aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h
blob: d778561db471cf9f8dad259110b2d638ccbc97f2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/DebugInfoMetadata.h"

#include "LiveDebugValues.h"

class TransferTracker;

// Forward dec of unit test class, so that we can peer into the LDV object.
class InstrRefLDVTest;

namespace LiveDebugValues {

class MLocTracker;

using namespace llvm;

/// Handle-class for a particular "location". This value-type uniquely
/// symbolises a register or stack location, allowing manipulation of locations
/// without concern for where that location is. Practically, this allows us to
/// treat the state of the machine at a particular point as an array of values,
/// rather than a map of values.
class LocIdx {
  unsigned Location;

  // Default constructor is private, initializing to an illegal location number.
  // Use only for "not an entry" elements in IndexedMaps.
  LocIdx() : Location(UINT_MAX) {}

public:
#define NUM_LOC_BITS 24
  LocIdx(unsigned L) : Location(L) {
    assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
  }

  static LocIdx MakeIllegalLoc() { return LocIdx(); }
  static LocIdx MakeTombstoneLoc() {
    LocIdx L = LocIdx();
    --L.Location;
    return L;
  }

  bool isIllegal() const { return Location == UINT_MAX; }

  uint64_t asU64() const { return Location; }

  bool operator==(unsigned L) const { return Location == L; }

  bool operator==(const LocIdx &L) const { return Location == L.Location; }

  bool operator!=(unsigned L) const { return !(*this == L); }

  bool operator!=(const LocIdx &L) const { return !(*this == L); }

  bool operator<(const LocIdx &Other) const {
    return Location < Other.Location;
  }
};

// The location at which a spilled value resides. It consists of a register and
// an offset.
struct SpillLoc {
  unsigned SpillBase;
  StackOffset SpillOffset;
  bool operator==(const SpillLoc &Other) const {
    return std::make_pair(SpillBase, SpillOffset) ==
           std::make_pair(Other.SpillBase, Other.SpillOffset);
  }
  bool operator<(const SpillLoc &Other) const {
    return std::make_tuple(SpillBase, SpillOffset.getFixed(),
                           SpillOffset.getScalable()) <
           std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
                           Other.SpillOffset.getScalable());
  }
};

/// Unique identifier for a value defined by an instruction, as a value type.
/// Casts back and forth to a uint64_t. Probably replacable with something less
/// bit-constrained. Each value identifies the instruction and machine location
/// where the value is defined, although there may be no corresponding machine
/// operand for it (ex: regmasks clobbering values). The instructions are
/// one-based, and definitions that are PHIs have instruction number zero.
///
/// The obvious limits of a 1M block function or 1M instruction blocks are
/// problematic; but by that point we should probably have bailed out of
/// trying to analyse the function.
class ValueIDNum {
  union {
    struct {
      uint64_t BlockNo : 20; /// The block where the def happens.
      uint64_t InstNo : 20;  /// The Instruction where the def happens.
                             /// One based, is distance from start of block.
      uint64_t LocNo
          : NUM_LOC_BITS; /// The machine location where the def happens.
    } s;
    uint64_t Value;
  } u;

  static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");

public:
  // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
  // of values to work.
  ValueIDNum() { u.Value = EmptyValue.asU64(); }

  ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
    u.s = {Block, Inst, Loc};
  }

  ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
    u.s = {Block, Inst, Loc.asU64()};
  }

  uint64_t getBlock() const { return u.s.BlockNo; }
  uint64_t getInst() const { return u.s.InstNo; }
  uint64_t getLoc() const { return u.s.LocNo; }
  bool isPHI() const { return u.s.InstNo == 0; }

  uint64_t asU64() const { return u.Value; }

  static ValueIDNum fromU64(uint64_t v) {
    ValueIDNum Val;
    Val.u.Value = v;
    return Val;
  }

  bool operator<(const ValueIDNum &Other) const {
    return asU64() < Other.asU64();
  }

  bool operator==(const ValueIDNum &Other) const {
    return u.Value == Other.u.Value;
  }

  bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }

  std::string asString(const std::string &mlocname) const {
    return Twine("Value{bb: ")
        .concat(Twine(u.s.BlockNo)
                    .concat(Twine(", inst: ")
                                .concat((u.s.InstNo ? Twine(u.s.InstNo)
                                                    : Twine("live-in"))
                                            .concat(Twine(", loc: ").concat(
                                                Twine(mlocname)))
                                            .concat(Twine("}")))))
        .str();
  }

  static ValueIDNum EmptyValue;
  static ValueIDNum TombstoneValue;
};

/// Thin wrapper around an integer -- designed to give more type safety to
/// spill location numbers.
class SpillLocationNo {
public:
  explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
  unsigned SpillNo;
  unsigned id() const { return SpillNo; }

  bool operator<(const SpillLocationNo &Other) const {
    return SpillNo < Other.SpillNo;
  }

  bool operator==(const SpillLocationNo &Other) const {
    return SpillNo == Other.SpillNo;
  }
  bool operator!=(const SpillLocationNo &Other) const {
    return !(*this == Other);
  }
};

/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
/// the the value, and Boolean of whether or not it's indirect.
class DbgValueProperties {
public:
  DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
      : DIExpr(DIExpr), Indirect(Indirect) {}

  /// Extract properties from an existing DBG_VALUE instruction.
  DbgValueProperties(const MachineInstr &MI) {
    assert(MI.isDebugValue());
    DIExpr = MI.getDebugExpression();
    Indirect = MI.getOperand(1).isImm();
  }

  bool operator==(const DbgValueProperties &Other) const {
    return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
  }

  bool operator!=(const DbgValueProperties &Other) const {
    return !(*this == Other);
  }

  const DIExpression *DIExpr;
  bool Indirect;
};

/// Class recording the (high level) _value_ of a variable. Identifies either
/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
/// This class also stores meta-information about how the value is qualified.
/// Used to reason about variable values when performing the second
/// (DebugVariable specific) dataflow analysis.
class DbgValue {
public:
  /// If Kind is Def, the value number that this value is based on. VPHIs set
  /// this field to EmptyValue if there is no machine-value for this VPHI, or
  /// the corresponding machine-value if there is one.
  ValueIDNum ID;
  /// If Kind is Const, the MachineOperand defining this value.
  Optional<MachineOperand> MO;
  /// For a NoVal or VPHI DbgValue, which block it was generated in.
  int BlockNo;

  /// Qualifiers for the ValueIDNum above.
  DbgValueProperties Properties;

  typedef enum {
    Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
    Def,   // This value is defined by an inst, or is a PHI value.
    Const, // A constant value contained in the MachineOperand field.
    VPHI,  // Incoming values to BlockNo differ, those values must be joined by
           // a PHI in this block.
    NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
           // before dominating blocks values are propagated in.
  } KindT;
  /// Discriminator for whether this is a constant or an in-program value.
  KindT Kind;

  DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
      : ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) {
    assert(Kind == Def);
  }

  DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
      : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo),
        Properties(Prop), Kind(Kind) {
    assert(Kind == NoVal || Kind == VPHI);
  }

  DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
      : ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop),
        Kind(Kind) {
    assert(Kind == Const);
  }

  DbgValue(const DbgValueProperties &Prop, KindT Kind)
    : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop),
      Kind(Kind) {
    assert(Kind == Undef &&
           "Empty DbgValue constructor must pass in Undef kind");
  }

#ifndef NDEBUG
  void dump(const MLocTracker *MTrack) const;
#endif

  bool operator==(const DbgValue &Other) const {
    if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
      return false;
    else if (Kind == Def && ID != Other.ID)
      return false;
    else if (Kind == NoVal && BlockNo != Other.BlockNo)
      return false;
    else if (Kind == Const)
      return MO->isIdenticalTo(*Other.MO);
    else if (Kind == VPHI && BlockNo != Other.BlockNo)
      return false;
    else if (Kind == VPHI && ID != Other.ID)
      return false;

    return true;
  }

  bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
};

class LocIdxToIndexFunctor {
public:
  using argument_type = LocIdx;
  unsigned operator()(const LocIdx &L) const { return L.asU64(); }
};

/// Tracker for what values are in machine locations. Listens to the Things
/// being Done by various instructions, and maintains a table of what machine
/// locations have what values (as defined by a ValueIDNum).
///
/// There are potentially a much larger number of machine locations on the
/// target machine than the actual working-set size of the function. On x86 for
/// example, we're extremely unlikely to want to track values through control
/// or debug registers. To avoid doing so, MLocTracker has several layers of
/// indirection going on, described below, to avoid unnecessarily tracking
/// any location.
///
/// Here's a sort of diagram of the indexes, read from the bottom up:
///
///           Size on stack   Offset on stack
///                 \              /
///          Stack Idx (Where in slot is this?)
///                         /
///                        /
/// Slot Num (%stack.0)   /
/// FrameIdx => SpillNum /
///              \      /
///           SpillID (int)              Register number (int)
///                      \                  /
///                      LocationID => LocIdx
///                                |
///                       LocIdx => ValueIDNum
///
/// The aim here is that the LocIdx => ValueIDNum vector is just an array of
/// values in numbered locations, so that later analyses can ignore whether the
/// location is a register or otherwise. To map a register / spill location to
/// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
/// build a LocationID for a stack slot, you need to combine identifiers for
/// which stack slot it is and where within that slot is being described.
///
/// Register mask operands cause trouble by technically defining every register;
/// various hacks are used to avoid tracking registers that are never read and
/// only written by regmasks.
class MLocTracker {
public:
  MachineFunction &MF;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const TargetLowering &TLI;

  /// IndexedMap type, mapping from LocIdx to ValueIDNum.
  using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;

  /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
  /// packed, entries only exist for locations that are being tracked.
  LocToValueType LocIdxToIDNum;

  /// "Map" of machine location IDs (i.e., raw register or spill number) to the
  /// LocIdx key / number for that location. There are always at least as many
  /// as the number of registers on the target -- if the value in the register
  /// is not being tracked, then the LocIdx value will be zero. New entries are
  /// appended if a new spill slot begins being tracked.
  /// This, and the corresponding reverse map persist for the analysis of the
  /// whole function, and is necessarying for decoding various vectors of
  /// values.
  std::vector<LocIdx> LocIDToLocIdx;

  /// Inverse map of LocIDToLocIdx.
  IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;

  /// When clobbering register masks, we chose to not believe the machine model
  /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
  /// keep a set of them here.
  SmallSet<Register, 8> SPAliases;

  /// Unique-ification of spill. Used to number them -- their LocID number is
  /// the index in SpillLocs minus one plus NumRegs.
  UniqueVector<SpillLoc> SpillLocs;

  // If we discover a new machine location, assign it an mphi with this
  // block number.
  unsigned CurBB;

  /// Cached local copy of the number of registers the target has.
  unsigned NumRegs;

  /// Number of slot indexes the target has -- distinct segments of a stack
  /// slot that can take on the value of a subregister, when a super-register
  /// is written to the stack.
  unsigned NumSlotIdxes;

  /// Collection of register mask operands that have been observed. Second part
  /// of pair indicates the instruction that they happened in. Used to
  /// reconstruct where defs happened if we start tracking a location later
  /// on.
  SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;

  /// Pair for describing a position within a stack slot -- first the size in
  /// bits, then the offset.
  typedef std::pair<unsigned short, unsigned short> StackSlotPos;

  /// Map from a size/offset pair describing a position in a stack slot, to a
  /// numeric identifier for that position. Allows easier identification of
  /// individual positions.
  DenseMap<StackSlotPos, unsigned> StackSlotIdxes;

  /// Inverse of StackSlotIdxes.
  DenseMap<unsigned, StackSlotPos> StackIdxesToPos;

  /// Iterator for locations and the values they contain. Dereferencing
  /// produces a struct/pair containing the LocIdx key for this location,
  /// and a reference to the value currently stored. Simplifies the process
  /// of seeking a particular location.
  class MLocIterator {
    LocToValueType &ValueMap;
    LocIdx Idx;

  public:
    class value_type {
    public:
      value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
      const LocIdx Idx;  /// Read-only index of this location.
      ValueIDNum &Value; /// Reference to the stored value at this location.
    };

    MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
        : ValueMap(ValueMap), Idx(Idx) {}

    bool operator==(const MLocIterator &Other) const {
      assert(&ValueMap == &Other.ValueMap);
      return Idx == Other.Idx;
    }

    bool operator!=(const MLocIterator &Other) const {
      return !(*this == Other);
    }

    void operator++() { Idx = LocIdx(Idx.asU64() + 1); }

    value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
  };

  MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
              const TargetRegisterInfo &TRI, const TargetLowering &TLI);

  /// Produce location ID number for a Register. Provides some small amount of
  /// type safety.
  /// \param Reg The register we're looking up.
  unsigned getLocID(Register Reg) { return Reg.id(); }

  /// Produce location ID number for a spill position.
  /// \param Spill The number of the spill we're fetching the location for.
  /// \param SpillSubReg Subregister within the spill we're addressing.
  unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
    unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
    unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
    return getLocID(Spill, {Size, Offs});
  }

  /// Produce location ID number for a spill position.
  /// \param Spill The number of the spill we're fetching the location for.
  /// \apram SpillIdx size/offset within the spill slot to be addressed.
  unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
    unsigned SlotNo = Spill.id() - 1;
    SlotNo *= NumSlotIdxes;
    assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end());
    SlotNo += StackSlotIdxes[Idx];
    SlotNo += NumRegs;
    return SlotNo;
  }

  /// Given a spill number, and a slot within the spill, calculate the ID number
  /// for that location.
  unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
    unsigned SlotNo = Spill.id() - 1;
    SlotNo *= NumSlotIdxes;
    SlotNo += Idx;
    SlotNo += NumRegs;
    return SlotNo;
  }

  /// Return the spill number that a location ID corresponds to.
  SpillLocationNo locIDToSpill(unsigned ID) const {
    assert(ID >= NumRegs);
    ID -= NumRegs;
    // Truncate away the index part, leaving only the spill number.
    ID /= NumSlotIdxes;
    return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
  }

  /// Returns the spill-slot size/offs that a location ID corresponds to.
  StackSlotPos locIDToSpillIdx(unsigned ID) const {
    assert(ID >= NumRegs);
    ID -= NumRegs;
    unsigned Idx = ID % NumSlotIdxes;
    return StackIdxesToPos.find(Idx)->second;
  }

  unsigned getNumLocs() const { return LocIdxToIDNum.size(); }

  /// Reset all locations to contain a PHI value at the designated block. Used
  /// sometimes for actual PHI values, othertimes to indicate the block entry
  /// value (before any more information is known).
  void setMPhis(unsigned NewCurBB) {
    CurBB = NewCurBB;
    for (auto Location : locations())
      Location.Value = {CurBB, 0, Location.Idx};
  }

  /// Load values for each location from array of ValueIDNums. Take current
  /// bbnum just in case we read a value from a hitherto untouched register.
  void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
    CurBB = NewCurBB;
    // Iterate over all tracked locations, and load each locations live-in
    // value into our local index.
    for (auto Location : locations())
      Location.Value = Locs[Location.Idx.asU64()];
  }

  /// Wipe any un-necessary location records after traversing a block.
  void reset() {
    // We could reset all the location values too; however either loadFromArray
    // or setMPhis should be called before this object is re-used. Just
    // clear Masks, they're definitely not needed.
    Masks.clear();
  }

  /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
  /// the information in this pass uninterpretable.
  void clear() {
    reset();
    LocIDToLocIdx.clear();
    LocIdxToLocID.clear();
    LocIdxToIDNum.clear();
    // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
    // 0
    SpillLocs = decltype(SpillLocs)();
    StackSlotIdxes.clear();
    StackIdxesToPos.clear();

    LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
  }

  /// Set a locaiton to a certain value.
  void setMLoc(LocIdx L, ValueIDNum Num) {
    assert(L.asU64() < LocIdxToIDNum.size());
    LocIdxToIDNum[L] = Num;
  }

  /// Read the value of a particular location
  ValueIDNum readMLoc(LocIdx L) {
    assert(L.asU64() < LocIdxToIDNum.size());
    return LocIdxToIDNum[L];
  }

  /// Create a LocIdx for an untracked register ID. Initialize it to either an
  /// mphi value representing a live-in, or a recent register mask clobber.
  LocIdx trackRegister(unsigned ID);

  LocIdx lookupOrTrackRegister(unsigned ID) {
    LocIdx &Index = LocIDToLocIdx[ID];
    if (Index.isIllegal())
      Index = trackRegister(ID);
    return Index;
  }

  /// Is register R currently tracked by MLocTracker?
  bool isRegisterTracked(Register R) {
    LocIdx &Index = LocIDToLocIdx[R];
    return !Index.isIllegal();
  }

  /// Record a definition of the specified register at the given block / inst.
  /// This doesn't take a ValueIDNum, because the definition and its location
  /// are synonymous.
  void defReg(Register R, unsigned BB, unsigned Inst) {
    unsigned ID = getLocID(R);
    LocIdx Idx = lookupOrTrackRegister(ID);
    ValueIDNum ValueID = {BB, Inst, Idx};
    LocIdxToIDNum[Idx] = ValueID;
  }

  /// Set a register to a value number. To be used if the value number is
  /// known in advance.
  void setReg(Register R, ValueIDNum ValueID) {
    unsigned ID = getLocID(R);
    LocIdx Idx = lookupOrTrackRegister(ID);
    LocIdxToIDNum[Idx] = ValueID;
  }

  ValueIDNum readReg(Register R) {
    unsigned ID = getLocID(R);
    LocIdx Idx = lookupOrTrackRegister(ID);
    return LocIdxToIDNum[Idx];
  }

  /// Reset a register value to zero / empty. Needed to replicate the
  /// VarLoc implementation where a copy to/from a register effectively
  /// clears the contents of the source register. (Values can only have one
  ///  machine location in VarLocBasedImpl).
  void wipeRegister(Register R) {
    unsigned ID = getLocID(R);
    LocIdx Idx = LocIDToLocIdx[ID];
    LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
  }

  /// Determine the LocIdx of an existing register.
  LocIdx getRegMLoc(Register R) {
    unsigned ID = getLocID(R);
    assert(ID < LocIDToLocIdx.size());
    assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
    return LocIDToLocIdx[ID];
  }

  /// Record a RegMask operand being executed. Defs any register we currently
  /// track, stores a pointer to the mask in case we have to account for it
  /// later.
  void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);

  /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
  /// Returns None when in scenarios where a spill slot could be tracked, but
  /// we would likely run into resource limitations.
  Optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);

  // Get LocIdx of a spill ID.
  LocIdx getSpillMLoc(unsigned SpillID) {
    assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
    return LocIDToLocIdx[SpillID];
  }

  /// Return true if Idx is a spill machine location.
  bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }

  MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }

  MLocIterator end() {
    return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
  }

  /// Return a range over all locations currently tracked.
  iterator_range<MLocIterator> locations() {
    return llvm::make_range(begin(), end());
  }

  std::string LocIdxToName(LocIdx Idx) const;

  std::string IDAsString(const ValueIDNum &Num) const;

#ifndef NDEBUG
  LLVM_DUMP_METHOD void dump();

  LLVM_DUMP_METHOD void dump_mloc_map();
#endif

  /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
  /// information in \pProperties, for variable Var. Don't insert it anywhere,
  /// just return the builder for it.
  MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
                              const DbgValueProperties &Properties);
};

/// Types for recording sets of variable fragments that overlap. For a given
/// local variable, we record all other fragments of that variable that could
/// overlap it, to reduce search time.
using FragmentOfVar =
    std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
using OverlapMap =
    DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;

/// Collection of DBG_VALUEs observed when traversing a block. Records each
/// variable and the value the DBG_VALUE refers to. Requires the machine value
/// location dataflow algorithm to have run already, so that values can be
/// identified.
class VLocTracker {
public:
  /// Map DebugVariable to the latest Value it's defined to have.
  /// Needs to be a MapVector because we determine order-in-the-input-MIR from
  /// the order in this container.
  /// We only retain the last DbgValue in each block for each variable, to
  /// determine the blocks live-out variable value. The Vars container forms the
  /// transfer function for this block, as part of the dataflow analysis. The
  /// movement of values between locations inside of a block is handled at a
  /// much later stage, in the TransferTracker class.
  MapVector<DebugVariable, DbgValue> Vars;
  SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes;
  MachineBasicBlock *MBB = nullptr;
  const OverlapMap &OverlappingFragments;
  DbgValueProperties EmptyProperties;

public:
  VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
      : OverlappingFragments(O), EmptyProperties(EmptyExpr, false) {}

  void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
              Optional<ValueIDNum> ID) {
    assert(MI.isDebugValue() || MI.isDebugRef());
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
    DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
                        : DbgValue(Properties, DbgValue::Undef);

    // Attempt insertion; overwrite if it's already mapped.
    auto Result = Vars.insert(std::make_pair(Var, Rec));
    if (!Result.second)
      Result.first->second = Rec;
    Scopes[Var] = MI.getDebugLoc().get();

    considerOverlaps(Var, MI.getDebugLoc().get());
  }

  void defVar(const MachineInstr &MI, const MachineOperand &MO) {
    // Only DBG_VALUEs can define constant-valued variables.
    assert(MI.isDebugValue());
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
    DbgValueProperties Properties(MI);
    DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);

    // Attempt insertion; overwrite if it's already mapped.
    auto Result = Vars.insert(std::make_pair(Var, Rec));
    if (!Result.second)
      Result.first->second = Rec;
    Scopes[Var] = MI.getDebugLoc().get();

    considerOverlaps(Var, MI.getDebugLoc().get());
  }

  void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
    auto Overlaps = OverlappingFragments.find(
        {Var.getVariable(), Var.getFragmentOrDefault()});
    if (Overlaps == OverlappingFragments.end())
      return;

    // Otherwise: terminate any overlapped variable locations.
    for (auto FragmentInfo : Overlaps->second) {
      // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
      // that it overlaps with everything, however its cannonical representation
      // in a DebugVariable is as "None".
      Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
      if (DebugVariable::isDefaultFragment(FragmentInfo))
        OptFragmentInfo = None;

      DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
                               Var.getInlinedAt());
      DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);

      // Attempt insertion; overwrite if it's already mapped.
      auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
      if (!Result.second)
        Result.first->second = Rec;
      Scopes[Overlapped] = Loc;
    }
  }

  void clear() {
    Vars.clear();
    Scopes.clear();
  }
};

// XXX XXX docs
class InstrRefBasedLDV : public LDVImpl {
public:
  friend class ::InstrRefLDVTest;

  using FragmentInfo = DIExpression::FragmentInfo;
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;

  // Helper while building OverlapMap, a map of all fragments seen for a given
  // DILocalVariable.
  using VarToFragments =
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;

  /// Machine location/value transfer function, a mapping of which locations
  /// are assigned which new values.
  using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;

  /// Live in/out structure for the variable values: a per-block map of
  /// variables to their values.
  using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;

  using VarAndLoc = std::pair<DebugVariable, DbgValue>;

  /// Type for a live-in value: the predecessor block, and its value.
  using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;

  /// Vector (per block) of a collection (inner smallvector) of live-ins.
  /// Used as the result type for the variable value dataflow problem.
  using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;

  /// Mapping from lexical scopes to a DILocation in that scope.
  using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;

  /// Mapping from lexical scopes to variables in that scope.
  using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>;

  /// Mapping from lexical scopes to blocks where variables in that scope are
  /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
  /// just a block where an assignment happens.
  using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;

private:
  MachineDominatorTree *DomTree;
  const TargetRegisterInfo *TRI;
  const MachineRegisterInfo *MRI;
  const TargetInstrInfo *TII;
  const TargetFrameLowering *TFI;
  const MachineFrameInfo *MFI;
  BitVector CalleeSavedRegs;
  LexicalScopes LS;
  TargetPassConfig *TPC;

  // An empty DIExpression. Used default / placeholder DbgValueProperties
  // objects, as we can't have null expressions.
  const DIExpression *EmptyExpr;

  /// Object to track machine locations as we step through a block. Could
  /// probably be a field rather than a pointer, as it's always used.
  MLocTracker *MTracker = nullptr;

  /// Number of the current block LiveDebugValues is stepping through.
  unsigned CurBB;

  /// Number of the current instruction LiveDebugValues is evaluating.
  unsigned CurInst;

  /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
  /// steps through a block. Reads the values at each location from the
  /// MLocTracker object.
  VLocTracker *VTracker = nullptr;

  /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
  /// between locations during stepping, creates new DBG_VALUEs when values move
  /// location.
  TransferTracker *TTracker = nullptr;

  /// Blocks which are artificial, i.e. blocks which exclusively contain
  /// instructions without DebugLocs, or with line 0 locations.
  SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;

  // Mapping of blocks to and from their RPOT order.
  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
  DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
  DenseMap<unsigned, unsigned> BBNumToRPO;

  /// Pair of MachineInstr, and its 1-based offset into the containing block.
  using InstAndNum = std::pair<const MachineInstr *, unsigned>;
  /// Map from debug instruction number to the MachineInstr labelled with that
  /// number, and its location within the function. Used to transform
  /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
  std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;

  /// Record of where we observed a DBG_PHI instruction.
  class DebugPHIRecord {
  public:
    uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
    MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
    ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
    LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.

    operator unsigned() const { return InstrNum; }
  };

  /// Map from instruction numbers defined by DBG_PHIs to a record of what that
  /// DBG_PHI read and where. Populated and edited during the machine value
  /// location problem -- we use LLVMs SSA Updater to fix changes by
  /// optimizations that destroy PHI instructions.
  SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;

  // Map of overlapping variable fragments.
  OverlapMap OverlapFragments;
  VarToFragments SeenFragments;

  /// Mapping of DBG_INSTR_REF instructions to their values, for those
  /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
  /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
  /// the result.
  DenseMap<MachineInstr *, Optional<ValueIDNum>> SeenDbgPHIs;

  /// True if we need to examine call instructions for stack clobbers. We
  /// normally assume that they don't clobber SP, but stack probes on Windows
  /// do.
  bool AdjustsStackInCalls = false;

  /// If AdjustsStackInCalls is true, this holds the name of the target's stack
  /// probe function, which is the function we expect will alter the stack
  /// pointer.
  StringRef StackProbeSymbolName;

  /// Tests whether this instruction is a spill to a stack slot.
  Optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
                                               MachineFunction *MF);

  /// Decide if @MI is a spill instruction and return true if it is. We use 2
  /// criteria to make this decision:
  /// - Is this instruction a store to a spill slot?
  /// - Is there a register operand that is both used and killed?
  /// TODO: Store optimization can fold spills into other stores (including
  /// other spills). We do not handle this yet (more than one memory operand).
  bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
                       unsigned &Reg);

  /// If a given instruction is identified as a spill, return the spill slot
  /// and set \p Reg to the spilled register.
  Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
                                          MachineFunction *MF, unsigned &Reg);

  /// Given a spill instruction, extract the spill slot information, ensure it's
  /// tracked, and return the spill number.
  Optional<SpillLocationNo>
  extractSpillBaseRegAndOffset(const MachineInstr &MI);

  /// Observe a single instruction while stepping through a block.
  void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
               ValueIDNum **MLiveIns = nullptr);

  /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferDebugValue(const MachineInstr &MI);

  /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
                             ValueIDNum **MLiveIns);

  /// Stores value-information about where this PHI occurred, and what
  /// instruction number is associated with it.
  /// \returns true if MI was recognized and processed.
  bool transferDebugPHI(MachineInstr &MI);

  /// Examines whether \p MI is copy instruction, and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferRegisterCopy(MachineInstr &MI);

  /// Examines whether \p MI is stack spill or restore  instruction, and
  /// notifies trackers. \returns true if MI was recognized and processed.
  bool transferSpillOrRestoreInst(MachineInstr &MI);

  /// Examines \p MI for any registers that it defines, and notifies trackers.
  void transferRegisterDef(MachineInstr &MI);

  /// Copy one location to the other, accounting for movement of subregisters
  /// too.
  void performCopy(Register Src, Register Dst);

  void accumulateFragmentMap(MachineInstr &MI);

  /// Determine the machine value number referred to by (potentially several)
  /// DBG_PHI instructions. Block duplication and tail folding can duplicate
  /// DBG_PHIs, shifting the position where values in registers merge, and
  /// forming another mini-ssa problem to solve.
  /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
  /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
  /// \returns The machine value number at position Here, or None.
  Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
                                      ValueIDNum **MLiveOuts,
                                      ValueIDNum **MLiveIns, MachineInstr &Here,
                                      uint64_t InstrNum);

  Optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
                                          ValueIDNum **MLiveOuts,
                                          ValueIDNum **MLiveIns,
                                          MachineInstr &Here,
                                          uint64_t InstrNum);

  /// Step through the function, recording register definitions and movements
  /// in an MLocTracker. Convert the observations into a per-block transfer
  /// function in \p MLocTransfer, suitable for using with the machine value
  /// location dataflow problem.
  void
  produceMLocTransferFunction(MachineFunction &MF,
                              SmallVectorImpl<MLocTransferMap> &MLocTransfer,
                              unsigned MaxNumBlocks);

  /// Solve the machine value location dataflow problem. Takes as input the
  /// transfer functions in \p MLocTransfer. Writes the output live-in and
  /// live-out arrays to the (initialized to zero) multidimensional arrays in
  /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
  /// number, the inner by LocIdx.
  void buildMLocValueMap(MachineFunction &MF, ValueIDNum **MInLocs,
                         ValueIDNum **MOutLocs,
                         SmallVectorImpl<MLocTransferMap> &MLocTransfer);

  /// Examine the stack indexes (i.e. offsets within the stack) to find the
  /// basic units of interference -- like reg units, but for the stack.
  void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);

  /// Install PHI values into the live-in array for each block, according to
  /// the IDF of each register.
  void placeMLocPHIs(MachineFunction &MF,
                     SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
                     ValueIDNum **MInLocs,
                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);

  /// Propagate variable values to blocks in the common case where there's
  /// only one value assigned to the variable. This function has better
  /// performance as it doesn't have to find the dominance frontier between
  /// different assignments.
  void placePHIsForSingleVarDefinition(
          const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
          MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
          const DebugVariable &Var, LiveInsT &Output);

  /// Calculate the iterated-dominance-frontier for a set of defs, using the
  /// existing LLVM facilities for this. Works for a single "value" or
  /// machine/variable location.
  /// \p AllBlocks Set of blocks where we might consume the value.
  /// \p DefBlocks Set of blocks where the value/location is defined.
  /// \p PHIBlocks Output set of blocks where PHIs must be placed.
  void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
                         const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
                         SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);

  /// Perform a control flow join (lattice value meet) of the values in machine
  /// locations at \p MBB. Follows the algorithm described in the file-comment,
  /// reading live-outs of predecessors from \p OutLocs, the current live ins
  /// from \p InLocs, and assigning the newly computed live ins back into
  /// \p InLocs. \returns two bools -- the first indicates whether a change
  /// was made, the second whether a lattice downgrade occurred. If the latter
  /// is true, revisiting this block is necessary.
  bool mlocJoin(MachineBasicBlock &MBB,
                SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
                ValueIDNum **OutLocs, ValueIDNum *InLocs);

  /// Produce a set of blocks that are in the current lexical scope. This means
  /// those blocks that contain instructions "in" the scope, blocks where
  /// assignments to variables in scope occur, and artificial blocks that are
  /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
  /// more commentry on what "in scope" means.
  /// \p DILoc A location in the scope that we're fetching blocks for.
  /// \p Output Set to put in-scope-blocks into.
  /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
  void
  getBlocksForScope(const DILocation *DILoc,
                    SmallPtrSetImpl<const MachineBasicBlock *> &Output,
                    const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);

  /// Solve the variable value dataflow problem, for a single lexical scope.
  /// Uses the algorithm from the file comment to resolve control flow joins
  /// using PHI placement and value propagation. Reads the locations of machine
  /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
  /// and reads the variable values transfer function from \p AllTheVlocs.
  /// Live-in and Live-out variable values are stored locally, with the live-ins
  /// permanently stored to \p Output once a fixedpoint is reached.
  /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
  /// that we should be tracking.
  /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
  /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
  /// locations through.
  void buildVLocValueMap(const DILocation *DILoc,
                    const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
                    SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
                    LiveInsT &Output, ValueIDNum **MOutLocs,
                    ValueIDNum **MInLocs,
                    SmallVectorImpl<VLocTracker> &AllTheVLocs);

  /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
  /// live-in values coming from predecessors live-outs, and replaces any PHIs
  /// already present in this blocks live-ins with a live-through value if the
  /// PHI isn't needed.
  /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
  /// \returns true if any live-ins change value, either from value propagation
  ///          or PHI elimination.
  bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
                SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
                DbgValue &LiveIn);

  /// For the given block and live-outs feeding into it, try to find a
  /// machine location where all the variable values join together.
  /// \returns Value ID of a machine PHI if an appropriate one is available.
  Optional<ValueIDNum>
  pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var,
              const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
              const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);

  /// Take collections of DBG_VALUE instructions stored in TTracker, and
  /// install them into their output blocks. Preserves a stable order of
  /// DBG_VALUEs produced (which would otherwise cause nondeterminism) through
  /// the AllVarsNumbering order.
  bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering);

  /// Boilerplate computation of some initial sets, artifical blocks and
  /// RPOT block ordering.
  void initialSetup(MachineFunction &MF);

  /// Produce a map of the last lexical scope that uses a block, using the
  /// scopes DFSOut number. Mapping is block-number to DFSOut.
  /// \p EjectionMap Pre-allocated vector in which to install the built ma.
  /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
  /// \p AssignBlocks Map of blocks where assignments happen for a scope.
  void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
                                 const ScopeToDILocT &ScopeToDILocation,
                                 ScopeToAssignBlocksT &AssignBlocks);

  /// When determining per-block variable values and emitting to DBG_VALUEs,
  /// this function explores by lexical scope depth. Doing so means that per
  /// block information can be fully computed before exploration finishes,
  /// allowing us to emit it and free data structures earlier than otherwise.
  /// It's also good for locality.
  bool depthFirstVLocAndEmit(
      unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
      const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks,
      LiveInsT &Output, ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
      SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
      DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
      const TargetPassConfig &TPC);

  bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
                    TargetPassConfig *TPC, unsigned InputBBLimit,
                    unsigned InputDbgValLimit) override;

public:
  /// Default construct and initialize the pass.
  InstrRefBasedLDV();

  LLVM_DUMP_METHOD
  void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;

  bool isCalleeSaved(LocIdx L) const;

  bool hasFoldedStackStore(const MachineInstr &MI) {
    // Instruction must have a memory operand that's a stack slot, and isn't
    // aliased, meaning it's a spill from regalloc instead of a variable.
    // If it's aliased, we can't guarantee its value.
    if (!MI.hasOneMemOperand())
      return false;
    auto *MemOperand = *MI.memoperands_begin();
    return MemOperand->isStore() &&
           MemOperand->getPseudoValue() &&
           MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
           && !MemOperand->getPseudoValue()->isAliased(MFI);
  }

  Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
};

} // namespace LiveDebugValues

namespace llvm {
using namespace LiveDebugValues;

template <> struct DenseMapInfo<LocIdx> {
  static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
  static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }

  static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }

  static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
};

template <> struct DenseMapInfo<ValueIDNum> {
  static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
  static inline ValueIDNum getTombstoneKey() {
    return ValueIDNum::TombstoneValue;
  }

  static unsigned getHashValue(const ValueIDNum &Val) {
    return hash_value(Val.asU64());
  }

  static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
    return A == B;
  }
};

} // end namespace llvm

#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */