors", MI);

    const unsigned NumOps = MI->getNumOperands();
    if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
      report("G_MERGE_VALUES result size is inconsistent", MI);

    for (unsigned I = 2; I != NumOps; ++I) {
      if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
        report("G_MERGE_VALUES source types do not match", MI);
    }

    break;
  }
  case TargetOpcode::G_UNMERGE_VALUES: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
    // For now G_UNMERGE can split vectors.
    for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
      if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
        report("G_UNMERGE_VALUES destination types do not match", MI);
    }
    if (SrcTy.getSizeInBits() !=
        (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
      report("G_UNMERGE_VALUES source operand does not cover dest operands",
             MI);
    }
    break;
  }
  case TargetOpcode::G_BUILD_VECTOR: {
    // Source types must be scalars, dest type a vector. Total size of scalars
    // must match the dest vector size.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || SrcEltTy.isVector()) {
      report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
      break;
    }

    if (DstTy.getElementType() != SrcEltTy)
      report("G_BUILD_VECTOR result element type must match source type", MI);

    if (DstTy.getNumElements() != MI->getNumOperands() - 1)
      report("G_BUILD_VECTOR must have an operand for each elemement", MI);

    for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
      if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
        report("G_BUILD_VECTOR source operand types are not homogeneous", MI);

    break;
  }
  case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
    // Source types must be scalars, dest type a vector. Scalar types must be
    // larger than the dest vector elt type, as this is a truncating operation.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || SrcEltTy.isVector())
      report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
             MI);
    for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
      if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
        report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
               MI);
    if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
      report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
             "dest elt type",
             MI);
    break;
  }
  case TargetOpcode::G_CONCAT_VECTORS: {
    // Source types should be vectors, and total size should match the dest
    // vector size.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || !SrcTy.isVector())
      report("G_CONCAT_VECTOR requires vector source and destination operands",
             MI);

    if (MI->getNumOperands() < 3)
      report("G_CONCAT_VECTOR requires at least 2 source operands", MI);

    for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
      if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
        report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
    if (DstTy.getNumElements() !=
        SrcTy.getNumElements() * (MI->getNumOperands() - 1))
      report("G_CONCAT_VECTOR num dest and source elements should match", MI);
    break;
  }
  case TargetOpcode::G_ICMP:
  case TargetOpcode::G_FCMP: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());

    if ((DstTy.isVector() != SrcTy.isVector()) ||
        (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
      report("Generic vector icmp/fcmp must preserve number of lanes", MI);

    break;
  }
  case TargetOpcode::G_EXTRACT: {
    const MachineOperand &SrcOp = MI->getOperand(1);
    if (!SrcOp.isReg()) {
      report("extract source must be a register", MI);
      break;
    }

    const MachineOperand &OffsetOp = MI->getOperand(2);
    if (!OffsetOp.isImm()) {
      report("extract offset must be a constant", MI);
      break;
    }

    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
    if (SrcSize == DstSize)
      report("extract source must be larger than result", MI);

    if (DstSize + OffsetOp.getImm() > SrcSize)
      report("extract reads past end of register", MI);
    break;
  }
  case TargetOpcode::G_INSERT: {
    const MachineOperand &SrcOp = MI->getOperand(2);
    if (!SrcOp.isReg()) {
      report("insert source must be a register", MI);
      break;
    }

    const MachineOperand &OffsetOp = MI->getOperand(3);
    if (!OffsetOp.isImm()) {
      report("insert offset must be a constant", MI);
      break;
    }

    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();

    if (DstSize <= SrcSize)
      report("inserted size must be smaller than total register", MI);

    if (SrcSize + OffsetOp.getImm() > DstSize)
      report("insert writes past end of register", MI);

    break;
  }
  case TargetOpcode::G_JUMP_TABLE: {
    if (!MI->getOperand(1).isJTI())
      report("G_JUMP_TABLE source operand must be a jump table index", MI);
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstTy.isPointer())
      report("G_JUMP_TABLE dest operand must have a pointer type", MI);
    break;
  }
  case TargetOpcode::G_BRJT: {
    if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
      report("G_BRJT src operand 0 must be a pointer type", MI);

    if (!MI->getOperand(1).isJTI())
      report("G_BRJT src operand 1 must be a jump table index", MI);

    const auto &IdxOp = MI->getOperand(2);
    if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
      report("G_BRJT src operand 2 must be a scalar reg type", MI);
    break;
  }
  case TargetOpcode::G_INTRINSIC:
  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
    // TODO: Should verify number of def and use operands, but the current
    // interface requires passing in IR types for mangling.
    const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
    if (!IntrIDOp.isIntrinsicID()) {
      report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
      break;
    }

    bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
    unsigned IntrID = IntrIDOp.getIntrinsicID();
    if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
      AttributeList Attrs
        = Intrinsic::getAttributes(MF->getFunction().getContext(),
                                   static_cast<Intrinsic::ID>(IntrID));
      bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
      if (NoSideEffects && DeclHasSideEffects) {
        report("G_INTRINSIC used with intrinsic that accesses memory", MI);
        break;
      }
      if (!NoSideEffects && !DeclHasSideEffects) {
        report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
        break;
      }
    }

    break;
  }
  case TargetOpcode::G_SEXT_INREG: {
    if (!MI->getOperand(2).isImm()) {
      report("G_SEXT_INREG expects an immediate operand #2", MI);
      break;
    }

    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    int64_t Imm = MI->getOperand(2).getImm();
    if (Imm <= 0)
      report("G_SEXT_INREG size must be >= 1", MI);
    if (Imm >= SrcTy.getScalarSizeInBits())
      report("G_SEXT_INREG size must be less than source bit width", MI);
    break;
  }
  case TargetOpcode::G_SHUFFLE_VECTOR: {
    const MachineOperand &MaskOp = MI->getOperand(3);
    if (!MaskOp.isShuffleMask()) {
      report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
      break;
    }

    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
    LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());

    if (Src0Ty != Src1Ty)
      report("Source operands must be the same type", MI);

    if (Src0Ty.getScalarType() != DstTy.getScalarType())
      report("G_SHUFFLE_VECTOR cannot change element type", MI);

    // Don't check that all operands are vector because scalars are used in
    // place of 1 element vectors.
    int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
    int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;

    ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();

    if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
      report("Wrong result type for shufflemask", MI);

    for (int Idx : MaskIdxes) {
      if (Idx < 0)
        continue;

      if (Idx >= 2 * SrcNumElts)
        report("Out of bounds shuffle index", MI);
    }

    break;
  }
  case TargetOpcode::G_DYN_STACKALLOC: {
    const MachineOperand &DstOp = MI->getOperand(0);
    const MachineOperand &AllocOp = MI->getOperand(1);
    const MachineOperand &AlignOp = MI->getOperand(2);

    if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
      report("dst operand 0 must be a pointer type", MI);
      break;
    }

    if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
      report("src operand 1 must be a scalar reg type", MI);
      break;
    }

    if (!AlignOp.isImm()) {
      report("src operand 2 must be an immediate type", MI);
      break;
    }
    break;
  }
  case TargetOpcode::G_MEMCPY_INLINE:
  case TargetOpcode::G_MEMCPY:
  case TargetOpcode::G_MEMMOVE: {
    ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
    if (MMOs.size() != 2) {
      report("memcpy/memmove must have 2 memory operands", MI);
      break;
    }

    if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
        (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
      report("wrong memory operand types", MI);
      break;
    }

    if (MMOs[0]->getSize() != MMOs[1]->getSize())
      report("inconsistent memory operand sizes", MI);

    LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());

    if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
      report("memory instruction operand must be a pointer", MI);
      break;
    }

    if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
      report("inconsistent store address space", MI);
    if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
      report("inconsistent load address space", MI);

    if (Opc != TargetOpcode::G_MEMCPY_INLINE)
      if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
        report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);

    break;
  }
  case TargetOpcode::G_BZERO:
  case TargetOpcode::G_MEMSET: {
    ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
    std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
    if (MMOs.size() != 1) {
      report(Twine(Name, " must have 1 memory operand"), MI);
      break;
    }

    if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
      report(Twine(Name, " memory operand must be a store"), MI);
      break;
    }

    LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstPtrTy.isPointer()) {
      report(Twine(Name, " operand must be a pointer"), MI);
      break;
    }

    if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
      report("inconsistent " + Twine(Name, " address space"), MI);

    if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
        (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
      report("'tail' flag (last operand) must be an immediate 0 or 1", MI);

    break;
  }
  case TargetOpcode::G_VECREDUCE_SEQ_FADD:
  case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
    LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
    if (!DstTy.isScalar())
      report("Vector reduction requires a scalar destination type", MI);
    if (!Src1Ty.isScalar())
      report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
    if (!Src2Ty.isVector())
      report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
    break;
  }
  case TargetOpcode::G_VECREDUCE_FADD:
  case TargetOpcode::G_VECREDUCE_FMUL:
  case TargetOpcode::G_VECREDUCE_FMAX:
  case TargetOpcode::G_VECREDUCE_FMIN:
  case TargetOpcode::G_VECREDUCE_ADD:
  case TargetOpcode::G_VECREDUCE_MUL:
  case TargetOpcode::G_VECREDUCE_AND:
  case TargetOpcode::G_VECREDUCE_OR:
  case TargetOpcode::G_VECREDUCE_XOR:
  case TargetOpcode::G_VECREDUCE_SMAX:
  case TargetOpcode::G_VECREDUCE_SMIN:
  case TargetOpcode::G_VECREDUCE_UMAX:
  case TargetOpcode::G_VECREDUCE_UMIN: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstTy.isScalar())
      report("Vector reduction requires a scalar destination type", MI);
    break;
  }

  case TargetOpcode::G_SBFX:
  case TargetOpcode::G_UBFX: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (DstTy.isVector()) {
      report("Bitfield extraction is not supported on vectors", MI);
      break;
    }
    break;
  }
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_ROTR:
  case TargetOpcode::G_ROTL: {
    LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
    LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
    if (Src1Ty.isVector() != Src2Ty.isVector()) {
      report("Shifts and rotates require operands to be either all scalars or "
             "all vectors",
             MI);
      break;
    }
    break;
  }
  case TargetOpcode::G_LLROUND:
  case TargetOpcode::G_LROUND: {
    verifyAllRegOpsScalar(*MI, *MRI);
    break;
  }
  default:
    break;
  }
}

void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
  const MCInstrDesc &MCID = MI->getDesc();
  if (MI->getNumOperands() < MCID.getNumOperands()) {
    report("Too few operands", MI);
    errs() << MCID.getNumOperands() << " operands expected, but "
           << MI->getNumOperands() << " given.\n";
  }

  if (MI->isPHI()) {
    if (MF->getProperties().hasProperty(
            MachineFunctionProperties::Property::NoPHIs))
      report("Found PHI instruction with NoPHIs property set", MI);

    if (FirstNonPHI)
      report("Found PHI instruction after non-PHI", MI);
  } else if (FirstNonPHI == nullptr)
    FirstNonPHI = MI;

  // Check the tied operands.
  if (MI->isInlineAsm())
    verifyInlineAsm(MI);

  // Check that unspillable terminators define a reg and have at most one use.
  if (TII->isUnspillableTerminator(MI)) {
    if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
      report("Unspillable Terminator does not define a reg", MI);
    Register Def = MI->getOperand(0).getReg();
    if (Def.isVirtual() &&
        !MF->getProperties().hasProperty(
            MachineFunctionProperties::Property::NoPHIs) &&
        std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
      report("Unspillable Terminator expected to have at most one use!", MI);
  }

  // A fully-formed DBG_VALUE must have a location. Ignore partially formed
  // DBG_VALUEs: these are convenient to use in tests, but should never get
  // generated.
  if (MI->isDebugValue() && MI->getNumOperands() == 4)
    if (!MI->getDebugLoc())
      report("Missing DebugLoc for debug instruction", MI);

  // Meta instructions should never be the subject of debug value tracking,
  // they don't create a value in the output program at all.
  if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
    report("Metadata instruction should not have a value tracking number", MI);

  // Check the MachineMemOperands for basic consistency.
  for (MachineMemOperand *Op : MI->memoperands()) {
    if (Op->isLoad() && !MI->mayLoad())
      report("Missing mayLoad flag", MI);
    if (Op->isStore() && !MI->mayStore())
      report("Missing mayStore flag", MI);
  }

  // Debug values must not have a slot index.
  // Other instructions must have one, unless they are inside a bundle.
  if (LiveInts) {
    bool mapped = !LiveInts->isNotInMIMap(*MI);
    if (MI->isDebugOrPseudoInstr()) {
      if (mapped)
        report("Debug instruction has a slot index", MI);
    } else if (MI->isInsideBundle()) {
      if (mapped)
        report("Instruction inside bundle has a slot index", MI);
    } else {
      if (!mapped)
        report("Missing slot index", MI);
    }
  }

  unsigned Opc = MCID.getOpcode();
  if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
    verifyPreISelGenericInstruction(MI);
    return;
  }

  StringRef ErrorInfo;
  if (!TII->verifyInstruction(*MI, ErrorInfo))
    report(ErrorInfo.data(), MI);

  // Verify properties of various specific instruction types
  switch (MI->getOpcode()) {
  case TargetOpcode::COPY: {
    const MachineOperand &DstOp = MI->getOperand(0);
    const MachineOperand &SrcOp = MI->getOperand(1);
    const Register SrcReg = SrcOp.getReg();
    const Register DstReg = DstOp.getReg();

    LLT DstTy = MRI->getType(DstReg);
    LLT SrcTy = MRI->getType(SrcReg);
    if (SrcTy.isValid() && DstTy.isValid()) {
      // If both types are valid, check that the types are the same.
      if (SrcTy != DstTy) {
        report("Copy Instruction is illegal with mismatching types", MI);
        errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
      }

      break;
    }

    if (!SrcTy.isValid() && !DstTy.isValid())
      break;

    // If we have only one valid type, this is likely a copy between a virtual
    // and physical register.
    unsigned SrcSize = 0;
    unsigned DstSize = 0;
    if (SrcReg.isPhysical() && DstTy.isValid()) {
      const TargetRegisterClass *SrcRC =
          TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
      if (SrcRC)
        SrcSize = TRI->getRegSizeInBits(*SrcRC);
    }

    if (SrcSize == 0)
      SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);

    if (DstReg.isPhysical() && SrcTy.isValid()) {
      const TargetRegisterClass *DstRC =
          TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
      if (DstRC)
        DstSize = TRI->getRegSizeInBits(*DstRC);
    }

    if (DstSize == 0)
      DstSize = TRI->getRegSizeInBits(DstReg, *MRI);

    if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
      if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
        report("Copy Instruction is illegal with mismatching sizes", MI);
        errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
               << "\n";
      }
    }
    break;
  }
  case TargetOpcode::STATEPOINT: {
    StatepointOpers SO(MI);
    if (!MI->getOperand(SO.getIDPos()).isImm() ||
        !MI->getOperand(SO.getNBytesPos()).isImm() ||
        !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
      report("meta operands to STATEPOINT not constant!", MI);
      break;
    }

    auto VerifyStackMapConstant = [&](unsigned Offset) {
      if (Offset >= MI->getNumOperands()) {
        report("stack map constant to STATEPOINT is out of range!", MI);
        return;
      }
      if (!MI->getOperand(Offset - 1).isImm() ||
          MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
          !MI->getOperand(Offset).isImm())
        report("stack map constant to STATEPOINT not well formed!", MI);
    };
    VerifyStackMapConstant(SO.getCCIdx());
    VerifyStackMapConstant(SO.getFlagsIdx());
    VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
    VerifyStackMapConstant(SO.getNumGCPtrIdx());
    VerifyStackMapConstant(SO.getNumAllocaIdx());
    VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());

    // Verify that all explicit statepoint defs are tied to gc operands as
    // they are expected to be a relocation of gc operands.
    unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
    unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
    for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
      unsigned UseOpIdx;
      if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
        report("STATEPOINT defs expected to be tied", MI);
        break;
      }
      if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
        report("STATEPOINT def tied to non-gc operand", MI);
        break;
      }
    }

    // TODO: verify we have properly encoded deopt arguments
  } break;
  case TargetOpcode::INSERT_SUBREG: {
    unsigned InsertedSize;
    if (unsigned SubIdx = MI->getOperand(2).getSubReg())
      InsertedSize = TRI->getSubRegIdxSize(SubIdx);
    else
      InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
    unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
    if (SubRegSize < InsertedSize) {
      report("INSERT_SUBREG expected inserted value to have equal or lesser "
             "size than the subreg it was inserted into", MI);
      break;
    }
  } break;
  }
}

void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const MCInstrDesc &MCID = MI->getDesc();
  unsigned NumDefs = MCID.getNumDefs();
  if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
    NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;

  // The first MCID.NumDefs operands must be explicit register defines
  if (MONum < NumDefs) {
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    if (!MO->isReg())
      report("Explicit definition must be a register", MO, MONum);
    else if (!MO->isDef() && !MCOI.isOptionalDef())
      report("Explicit definition marked as use", MO, MONum);
    else if (MO->isImplicit())
      report("Explicit definition marked as implicit", MO, MONum);
  } else if (MONum < MCID.getNumOperands()) {
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    // Don't check if it's the last operand in a variadic instruction. See,
    // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
    bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
    if (!IsOptional) {
      if (MO->isReg()) {
        if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
          report("Explicit operand marked as def", MO, MONum);
        if (MO->isImplicit())
          report("Explicit operand marked as implicit", MO, MONum);
      }

      // Check that an instruction has register operands only as expected.
      if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
          !MO->isReg() && !MO->isFI())
        report("Expected a register operand.", MO, MONum);
      if (MO->isReg()) {
        if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
            (MCOI.OperandType == MCOI::OPERAND_PCREL &&
             !TII->isPCRelRegisterOperandLegal(*MO)))
          report("Expected a non-register operand.", MO, MONum);
      }
    }

    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
    if (TiedTo != -1) {
      if (!MO->isReg())
        report("Tied use must be a register", MO, MONum);
      else if (!MO->isTied())
        report("Operand should be tied", MO, MONum);
      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
        report("Tied def doesn't match MCInstrDesc", MO, MONum);
      else if (Register::isPhysicalRegister(MO->getReg())) {
        const MachineOperand &MOTied = MI->getOperand(TiedTo);
        if (!MOTied.isReg())
          report("Tied counterpart must be a register", &MOTied, TiedTo);
        else if (Register::isPhysicalRegister(MOTied.getReg()) &&
                 MO->getReg() != MOTied.getReg())
          report("Tied physical registers must match.", &MOTied, TiedTo);
      }
    } else if (MO->isReg() && MO->isTied())
      report("Explicit operand should not be tied", MO, MONum);
  } else {
    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
  }

  switch (MO->getType()) {
  case MachineOperand::MO_Register: {
    // Verify debug flag on debug instructions. Check this first because reg0
    // indicates an undefined debug value.
    if (MI->isDebugInstr() && MO->isUse()) {
      if (!MO->isDebug())
        report("Register operand must be marked debug", MO, MONum);
    } else if (MO->isDebug()) {
      report("Register operand must not be marked debug", MO, MONum);
    }

    const Register Reg = MO->getReg();
    if (!Reg)
      return;
    if (MRI->tracksLiveness() && !MI->isDebugInstr())
      checkLiveness(MO, MONum);

    // Verify the consistency of tied operands.
    if (MO->isTied()) {
      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
      if (!OtherMO.isReg())
        report("Must be tied to a register", MO, MONum);
      if (!OtherMO.isTied())
        report("Missing tie flags on tied operand", MO, MONum);
      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
        report("Inconsistent tie links", MO, MONum);
      if (MONum < MCID.getNumDefs()) {
        if (OtherIdx < MCID.getNumOperands()) {
          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
            report("Explicit def tied to explicit use without tie constraint",
                   MO, MONum);
        } else {
          if (!OtherMO.isImplicit())
            report("Explicit def should be tied to implicit use", MO, MONum);
        }
      }
    }

    // Verify two-address constraints after the twoaddressinstruction pass.
    // Both twoaddressinstruction pass and phi-node-elimination pass call
    // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
    // twoaddressinstruction pass not after phi-node-elimination pass. So we
    // shouldn't use the NoSSA as the condition, we should based on
    // TiedOpsRewritten property to verify two-address constraints, this
    // property will be set in twoaddressinstruction pass.
    unsigned DefIdx;
    if (MF->getProperties().hasProperty(
            MachineFunctionProperties::Property::TiedOpsRewritten) &&
        MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
        Reg != MI->getOperand(DefIdx).getReg())
      report("Two-address instruction operands must be identical", MO, MONum);

    // Check register classes.
    unsigned SubIdx = MO->getSubReg();

    if (Register::isPhysicalRegister(Reg)) {
      if (SubIdx) {
        report("Illegal subregister index for physical register", MO, MONum);
        return;
      }
      if (MONum < MCID.getNumOperands()) {
        if (const TargetRegisterClass *DRC =
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
          if (!DRC->contains(Reg)) {
            report("Illegal physical register for instruction", MO, MONum);
            errs() << printReg(Reg, TRI) << " is not a "
                   << TRI->getRegClassName(DRC) << " register.\n";
          }
        }
      }
      if (MO->isRenamable()) {
        if (MRI->isReserved(Reg)) {
          report("isRenamable set on reserved register", MO, MONum);
          return;
        }
      }
    } else {
      // Virtual register.
      const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
      if (!RC) {
        // This is a generic virtual register.

        // Do not allow undef uses for generic virtual registers. This ensures
        // getVRegDef can never fail and return null on a generic register.
        //
        // FIXME: This restriction should probably be broadened to all SSA
        // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
        // run on the SSA function just before phi elimination.
        if (MO->isUndef())
          report("Generic virtual register use cannot be undef", MO, MONum);

        // Debug value instruction is permitted to use undefined vregs.
        // This is a performance measure to skip the overhead of immediately
        // pruning unused debug operands. The final undef substitution occurs
        // when debug values are allocated in LDVImpl::handleDebugValue, so
        // these verifications always apply after this pass.
        if (isFunctionTracksDebugUserValues || !MO->isUse() ||
            !MI->isDebugValue() || !MRI->def_empty(Reg)) {
          // If we're post-Select, we can't have gvregs anymore.
          if (isFunctionSelected) {
            report("Generic virtual register invalid in a Selected function",
                   MO, MONum);
            return;
          }

          // The gvreg must have a type and it must not have a SubIdx.
          LLT Ty = MRI->getType(Reg);
          if (!Ty.isValid()) {
            report("Generic virtual register must have a valid type", MO,
                   MONum);
            return;
          }

          const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);

          // If we're post-RegBankSelect, the gvreg must have a bank.
          if (!RegBank && isFunctionRegBankSelected) {
            report("Generic virtual register must have a bank in a "
                   "RegBankSelected function",
                   MO, MONum);
            return;
          }

          // Make sure the register fits into its register bank if any.
          if (RegBank && Ty.isValid() &&
              RegBank->getSize() < Ty.getSizeInBits()) {
            report("Register bank is too small for virtual register", MO,
                   MONum);
            errs() << "Register bank " << RegBank->getName() << " too small("
                   << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
                   << "-bits\n";
            return;
          }
        }

        if (SubIdx)  {
          report("Generic virtual register does not allow subregister index", MO,
                 MONum);
          return;
        }

        // If this is a target specific instruction and this operand
        // has register class constraint, the virtual register must
        // comply to it.
        if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
            MONum < MCID.getNumOperands() &&
            TII->getRegClass(MCID, MONum, TRI, *MF)) {
          report("Virtual register does not match instruction constraint", MO,
                 MONum);
          errs() << "Expect register class "
                 << TRI->getRegClassName(
                        TII->getRegClass(MCID, MONum, TRI, *MF))
                 << " but got nothing\n";
          return;
        }

        break;
      }
      if (SubIdx) {
        const TargetRegisterClass *SRC =
          TRI->getSubClassWithSubReg(RC, SubIdx);
        if (!SRC) {
          report("Invalid subregister index for virtual register", MO, MONum);
          errs() << "Register class " << TRI->getRegClassName(RC)
              << " does not support subreg index " << SubIdx << "\n";
          return;
        }
        if (RC != SRC) {
          report("Invalid register class for subregister index", MO, MONum);
          errs() << "Register class " << TRI->getRegClassName(RC)
              << " does not fully support subreg index " << SubIdx << "\n";
          return;
        }
      }
      if (MONum < MCID.getNumOperands()) {
        if (const TargetRegisterClass *DRC =
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
          if (SubIdx) {
            const TargetRegisterClass *SuperRC =
                TRI->getLargestLegalSuperClass(RC, *MF);
            if (!SuperRC) {
              report("No largest legal super class exists.", MO, MONum);
              return;
            }
            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
            if (!DRC) {
              report("No matching super-reg register class.", MO, MONum);
              return;
            }
          }
          if (!RC->hasSuperClassEq(DRC)) {
            report("Illegal virtual register for instruction", MO, MONum);
            errs() << "Expected a " << TRI->getRegClassName(DRC)
                << " register, but got a " << TRI->getRegClassName(RC)
                << " register\n";
          }
        }
      }
    }
    break;
  }

  case MachineOperand::MO_RegisterMask:
    regMasks.push_back(MO->getRegMask());
    break;

  case MachineOperand::MO_MachineBasicBlock:
    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
      report("PHI operand is not in the CFG", MO, MONum);
    break;

  case MachineOperand::MO_FrameIndex:
    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
        LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      int FI = MO->getIndex();
      LiveInterval &LI = LiveStks->getInterval(FI);
      SlotIndex Idx = LiveInts->getInstructionIndex(*MI);

      bool stores = MI->mayStore();
      bool loads = MI->mayLoad();
      // For a memory-to-memory move, we need to check if the frame
      // index is used for storing or loading, by inspecting the
      // memory operands.
      if (stores && loads) {
        for (auto *MMO : MI->memoperands()) {
          const PseudoSourceValue *PSV = MMO->getPseudoValue();
          if (PSV == nullptr) continue;
          const FixedStackPseudoSourceValue *Value =
            dyn_cast<FixedStackPseudoSourceValue>(PSV);
          if (Value == nullptr) continue;
          if (Value->getFrameIndex() != FI) continue;

          if (MMO->isStore())
            loads = false;
          else
            stores = false;
          break;
        }
        if (loads == stores)
          report("Missing fixed stack memoperand.", MI);
      }
      if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
        report("Instruction loads from dead spill slot", MO, MONum);
        errs() << "Live stack: " << LI << '\n';
      }
      if (stores && !LI.liveAt(Idx.getRegSlot())) {
        report("Instruction stores to dead spill slot", MO, MONum);
        errs() << "Live stack: " << LI << '\n';
      }
    }
    break;

  default:
    break;
  }
}

void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
                                         unsigned MONum, SlotIndex UseIdx,
                                         const LiveRange &LR,
                                         Register VRegOrUnit,
                                         LaneBitmask LaneMask) {
  LiveQueryResult LRQ = LR.Query(UseIdx);
  // Check if we have a segment at the use, note however that we only need one
  // live subregister range, the others may be dead.
  if (!LRQ.valueIn() && LaneMask.none()) {
    report("No live segment at use", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    report_context(UseIdx);
  }
  if (MO->isKill() && !LRQ.isKill()) {
    report("Live range continues after kill flag", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    if (LaneMask.any())
      report_context_lanemask(LaneMask);
    report_context(UseIdx);
  }
}

void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
                                         unsigned MONum, SlotIndex DefIdx,
                                         const LiveRange &LR,
                                         Register VRegOrUnit,
                                         bool SubRangeCheck,
                                         LaneBitmask LaneMask) {
  if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
    assert(VNI && "NULL valno is not allowed");
    if (VNI->def != DefIdx) {
      report("Inconsistent valno->def", MO, MONum);
      report_context_liverange(LR);
      report_context_vreg_regunit(VRegOrUnit);
      if (LaneMask.any())
        report_context_lanemask(LaneMask);
      report_context(*VNI);
      report_context(DefIdx);
    }
  } else {
    report("No live segment at def", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    if (LaneMask.any())
      report_context_lanemask(LaneMask);
    report_context(DefIdx);
  }
  // Check that, if the dead def flag is present, LiveInts agree.
  if (MO->isDead()) {
    LiveQueryResult LRQ = LR.Query(DefIdx);
    if (!LRQ.isDeadDef()) {
      assert(Register::isVirtualRegister(VRegOrUnit) &&
             "Expecting a virtual register.");
      // A dead subreg def only tells us that the specific subreg is dead. There
      // could be other non-dead defs of other subregs, or we could have other
      // parts of the register being live through the instruction. So unless we
      // are checking liveness for a subrange it is ok for the live range to
      // continue, given that we have a dead def of a subregister.
      if (SubRangeCheck || MO->getSubReg() == 0) {
        report("Live range continues after dead def flag", MO, MONum);
        report_context_liverange(LR);
        report_context_vreg_regunit(VRegOrUnit);
        if (LaneMask.any())
          report_context_lanemask(LaneMask);
      }
    }
  }
}

void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const Register Reg = MO->getReg();
  const unsigned SubRegIdx = MO->getSubReg();

  const LiveInterval *LI = nullptr;
  if (LiveInts && Reg.isVirtual()) {
    if (LiveInts->hasInterval(Reg)) {
      LI = &LiveInts->getInterval(Reg);
      if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
          !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
        report("Live interval for subreg operand has no subranges", MO, MONum);
    } else {
      report("Virtual register has no live interval", MO, MONum);
    }
  }

  // Both use and def operands can read a register.
  if (MO->readsReg()) {
    if (MO->isKill())
      addRegWithSubRegs(regsKilled, Reg);

    // Check that LiveVars knows this kill (unless we are inside a bundle, in
    // which case we have already checked that LiveVars knows any kills on the
    // bundle header instead).
    if (LiveVars && Reg.isVirtual() && MO->isKill() &&
        !MI->isBundledWithPred()) {
      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
      if (!is_contained(VI.Kills, MI))
        report("Kill missing from LiveVariables", MO, MONum);
    }

    // Check LiveInts liveness and kill.
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
      // Check the cached regunit intervals.
      if (Reg.isPhysical() && !isReserved(Reg)) {
        for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
             ++Units) {
          if (MRI->isReservedRegUnit(*Units))
            continue;
          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
            checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
        }
      }

      if (Reg.isVirtual()) {
        // This is a virtual register interval.
        checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);

        if (LI->hasSubRanges() && !MO->isDef()) {
          LaneBitmask MOMask = SubRegIdx != 0
                                   ? TRI->getSubRegIndexLaneMask(SubRegIdx)
                                   : MRI->getMaxLaneMaskForVReg(Reg);
          LaneBitmask LiveInMask;
          for (const LiveInterval::SubRange &SR : LI->subranges()) {
            if ((MOMask & SR.LaneMask).none())
              continue;
            checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
            LiveQueryResult LRQ = SR.Query(UseIdx);
            if (LRQ.valueIn())
              LiveInMask |= SR.LaneMask;
          }
          // At least parts of the register has to be live at the use.
          if ((LiveInMask & MOMask).none()) {
            report("No live subrange at use", MO, MONum);
            report_context(*LI);
            report_context(UseIdx);
          }
        }
      }
    }

    // Use of a dead register.
    if (!regsLive.count(Reg)) {
      if (Reg.isPhysical()) {
        // Reserved registers may be used even when 'dead'.
        bool Bad = !isReserved(Reg);
        // We are fine if just any subregister has a defined value.
        if (Bad) {

          for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
            if (regsLive.count(SubReg)) {
              Bad = false;
              break;
            }
          }
        }
        // If there is an additional implicit-use of a super register we stop
        // here. By definition we are fine if the super register is not
        // (completely) dead, if the complete super register is dead we will
        // get a report for its operand.
        if (Bad) {
          for (const MachineOperand &MOP : MI->uses()) {
            if (!MOP.isReg() || !MOP.isImplicit())
              continue;

            if (!MOP.getReg().isPhysical())
              continue;

            if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
              Bad = false;
          }
        }
        if (Bad)
          report("Using an undefined physical register", MO, MONum);
      } else if (MRI->def_empty(Reg)) {
        report("Reading virtual register without a def", MO, MONum);
      } else {
        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
        // We don't know which virtual registers are live in, so only complain
        // if vreg was killed in this MBB. Otherwise keep track of vregs that
        // must be live in. PHI instructions are handled separately.
        if (MInfo.regsKilled.count(Reg))
          report("Using a killed virtual register", MO, MONum);
        else if (!MI->isPHI())
          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
      }
    }
  }

  if (MO->isDef()) {
    // Register defined.
    // TODO: verify that earlyclobber ops are not used.
    if (MO->isDead())
      addRegWithSubRegs(regsDead, Reg);
    else
      addRegWithSubRegs(regsDefined, Reg);

    // Verify SSA form.
    if (MRI->isSSA() && Reg.isVirtual() &&
        std::next(MRI->def_begin(Reg)) != MRI->def_end())
      report("Multiple virtual register defs in SSA form", MO, MONum);

    // Check LiveInts for a live segment, but only for virtual registers.
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());

      if (Reg.isVirtual()) {
        checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);

        if (LI->hasSubRanges()) {
          LaneBitmask MOMask = SubRegIdx != 0
                                   ? TRI->getSubRegIndexLaneMask(SubRegIdx)
                                   : MRI->getMaxLaneMaskForVReg(Reg);
          for (const LiveInterval::SubRange &SR : LI->subranges()) {
            if ((SR.LaneMask & MOMask).none())
              continue;
            checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
          }
        }
      }
    }
  }
}

// This function gets called after visiting all instructions in a bundle. The
// argument points to the bundle header.
// Normal stand-alone instructions are also considered 'bundles', and this
// function is called for all of them.
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
  set_union(MInfo.regsKilled, regsKilled);
  set_subtract(regsLive, regsKilled); regsKilled.clear();
  // Kill any masked registers.
  while (!regMasks.empty()) {
    const uint32_t *Mask = regMasks.pop_back_val();
    for (Register Reg : regsLive)
      if (Reg.isPhysical() &&
          MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
        regsDead.push_back(Reg);
  }
  set_subtract(regsLive, regsDead);   regsDead.clear();
  set_union(regsLive, regsDefined);   regsDefined.clear();
}

void
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
  MBBInfoMap[MBB].regsLiveOut = regsLive;
  regsLive.clear();

  if (Indexes) {
    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
    if (!(stop > lastIndex)) {
      report("Block ends before last instruction index", MBB);
      errs() << "Block ends at " << stop
          << " last instruction was at " << lastIndex << '\n';
    }
    lastIndex = stop;
  }
}

namespace {
// This implements a set of registers that serves as a filter: can filter other
// sets by passing through elements not in the filter and blocking those that
// are. Any filter implicitly includes the full set of physical registers upon
// creation, thus filtering them all out. The filter itself as a set only grows,
// and needs to be as efficient as possible.
struct VRegFilter {
  // Add elements to the filter itself. \pre Input set \p FromRegSet must have
  // no duplicates. Both virtual and physical registers are fine.
  template <typename RegSetT> void add(const RegSetT &FromRegSet) {
    SmallVector<Register, 0> VRegsBuffer;
    filterAndAdd(FromRegSet, VRegsBuffer);
  }
  // Filter \p FromRegSet through the filter and append passed elements into \p
  // ToVRegs. All elements appended are then added to the filter itself.
  // \returns true if anything changed.
  template <typename RegSetT>
  bool filterAndAdd(const RegSetT &FromRegSet,
                    SmallVectorImpl<Register> &ToVRegs) {
    unsigned SparseUniverse = Sparse.size();
    unsigned NewSparseUniverse = SparseUniverse;
    unsigned NewDenseSize = Dense.size();
    size_t Begin = ToVRegs.size();
    for (Register Reg : FromRegSet) {
      if (!Reg.isVirtual())
        continue;
      unsigned Index = Register::virtReg2Index(Reg);
      if (Index < SparseUniverseMax) {
        if (Index < SparseUniverse && Sparse.test(Index))
          continue;
        NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
      } else {
        if (Dense.count(Reg))
          continue;
        ++NewDenseSize;
      }
      ToVRegs.push_back(Reg);
    }
    size_t End = ToVRegs.size();
    if (Begin == End)
      return false;
    // Reserving space in sets once performs better than doing so continuously
    // and pays easily for double look-ups (even in Dense with SparseUniverseMax
    // tuned all the way down) and double iteration (the second one is over a
    // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
    Sparse.resize(NewSparseUniverse);
    Dense.reserve(NewDenseSize);
    for (unsigned I = Begin; I < End; ++I) {
      Register Reg = ToVRegs[I];
      unsigned Index = Register::virtReg2Index(Reg);
      if (Index < SparseUniverseMax)
        Sparse.set(Index);
      else
        Dense.insert(Reg);
    }
    return true;
  }

private:
  static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
  // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
  // are tracked by Dense. The only purpose of the threashold and the Dense set
  // is to have a reasonably growing memory usage in pathological cases (large
  // number of very sparse VRegFilter instances live at the same time). In
  // practice even in the worst-by-execution time cases having all elements
  // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
  // space efficient than if tracked by Dense. The threashold is set to keep the
  // worst-case memory usage within 2x of figures determined empirically for
  // "all Dense" scenario in such worst-by-execution-time cases.
  BitVector Sparse;
  DenseSet<unsigned> Dense;
};

// Implements both a transfer function and a (binary, in-place) join operator
// for a dataflow over register sets with set union join and filtering transfer
// (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
// Maintains out_b as its state, allowing for O(n) iteration over it at any
// time, where n is the size of the set (as opposed to O(U) where U is the
// universe). filter_b implicitly contains all physical registers at all times.
class FilteringVRegSet {
  VRegFilter Filter;
  SmallVector<Register, 0> VRegs;

public:
  // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
  // Both virtual and physical registers are fine.
  template <typename RegSetT> void addToFilter(const RegSetT &RS) {
    Filter.add(RS);
  }
  // Passes \p RS through the filter_b (transfer function) and adds what's left
  // to itself (out_b).
  template <typename RegSetT> bool add(const RegSetT &RS) {
    // Double-duty the Filter: to maintain VRegs a set (and the join operation
    // a set union) just add everything being added here to the Filter as well.
    return Filter.filterAndAdd(RS, VRegs);
  }
  using const_iterator = decltype(VRegs)::const_iterator;
  const_iterator begin() const { return VRegs.begin(); }
  const_iterator end() const { return VRegs.end(); }
  size_t size() const { return VRegs.size(); }
};
} // namespace

// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void MachineVerifier::calcRegsPassed() {
  if (MF->empty())
    // ReversePostOrderTraversal doesn't handle empty functions.
    return;

  for (const MachineBasicBlock *MB :
       ReversePostOrderTraversal<const MachineFunction *>(MF)) {
    FilteringVRegSet VRegs;
    BBInfo &Info = MBBInfoMap[MB];
    assert(Info.reachable);

    VRegs.addToFilter(Info.regsKilled);
    VRegs.addToFilter(Info.regsLiveOut);
    for (const MachineBasicBlock *Pred : MB->predecessors()) {
      const BBInfo &PredInfo = MBBInfoMap[Pred];
      if (!PredInfo.reachable)
        continue;

      VRegs.add(PredInfo.regsLiveOut);
      VRegs.add(PredInfo.vregsPassed);
    }
    Info.vregsPassed.reserve(VRegs.size());
    Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
  }
}

// Calculate the set of virtual registers that must be passed through each basic
// block in order to satisfy the requirements of successor blocks. This is very
// similar to calcRegsPassed, only backwards.
void MachineVerifier::calcRegsRequired() {
  // First push live-in regs to predecessors' vregsRequired.
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
  for (const auto &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    for (const MachineBasicBlock *Pred : MBB.predecessors()) {
      BBInfo &PInfo = MBBInfoMap[Pred];
      if (PInfo.addRequired(MInfo.vregsLiveIn))
        todo.insert(Pred);
    }

    // Handle the PHI node.
    for (const MachineInstr &MI : MBB.phis()) {
      for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
        // Skip those Operands which are undef regs or not regs.
        if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
          continue;

        // Get register and predecessor for one PHI edge.
        Register Reg = MI.getOperand(i).getReg();
        const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();

        BBInfo &PInfo = MBBInfoMap[Pred];
        if (PInfo.addRequired(Reg))
          todo.insert(Pred);
      }
    }
  }

  // Iteratively push vregsRequired to predecessors. This will converge to the
  // same final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
      if (Pred == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[Pred];
      if (SInfo.addRequired(MInfo.vregsRequired))
        todo.insert(Pred);
    }
  }
}

// Check PHI instructions at the beginning of MBB. It is assumed that
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
  BBInfo &MInfo = MBBInfoMap[&MBB];

  SmallPtrSet<const MachineBasicBlock*, 8> seen;
  for (const MachineInstr &Phi : MBB) {
    if (!Phi.isPHI())
      break;
    seen.clear();

    const MachineOperand &MODef = Phi.getOperand(0);
    if (!MODef.isReg() || !MODef.isDef()) {
      report("Expected first PHI operand to be a register def", &MODef, 0);
      continue;
    }
    if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
        MODef.isEarlyClobber() || MODef.isDebug())
      report("Unexpected flag on PHI operand", &MODef, 0);
    Register DefReg = MODef.getReg();
    if (!Register::isVirtualRegister(DefReg))
      report("Expected first PHI operand to be a virtual register", &MODef, 0);

    for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
      const MachineOperand &MO0 = Phi.getOperand(I);
      if (!MO0.isReg()) {
        report("Expected PHI operand to be a register", &MO0, I);
        continue;
      }
      if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
          MO0.isDebug() || MO0.isTied())
        report("Unexpected flag on PHI operand", &MO0, I);

      const MachineOperand &MO1 = Phi.getOperand(I + 1);
      if (!MO1.isMBB()) {
        report("Expected PHI operand to be a basic block", &MO1, I + 1);
        continue;
      }

      const MachineBasicBlock &Pre = *MO1.getMBB();
      if (!Pre.isSuccessor(&MBB)) {
        report("PHI input is not a predecessor block", &MO1, I + 1);
        continue;
      }

      if (MInfo.reachable) {
        seen.insert(&Pre);
        BBInfo &PrInfo = MBBInfoMap[&Pre];
        if (!MO0.isUndef() && PrInfo.reachable &&
            !PrInfo.isLiveOut(MO0.getReg()))
          report("PHI operand is not live-out from predecessor", &MO0, I);
      }
    }

    // Did we see all predecessors?
    if (MInfo.reachable) {
      for (MachineBasicBlock *Pred : MBB.predecessors()) {
        if (!seen.count(Pred)) {
          report("Missing PHI operand", &Phi);
          errs() << printMBBReference(*Pred)
                 << " is a predecessor according to the CFG.\n";
        }
      }
    }
  }
}

void MachineVerifier::visitMachineFunctionAfter() {
  calcRegsPassed();

  for (const MachineBasicBlock &MBB : *MF)
    checkPHIOps(MBB);

  // Now check liveness info if available
  calcRegsRequired();

  // Check for killed virtual registers that should be live out.
  for (const auto &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    for (Register VReg : MInfo.vregsRequired)
      if (MInfo.regsKilled.count(VReg)) {
        report("Virtual register killed in block, but needed live out.", &MBB);
        errs() << "Virtual register " << printReg(VReg)
               << " is used after the block.\n";
      }
  }

  if (!MF->empty()) {
    BBInfo &MInfo = MBBInfoMap[&MF->front()];
    for (Register VReg : MInfo.vregsRequired) {
      report("Virtual register defs don't dominate all uses.", MF);
      report_context_vreg(VReg);
    }
  }

  if (LiveVars)
    verifyLiveVariables();
  if (LiveInts)
    verifyLiveIntervals();

  // Check live-in list of each MBB. If a register is live into MBB, check
  // that the register is in regsLiveOut of each predecessor block. Since
  // this must come from a definition in the predecesssor or its live-in
  // list, this will catch a live-through case where the predecessor does not
  // have the register in its live-in list.  This currently only checks
  // registers that have no aliases, are not allocatable and are not
  // reserved, which could mean a condition code register for instance.
  if (MRI->tracksLiveness())
    for (const auto &MBB : *MF)
      for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
        MCPhysReg LiveInReg = P.PhysReg;
        bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
        if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
          continue;
        for (const MachineBasicBlock *Pred : MBB.predecessors()) {
          BBInfo &PInfo = MBBInfoMap[Pred];
          if (!PInfo.regsLiveOut.count(LiveInReg)) {
            report("Live in register not found to be live out from predecessor.",
                   &MBB);
            errs() << TRI->getName(LiveInReg)
                   << " not found to be live out from "
                   << printMBBReference(*Pred) << "\n";
          }
        }
      }

  for (auto CSInfo : MF->getCallSitesInfo())
    if (!CSInfo.first->isCall())
      report("Call site info referencing instruction that is not call", MF);

  // If there's debug-info, check that we don't have any duplicate value
  // tracking numbers.
  if (MF->getFunction().getSubprogram()) {
    DenseSet<unsigned> SeenNumbers;
    for (auto &MBB : *MF) {
      for (auto &MI : MBB) {
        if (auto Num = MI.peekDebugInstrNum()) {
          auto Result = SeenNumbers.insert((unsigned)Num);
          if (!Result.second)
            report("Instruction has a duplicated value tracking number", &MI);
        }
      }
    }
  }
}

void MachineVerifier::verifyLiveVariables() {
  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
  for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
    Register Reg = Register::index2VirtReg(I);
    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
    for (const auto &MBB : *MF) {
      BBInfo &MInfo = MBBInfoMap[&MBB];

      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
      if (MInfo.vregsRequired.count(Reg)) {
        if (!VI.AliveBlocks.test(MBB.getNumber())) {
          report("LiveVariables: Block missing from AliveBlocks", &MBB);
          errs() << "Virtual register " << printReg(Reg)
                 << " must be live through the block.\n";
        }
      } else {
        if (VI.AliveBlocks.test(MBB.getNumber())) {
          report("LiveVariables: Block should not be in AliveBlocks", &MBB);
          errs() << "Virtual register " << printReg(Reg)
                 << " is not needed live through the block.\n";
        }
      }
    }
  }
}

void MachineVerifier::verifyLiveIntervals() {
  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
  for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
    Register Reg = Register::index2VirtReg(I);

    // Spilling and splitting may leave unused registers around. Skip them.
    if (MRI->reg_nodbg_empty(Reg))
      continue;

    if (!LiveInts->hasInterval(Reg)) {
      report("Missing live interval for virtual register", MF);
      errs() << printReg(Reg, TRI) << " still has defs or uses\n";
      continue;
    }

    const LiveInterval &LI = LiveInts->getInterval(Reg);
    assert(Reg == LI.reg() && "Invalid reg to interval mapping");
    verifyLiveInterval(LI);
  }

  // Verify all the cached regunit intervals.
  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
      verifyLiveRange(*LR, i);
}

void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
                                           const VNInfo *VNI, Register Reg,
                                           LaneBitmask LaneMask) {
  if (VNI->isUnused())
    return;

  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);

  if (!DefVNI) {
    report("Value not live at VNInfo def and not marked unused", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (DefVNI != VNI) {
    report("Live segment at def has different VNInfo", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
  if (!MBB) {
    report("Invalid VNInfo definition index", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (VNI->isPHIDef()) {
    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
      report("PHIDef VNInfo is not defined at MBB start", MBB);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }
    return;
  }

  // Non-PHI def.
  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
  if (!MI) {
    report("No instruction at VNInfo def index", MBB);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (Reg != 0) {
    bool hasDef = false;
    bool isEarlyClobber = false;
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
      if (!MOI->isReg() || !MOI->isDef())
        continue;
      if (Register::isVirtualRegister(Reg)) {
        if (MOI->getReg() != Reg)
          continue;
      } else {
        if (!Register::isPhysicalRegister(MOI->getReg()) ||
            !TRI->hasRegUnit(MOI->getReg(), Reg))
          continue;
      }
      if (LaneMask.any() &&
          (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
        continue;
      hasDef = true;
      if (MOI->isEarlyClobber())
        isEarlyClobber = true;
    }

    if (!hasDef) {
      report("Defining instruction does not modify register", MI);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }

    // Early clobber defs begin at USE slots, but other defs must begin at
    // DEF slots.
    if (isEarlyClobber) {
      if (!VNI->def.isEarlyClobber()) {
        report("Early clobber def must be at an early-clobber slot", MBB);
        report_context(LR, Reg, LaneMask);
        report_context(*VNI);
      }
    } else if (!VNI->def.isRegister()) {
      report("Non-PHI, non-early clobber def must be at a register slot", MBB);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }
  }
}

void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
                                             const LiveRange::const_iterator I,
                                             Register Reg,
                                             LaneBitmask LaneMask) {
  const LiveRange::Segment &S = *I;
  const VNInfo *VNI = S.valno;
  assert(VNI && "Live segment has no valno");

  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
    report("Foreign valno in live segment", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    report_context(*VNI);
  }

  if (VNI->isUnused()) {
    report("Live segment valno is marked unused", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
  if (!MBB) {
    report("Bad start of live segment, no basic block", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }
  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
  if (S.start != MBBStartIdx && S.start != VNI->def) {
    report("Live segment must begin at MBB entry or valno def", MBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  const MachineBasicBlock *EndMBB =
    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
  if (!EndMBB) {
    report("Bad end of live segment, no basic block", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }

  // No more checks for live-out segments.
  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
    return;

  // RegUnit intervals are allowed dead phis.
  if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
    return;

  // The live segment is ending inside EndMBB
  const MachineInstr *MI =
    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
  if (!MI) {
    report("Live segment doesn't end at a valid instruction", EndMBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }

  // The block slot must refer to a basic block boundary.
  if (S.end.isBlock()) {
    report("Live segment ends at B slot of an instruction", EndMBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  if (S.end.isDead()) {
    // Segment ends on the dead slot.
    // That means there must be a dead def.
    if (!SlotIndex::isSameInstr(S.start, S.end)) {
      report("Live segment ending at dead slot spans instructions", EndMBB);
      report_context(LR, Reg, LaneMask);
      report_context(S);
    }
  }

  // After tied operands are rewritten, a live segment can only end at an
  // early-clobber slot if it is being redefined by an early-clobber def.
  // TODO: Before tied operands are rewritten, a live segment can only end at an
  // early-clobber slot if the last use is tied to an early-clobber def.
  if (MF->getProperties().hasProperty(
          MachineFunctionProperties::Property::TiedOpsRewritten) &&
      S.end.isEarlyClobber()) {
    if (I+1 == LR.end() || (I+1)->start != S.end) {
      report("Live segment ending at early clobber slot must be "
             "redefined by an EC def in the same instruction", EndMBB);
      report_context(LR, Reg, LaneMask);
      report_context(S);
    }
  }

  // The following checks only apply to virtual registers. Physreg liveness
  // is too weird to check.
  if (Register::isVirtualRegister(Reg)) {
    // A live segment can end with either a redefinition, a kill flag on a
    // use, or a dead flag on a def.
    bool hasRead = false;
    bool hasSubRegDef = false;
    bool hasDeadDef = false;
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
      if (!MOI->isReg() || MOI->getReg() != Reg)
        continue;
      unsigned Sub = MOI->getSubReg();
      LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
                                 : LaneBitmask::getAll();
      if (MOI->isDef()) {
        if (Sub != 0) {
          hasSubRegDef = true;
          // An operand %0:sub0 reads %0:sub1..n. Invert the lane
          // mask for subregister defs. Read-undef defs will be handled by
          // readsReg below.
          SLM = ~SLM;
        }
        if (MOI->isDead())
          hasDeadDef = true;
      }
      if (LaneMask.any() && (LaneMask & SLM).none())
        continue;
      if (MOI->readsReg())
        hasRead = true;
    }
    if (S.end.isDead()) {
      // Make sure that the corresponding machine operand for a "dead" live
      // range has the dead flag. We cannot perform this check for subregister
      // liveranges as partially dead values are allowed.
      if (LaneMask.none() && !hasDeadDef) {
        report("Instruction ending live segment on dead slot has no dead flag",
               MI);
        report_context(LR, Reg, LaneMask);
        report_context(S);
      }
    } else {
      if (!hasRead) {
        // When tracking subregister liveness, the main range must start new
        // values on partial register writes, even if there is no read.
        if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
            !hasSubRegDef) {
          report("Instruction ending live segment doesn't read the register",
                 MI);
          report_context(LR, Reg, LaneMask);
          report_context(S);
        }
      }
    }
  }

  // Now check all the basic blocks in this live segment.
  MachineFunction::const_iterator MFI = MBB->getIterator();
  // Is this live segment the beginning of a non-PHIDef VN?
  if (S.start == VNI->def && !VNI->isPHIDef()) {
    // Not live-in to any blocks.
    if (MBB == EndMBB)
      return;
    // Skip this block.
    ++MFI;
  }

  SmallVector<SlotIndex, 4> Undefs;
  if (LaneMask.any()) {
    LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
    OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
  }

  while (true) {
    assert(LiveInts->isLiveInToMBB(LR, &*MFI));
    // We don't know how to track physregs into a landing pad.
    if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
      if (&*MFI == EndMBB)
        break;
      ++MFI;
      continue;
    }

    // Is VNI a PHI-def in the current block?
    bool IsPHI = VNI->isPHIDef() &&
      VNI->def == LiveInts->getMBBStartIdx(&*MFI);

    // Check that VNI is live-out of all predecessors.
    for (const MachineBasicBlock *Pred : MFI->predecessors()) {
      SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
      // Predecessor of landing pad live-out on last call.
      if (MFI->isEHPad()) {
        for (const MachineInstr &MI : llvm::reverse(*Pred)) {
          if (MI.isCall()) {
            PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
            break;
          }
        }
      }
      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);

      // All predecessors must have a live-out value. However for a phi
      // instruction with subregister intervals
      // only one of the subregisters (not necessarily the current one) needs to
      // be defined.
      if (!PVNI && (LaneMask.none() || !IsPHI)) {
        if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
          continue;
        report("Register not marked live out of predecessor", Pred);
        report_context(LR, Reg, LaneMask);
        report_context(*VNI);
        errs() << " live into " << printMBBReference(*MFI) << '@'
               << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
               << PEnd << '\n';
        continue;
      }

      // Only PHI-defs can take different predecessor values.
      if (!IsPHI && PVNI != VNI) {
        report("Different value live out of predecessor", Pred);
        report_context(LR, Reg, LaneMask);
        errs() << "Valno #" << PVNI->id << " live out of "
               << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
               << VNI->id << " live into " << printMBBReference(*MFI) << '@'
               << LiveInts->getMBBStartIdx(&*MFI) << '\n';
      }
    }
    if (&*MFI == EndMBB)
      break;
    ++MFI;
  }
}

void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
                                      LaneBitmask LaneMask) {
  for (const VNInfo *VNI : LR.valnos)
    verifyLiveRangeValue(LR, VNI, Reg, LaneMask);

  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
    verifyLiveRangeSegment(LR, I, Reg, LaneMask);
}

void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
  Register Reg = LI.reg();
  assert(Register::isVirtualRegister(Reg));
  verifyLiveRange(LI, Reg);

  LaneBitmask Mask;
  LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    if ((Mask & SR.LaneMask).any()) {
      report("Lane masks of sub ranges overlap in live interval", MF);
      report_context(LI);
    }
    if ((SR.LaneMask & ~MaxMask).any()) {
      report("Subrange lanemask is invalid", MF);
      report_context(LI);
    }
    if (SR.empty()) {
      report("Subrange must not be empty", MF);
      report_context(SR, LI.reg(), SR.LaneMask);
    }
    Mask |= SR.LaneMask;
    verifyLiveRange(SR, LI.reg(), SR.LaneMask);
    if (!LI.covers(SR)) {
      report("A Subrange is not covered by the main range", MF);
      report_context(LI);
    }
  }

  // Check the LI only has one connected component.
  ConnectedVNInfoEqClasses ConEQ(*LiveInts);
  unsigned NumComp = ConEQ.Classify(LI);
  if (NumComp > 1) {
    report("Multiple connected components in live interval", MF);
    report_context(LI);
    for (unsigned comp = 0; comp != NumComp; ++comp) {
      errs() << comp << ": valnos";
      for (const VNInfo *I : LI.valnos)
        if (comp == ConEQ.getEqClass(I))
          errs() << ' ' << I->id;
      errs() << '\n';
    }
  }
}

namespace {

  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
  // value is zero.
  // We use a bool plus an integer to capture the stack state.
  struct StackStateOfBB {
    StackStateOfBB() = default;
    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
      ExitIsSetup(ExitSetup) {}

    // Can be negative, which means we are setting up a frame.
    int EntryValue = 0;
    int ExitValue = 0;
    bool EntryIsSetup = false;
    bool ExitIsSetup = false;
  };

} // end anonymous namespace

/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
/// by a FrameDestroy <n>, stack adjustments are identical on all
/// CFG edges to a merge point, and frame is destroyed at end of a return block.
void MachineVerifier::verifyStackFrame() {
  unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
  if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
    return;

  SmallVector<StackStateOfBB, 8> SPState;
  SPState.resize(MF->getNumBlockIDs());
  df_iterator_default_set<const MachineBasicBlock*> Reachable;

  // Visit the MBBs in DFS order.
  for (df_ext_iterator<const MachineFunction *,
                       df_iterator_default_set<const MachineBasicBlock *>>
       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
       DFI != DFE; ++DFI) {
    const MachineBasicBlock *MBB = *DFI;

    StackStateOfBB BBState;
    // Check the exit state of the DFS stack predecessor.
    if (DFI.getPathLength() >= 2) {
      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
      assert(Reachable.count(StackPred) &&
             "DFS stack predecessor is already visited.\n");
      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
      BBState.ExitValue = BBState.EntryValue;
      BBState.ExitIsSetup = BBState.EntryIsSetup;
    }

    // Update stack state by checking contents of MBB.
    for (const auto &I : *MBB) {
      if (I.getOpcode() == FrameSetupOpcode) {
        if (BBState.ExitIsSetup)
          report("FrameSetup is after another FrameSetup", &I);
        BBState.ExitValue -= TII->getFrameTotalSize(I);
        BBState.ExitIsSetup = true;
      }

      if (I.getOpcode() == FrameDestroyOpcode) {
        int Size = TII->getFrameTotalSize(I);
        if (!BBState.ExitIsSetup)
          report("FrameDestroy is not after a FrameSetup", &I);
        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
                                               BBState.ExitValue;
        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
          report("FrameDestroy <n> is after FrameSetup <m>", &I);
          errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
              << AbsSPAdj << ">.\n";
        }
        BBState.ExitValue += Size;
        BBState.ExitIsSetup = false;
      }
    }
    SPState[MBB->getNumber()] = BBState;

    // Make sure the exit state of any predecessor is consistent with the entry
    // state.
    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
      if (Reachable.count(Pred) &&
          (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
           SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
        report("The exit stack state of a predecessor is inconsistent.", MBB);
        errs() << "Predecessor " << printMBBReference(*Pred)
               << " has exit state (" << SPState[Pred->getNumber()].ExitValue
               << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
               << printMBBReference(*MBB) << " has entry state ("
               << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
      }
    }

    // Make sure the entry state of any successor is consistent with the exit
    // state.
    for (const MachineBasicBlock *Succ : MBB->successors()) {
      if (Reachable.count(Succ) &&
          (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
           SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
        report("The entry stack state of a successor is inconsistent.", MBB);
        errs() << "Successor " << printMBBReference(*Succ)
               << " has entry state (" << SPState[Succ->getNumber()].EntryValue
               << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
               << printMBBReference(*MBB) << " has exit state ("
               << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
      }
    }

    // Make sure a basic block with return ends with zero stack adjustment.
    if (!MBB->empty() && MBB->back().isReturn()) {
      if (BBState.ExitIsSetup)
        report("A return block ends with a FrameSetup.", MBB);
      if (BBState.ExitValue)
        report("A return block ends with a nonzero stack adjustment.", MBB);
    }
  }
}