aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
blob: 6af5f07d801ac623d13024be4a3e7df2930eb998 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file InstrRefBasedImpl.cpp
///
/// This is a separate implementation of LiveDebugValues, see
/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
///
/// This pass propagates variable locations between basic blocks, resolving
/// control flow conflicts between them. The problem is SSA construction, where
/// each debug instruction assigns the *value* that a variable has, and every
/// instruction where the variable is in scope uses that variable. The resulting
/// map of instruction-to-value is then translated into a register (or spill)
/// location for each variable over each instruction.
///
/// The primary difference from normal SSA construction is that we cannot
/// _create_ PHI values that contain variable values. CodeGen has already
/// completed, and we can't alter it just to make debug-info complete. Thus:
/// we can identify function positions where we would like a PHI value for a
/// variable, but must search the MachineFunction to see whether such a PHI is
/// available. If no such PHI exists, the variable location must be dropped.
///
/// To achieve this, we perform two kinds of analysis. First, we identify
/// every value defined by every instruction (ignoring those that only move
/// another value), then re-compute an SSA-form representation of the
/// MachineFunction, using value propagation to eliminate any un-necessary
/// PHI values. This gives us a map of every value computed in the function,
/// and its location within the register file / stack.
///
/// Secondly, for each variable we perform the same analysis, where each debug
/// instruction is considered a def, and every instruction where the variable
/// is in lexical scope as a use. Value propagation is used again to eliminate
/// any un-necessary PHIs. This gives us a map of each variable to the value
/// it should have in a block.
///
/// Once both are complete, we have two maps for each block:
///  * Variables to the values they should have,
///  * Values to the register / spill slot they are located in.
/// After which we can marry-up variable values with a location, and emit
/// DBG_VALUE instructions specifying those locations. Variable locations may
/// be dropped in this process due to the desired variable value not being
/// resident in any machine location, or because there is no PHI value in any
/// location that accurately represents the desired value.  The building of
/// location lists for each block is left to DbgEntityHistoryCalculator.
///
/// This pass is kept efficient because the size of the first SSA problem
/// is proportional to the working-set size of the function, which the compiler
/// tries to keep small. (It's also proportional to the number of blocks).
/// Additionally, we repeatedly perform the second SSA problem analysis with
/// only the variables and blocks in a single lexical scope, exploiting their
/// locality.
///
/// ### Terminology
///
/// A machine location is a register or spill slot, a value is something that's
/// defined by an instruction or PHI node, while a variable value is the value
/// assigned to a variable. A variable location is a machine location, that must
/// contain the appropriate variable value. A value that is a PHI node is
/// occasionally called an mphi.
///
/// The first SSA problem is the "machine value location" problem,
/// because we're determining which machine locations contain which values.
/// The "locations" are constant: what's unknown is what value they contain.
///
/// The second SSA problem (the one for variables) is the "variable value
/// problem", because it's determining what values a variable has, rather than
/// what location those values are placed in.
///
/// TODO:
///   Overlapping fragments
///   Entry values
///   Add back DEBUG statements for debugging this
///   Collect statistics
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits.h>
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>

#include "InstrRefBasedImpl.h"
#include "LiveDebugValues.h"

using namespace llvm;
using namespace LiveDebugValues;

// SSAUpdaterImple sets DEBUG_TYPE, change it.
#undef DEBUG_TYPE
#define DEBUG_TYPE "livedebugvalues"

// Act more like the VarLoc implementation, by propagating some locations too
// far and ignoring some transfers.
static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
                                   cl::desc("Act like old LiveDebugValues did"),
                                   cl::init(false));

// Limit for the maximum number of stack slots we should track, past which we
// will ignore any spills. InstrRefBasedLDV gathers detailed information on all
// stack slots which leads to high memory consumption, and in some scenarios
// (such as asan with very many locals) the working set of the function can be
// very large, causing many spills. In these scenarios, it is very unlikely that
// the developer has hundreds of variables live at the same time that they're
// carefully thinking about -- instead, they probably autogenerated the code.
// When this happens, gracefully stop tracking excess spill slots, rather than
// consuming all the developer's memory.
static cl::opt<unsigned>
    StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
                         cl::desc("livedebugvalues-stack-ws-limit"),
                         cl::init(250));

/// Tracker for converting machine value locations and variable values into
/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
/// specifying block live-in locations and transfers within blocks.
///
/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
/// and must be initialized with the set of variable values that are live-in to
/// the block. The caller then repeatedly calls process(). TransferTracker picks
/// out variable locations for the live-in variable values (if there _is_ a
/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
/// stepped through, transfers of values between machine locations are
/// identified and if profitable, a DBG_VALUE created.
///
/// This is where debug use-before-defs would be resolved: a variable with an
/// unavailable value could materialize in the middle of a block, when the
/// value becomes available. Or, we could detect clobbers and re-specify the
/// variable in a backup location. (XXX these are unimplemented).
class TransferTracker {
public:
  const TargetInstrInfo *TII;
  const TargetLowering *TLI;
  /// This machine location tracker is assumed to always contain the up-to-date
  /// value mapping for all machine locations. TransferTracker only reads
  /// information from it. (XXX make it const?)
  MLocTracker *MTracker;
  MachineFunction &MF;
  bool ShouldEmitDebugEntryValues;

  /// Record of all changes in variable locations at a block position. Awkwardly
  /// we allow inserting either before or after the point: MBB != nullptr
  /// indicates it's before, otherwise after.
  struct Transfer {
    MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
    MachineBasicBlock *MBB; /// non-null if we should insert after.
    SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
  };

  struct LocAndProperties {
    LocIdx Loc;
    DbgValueProperties Properties;
  };

  /// Collection of transfers (DBG_VALUEs) to be inserted.
  SmallVector<Transfer, 32> Transfers;

  /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
  /// between TransferTrackers view of variable locations and MLocTrackers. For
  /// example, MLocTracker observes all clobbers, but TransferTracker lazily
  /// does not.
  SmallVector<ValueIDNum, 32> VarLocs;

  /// Map from LocIdxes to which DebugVariables are based that location.
  /// Mantained while stepping through the block. Not accurate if
  /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
  DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;

  /// Map from DebugVariable to it's current location and qualifying meta
  /// information. To be used in conjunction with ActiveMLocs to construct
  /// enough information for the DBG_VALUEs for a particular LocIdx.
  DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;

  /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
  SmallVector<MachineInstr *, 4> PendingDbgValues;

  /// Record of a use-before-def: created when a value that's live-in to the
  /// current block isn't available in any machine location, but it will be
  /// defined in this block.
  struct UseBeforeDef {
    /// Value of this variable, def'd in block.
    ValueIDNum ID;
    /// Identity of this variable.
    DebugVariable Var;
    /// Additional variable properties.
    DbgValueProperties Properties;
  };

  /// Map from instruction index (within the block) to the set of UseBeforeDefs
  /// that become defined at that instruction.
  DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;

  /// The set of variables that are in UseBeforeDefs and can become a location
  /// once the relevant value is defined. An element being erased from this
  /// collection prevents the use-before-def materializing.
  DenseSet<DebugVariable> UseBeforeDefVariables;

  const TargetRegisterInfo &TRI;
  const BitVector &CalleeSavedRegs;

  TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
                  MachineFunction &MF, const TargetRegisterInfo &TRI,
                  const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
      : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
        CalleeSavedRegs(CalleeSavedRegs) {
    TLI = MF.getSubtarget().getTargetLowering();
    auto &TM = TPC.getTM<TargetMachine>();
    ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
  }

  /// Load object with live-in variable values. \p mlocs contains the live-in
  /// values in each machine location, while \p vlocs the live-in variable
  /// values. This method picks variable locations for the live-in variables,
  /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
  /// object fields to track variable locations as we step through the block.
  /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
  void
  loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
             const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
             unsigned NumLocs) {
    ActiveMLocs.clear();
    ActiveVLocs.clear();
    VarLocs.clear();
    VarLocs.reserve(NumLocs);
    UseBeforeDefs.clear();
    UseBeforeDefVariables.clear();

    auto isCalleeSaved = [&](LocIdx L) {
      unsigned Reg = MTracker->LocIdxToLocID[L];
      if (Reg >= MTracker->NumRegs)
        return false;
      for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
        if (CalleeSavedRegs.test(*RAI))
          return true;
      return false;
    };

    // Map of the preferred location for each value.
    DenseMap<ValueIDNum, LocIdx> ValueToLoc;

    // Initialized the preferred-location map with illegal locations, to be
    // filled in later.
    for (auto &VLoc : VLocs)
      if (VLoc.second.Kind == DbgValue::Def)
        ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()});

    ActiveMLocs.reserve(VLocs.size());
    ActiveVLocs.reserve(VLocs.size());

    // Produce a map of value numbers to the current machine locs they live
    // in. When emulating VarLocBasedImpl, there should only be one
    // location; when not, we get to pick.
    for (auto Location : MTracker->locations()) {
      LocIdx Idx = Location.Idx;
      ValueIDNum &VNum = MLocs[Idx.asU64()];
      VarLocs.push_back(VNum);

      // Is there a variable that wants a location for this value? If not, skip.
      auto VIt = ValueToLoc.find(VNum);
      if (VIt == ValueToLoc.end())
        continue;

      LocIdx CurLoc = VIt->second;
      // In order of preference, pick:
      //  * Callee saved registers,
      //  * Other registers,
      //  * Spill slots.
      if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
          (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
        // Insert, or overwrite if insertion failed.
        VIt->second = Idx;
      }
    }

    // Now map variables to their picked LocIdxes.
    for (const auto &Var : VLocs) {
      if (Var.second.Kind == DbgValue::Const) {
        PendingDbgValues.push_back(
            emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
        continue;
      }

      // If the value has no location, we can't make a variable location.
      const ValueIDNum &Num = Var.second.ID;
      auto ValuesPreferredLoc = ValueToLoc.find(Num);
      if (ValuesPreferredLoc->second.isIllegal()) {
        // If it's a def that occurs in this block, register it as a
        // use-before-def to be resolved as we step through the block.
        if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
          addUseBeforeDef(Var.first, Var.second.Properties, Num);
        else
          recoverAsEntryValue(Var.first, Var.second.Properties, Num);
        continue;
      }

      LocIdx M = ValuesPreferredLoc->second;
      auto NewValue = LocAndProperties{M, Var.second.Properties};
      auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
      if (!Result.second)
        Result.first->second = NewValue;
      ActiveMLocs[M].insert(Var.first);
      PendingDbgValues.push_back(
          MTracker->emitLoc(M, Var.first, Var.second.Properties));
    }
    flushDbgValues(MBB.begin(), &MBB);
  }

  /// Record that \p Var has value \p ID, a value that becomes available
  /// later in the function.
  void addUseBeforeDef(const DebugVariable &Var,
                       const DbgValueProperties &Properties, ValueIDNum ID) {
    UseBeforeDef UBD = {ID, Var, Properties};
    UseBeforeDefs[ID.getInst()].push_back(UBD);
    UseBeforeDefVariables.insert(Var);
  }

  /// After the instruction at index \p Inst and position \p pos has been
  /// processed, check whether it defines a variable value in a use-before-def.
  /// If so, and the variable value hasn't changed since the start of the
  /// block, create a DBG_VALUE.
  void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
    auto MIt = UseBeforeDefs.find(Inst);
    if (MIt == UseBeforeDefs.end())
      return;

    for (auto &Use : MIt->second) {
      LocIdx L = Use.ID.getLoc();

      // If something goes very wrong, we might end up labelling a COPY
      // instruction or similar with an instruction number, where it doesn't
      // actually define a new value, instead it moves a value. In case this
      // happens, discard.
      if (MTracker->readMLoc(L) != Use.ID)
        continue;

      // If a different debug instruction defined the variable value / location
      // since the start of the block, don't materialize this use-before-def.
      if (!UseBeforeDefVariables.count(Use.Var))
        continue;

      PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
    }
    flushDbgValues(pos, nullptr);
  }

  /// Helper to move created DBG_VALUEs into Transfers collection.
  void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
    if (PendingDbgValues.size() == 0)
      return;

    // Pick out the instruction start position.
    MachineBasicBlock::instr_iterator BundleStart;
    if (MBB && Pos == MBB->begin())
      BundleStart = MBB->instr_begin();
    else
      BundleStart = getBundleStart(Pos->getIterator());

    Transfers.push_back({BundleStart, MBB, PendingDbgValues});
    PendingDbgValues.clear();
  }

  bool isEntryValueVariable(const DebugVariable &Var,
                            const DIExpression *Expr) const {
    if (!Var.getVariable()->isParameter())
      return false;

    if (Var.getInlinedAt())
      return false;

    if (Expr->getNumElements() > 0)
      return false;

    return true;
  }

  bool isEntryValueValue(const ValueIDNum &Val) const {
    // Must be in entry block (block number zero), and be a PHI / live-in value.
    if (Val.getBlock() || !Val.isPHI())
      return false;

    // Entry values must enter in a register.
    if (MTracker->isSpill(Val.getLoc()))
      return false;

    Register SP = TLI->getStackPointerRegisterToSaveRestore();
    Register FP = TRI.getFrameRegister(MF);
    Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
    return Reg != SP && Reg != FP;
  }

  bool recoverAsEntryValue(const DebugVariable &Var,
                           const DbgValueProperties &Prop,
                           const ValueIDNum &Num) {
    // Is this variable location a candidate to be an entry value. First,
    // should we be trying this at all?
    if (!ShouldEmitDebugEntryValues)
      return false;

    // Is the variable appropriate for entry values (i.e., is a parameter).
    if (!isEntryValueVariable(Var, Prop.DIExpr))
      return false;

    // Is the value assigned to this variable still the entry value?
    if (!isEntryValueValue(Num))
      return false;

    // Emit a variable location using an entry value expression.
    DIExpression *NewExpr =
        DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
    Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
    MachineOperand MO = MachineOperand::CreateReg(Reg, false);

    PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
    return true;
  }

  /// Change a variable value after encountering a DBG_VALUE inside a block.
  void redefVar(const MachineInstr &MI) {
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
    DbgValueProperties Properties(MI);

    const MachineOperand &MO = MI.getOperand(0);

    // Ignore non-register locations, we don't transfer those.
    if (!MO.isReg() || MO.getReg() == 0) {
      auto It = ActiveVLocs.find(Var);
      if (It != ActiveVLocs.end()) {
        ActiveMLocs[It->second.Loc].erase(Var);
        ActiveVLocs.erase(It);
     }
      // Any use-before-defs no longer apply.
      UseBeforeDefVariables.erase(Var);
      return;
    }

    Register Reg = MO.getReg();
    LocIdx NewLoc = MTracker->getRegMLoc(Reg);
    redefVar(MI, Properties, NewLoc);
  }

  /// Handle a change in variable location within a block. Terminate the
  /// variables current location, and record the value it now refers to, so
  /// that we can detect location transfers later on.
  void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
                Optional<LocIdx> OptNewLoc) {
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
    // Any use-before-defs no longer apply.
    UseBeforeDefVariables.erase(Var);

    // Erase any previous location,
    auto It = ActiveVLocs.find(Var);
    if (It != ActiveVLocs.end())
      ActiveMLocs[It->second.Loc].erase(Var);

    // If there _is_ no new location, all we had to do was erase.
    if (!OptNewLoc)
      return;
    LocIdx NewLoc = *OptNewLoc;

    // Check whether our local copy of values-by-location in #VarLocs is out of
    // date. Wipe old tracking data for the location if it's been clobbered in
    // the meantime.
    if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
      for (auto &P : ActiveMLocs[NewLoc]) {
        ActiveVLocs.erase(P);
      }
      ActiveMLocs[NewLoc.asU64()].clear();
      VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
    }

    ActiveMLocs[NewLoc].insert(Var);
    if (It == ActiveVLocs.end()) {
      ActiveVLocs.insert(
          std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
    } else {
      It->second.Loc = NewLoc;
      It->second.Properties = Properties;
    }
  }

  /// Account for a location \p mloc being clobbered. Examine the variable
  /// locations that will be terminated: and try to recover them by using
  /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
  /// explicitly terminate a location if it can't be recovered.
  void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
                   bool MakeUndef = true) {
    auto ActiveMLocIt = ActiveMLocs.find(MLoc);
    if (ActiveMLocIt == ActiveMLocs.end())
      return;

    // What was the old variable value?
    ValueIDNum OldValue = VarLocs[MLoc.asU64()];
    VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;

    // Examine the remaining variable locations: if we can find the same value
    // again, we can recover the location.
    Optional<LocIdx> NewLoc = None;
    for (auto Loc : MTracker->locations())
      if (Loc.Value == OldValue)
        NewLoc = Loc.Idx;

    // If there is no location, and we weren't asked to make the variable
    // explicitly undef, then stop here.
    if (!NewLoc && !MakeUndef) {
      // Try and recover a few more locations with entry values.
      for (auto &Var : ActiveMLocIt->second) {
        auto &Prop = ActiveVLocs.find(Var)->second.Properties;
        recoverAsEntryValue(Var, Prop, OldValue);
      }
      flushDbgValues(Pos, nullptr);
      return;
    }

    // Examine all the variables based on this location.
    DenseSet<DebugVariable> NewMLocs;
    for (auto &Var : ActiveMLocIt->second) {
      auto ActiveVLocIt = ActiveVLocs.find(Var);
      // Re-state the variable location: if there's no replacement then NewLoc
      // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
      // identifying the alternative location will be emitted.
      const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
      PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));

      // Update machine locations <=> variable locations maps. Defer updating
      // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
      if (!NewLoc) {
        ActiveVLocs.erase(ActiveVLocIt);
      } else {
        ActiveVLocIt->second.Loc = *NewLoc;
        NewMLocs.insert(Var);
      }
    }

    // Commit any deferred ActiveMLoc changes.
    if (!NewMLocs.empty())
      for (auto &Var : NewMLocs)
        ActiveMLocs[*NewLoc].insert(Var);

    // We lazily track what locations have which values; if we've found a new
    // location for the clobbered value, remember it.
    if (NewLoc)
      VarLocs[NewLoc->asU64()] = OldValue;

    flushDbgValues(Pos, nullptr);

    // Re-find ActiveMLocIt, iterator could have been invalidated.
    ActiveMLocIt = ActiveMLocs.find(MLoc);
    ActiveMLocIt->second.clear();
  }

  /// Transfer variables based on \p Src to be based on \p Dst. This handles
  /// both register copies as well as spills and restores. Creates DBG_VALUEs
  /// describing the movement.
  void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
    // Does Src still contain the value num we expect? If not, it's been
    // clobbered in the meantime, and our variable locations are stale.
    if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
      return;

    // assert(ActiveMLocs[Dst].size() == 0);
    //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?

    // Move set of active variables from one location to another.
    auto MovingVars = ActiveMLocs[Src];
    ActiveMLocs[Dst] = MovingVars;
    VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];

    // For each variable based on Src; create a location at Dst.
    for (auto &Var : MovingVars) {
      auto ActiveVLocIt = ActiveVLocs.find(Var);
      assert(ActiveVLocIt != ActiveVLocs.end());
      ActiveVLocIt->second.Loc = Dst;

      MachineInstr *MI =
          MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
      PendingDbgValues.push_back(MI);
    }
    ActiveMLocs[Src].clear();
    flushDbgValues(Pos, nullptr);

    // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
    // about the old location.
    if (EmulateOldLDV)
      VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
  }

  MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
                                const DebugVariable &Var,
                                const DbgValueProperties &Properties) {
    DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
                                  Var.getVariable()->getScope(),
                                  const_cast<DILocation *>(Var.getInlinedAt()));
    auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
    MIB.add(MO);
    if (Properties.Indirect)
      MIB.addImm(0);
    else
      MIB.addReg(0);
    MIB.addMetadata(Var.getVariable());
    MIB.addMetadata(Properties.DIExpr);
    return MIB;
  }
};

//===----------------------------------------------------------------------===//
//            Implementation
//===----------------------------------------------------------------------===//

ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};

#ifndef NDEBUG
void DbgValue::dump(const MLocTracker *MTrack) const {
  if (Kind == Const) {
    MO->dump();
  } else if (Kind == NoVal) {
    dbgs() << "NoVal(" << BlockNo << ")";
  } else if (Kind == VPHI) {
    dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
  } else {
    assert(Kind == Def);
    dbgs() << MTrack->IDAsString(ID);
  }
  if (Properties.Indirect)
    dbgs() << " indir";
  if (Properties.DIExpr)
    dbgs() << " " << *Properties.DIExpr;
}
#endif

MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
                         const TargetRegisterInfo &TRI,
                         const TargetLowering &TLI)
    : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
      LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
  NumRegs = TRI.getNumRegs();
  reset();
  LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
  assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure

  // Always track SP. This avoids the implicit clobbering caused by regmasks
  // from affectings its values. (LiveDebugValues disbelieves calls and
  // regmasks that claim to clobber SP).
  Register SP = TLI.getStackPointerRegisterToSaveRestore();
  if (SP) {
    unsigned ID = getLocID(SP);
    (void)lookupOrTrackRegister(ID);

    for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
      SPAliases.insert(*RAI);
  }

  // Build some common stack positions -- full registers being spilt to the
  // stack.
  StackSlotIdxes.insert({{8, 0}, 0});
  StackSlotIdxes.insert({{16, 0}, 1});
  StackSlotIdxes.insert({{32, 0}, 2});
  StackSlotIdxes.insert({{64, 0}, 3});
  StackSlotIdxes.insert({{128, 0}, 4});
  StackSlotIdxes.insert({{256, 0}, 5});
  StackSlotIdxes.insert({{512, 0}, 6});

  // Traverse all the subregister idxes, and ensure there's an index for them.
  // Duplicates are no problem: we're interested in their position in the
  // stack slot, we don't want to type the slot.
  for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
    unsigned Size = TRI.getSubRegIdxSize(I);
    unsigned Offs = TRI.getSubRegIdxOffset(I);
    unsigned Idx = StackSlotIdxes.size();

    // Some subregs have -1, -2 and so forth fed into their fields, to mean
    // special backend things. Ignore those.
    if (Size > 60000 || Offs > 60000)
      continue;

    StackSlotIdxes.insert({{Size, Offs}, Idx});
  }

  for (auto &Idx : StackSlotIdxes)
    StackIdxesToPos[Idx.second] = Idx.first;

  NumSlotIdxes = StackSlotIdxes.size();
}

LocIdx MLocTracker::trackRegister(unsigned ID) {
  assert(ID != 0);
  LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
  LocIdxToIDNum.grow(NewIdx);
  LocIdxToLocID.grow(NewIdx);

  // Default: it's an mphi.
  ValueIDNum ValNum = {CurBB, 0, NewIdx};
  // Was this reg ever touched by a regmask?
  for (const auto &MaskPair : reverse(Masks)) {
    if (MaskPair.first->clobbersPhysReg(ID)) {
      // There was an earlier def we skipped.
      ValNum = {CurBB, MaskPair.second, NewIdx};
      break;
    }
  }

  LocIdxToIDNum[NewIdx] = ValNum;
  LocIdxToLocID[NewIdx] = ID;
  return NewIdx;
}

void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
                               unsigned InstID) {
  // Def any register we track have that isn't preserved. The regmask
  // terminates the liveness of a register, meaning its value can't be
  // relied upon -- we represent this by giving it a new value.
  for (auto Location : locations()) {
    unsigned ID = LocIdxToLocID[Location.Idx];
    // Don't clobber SP, even if the mask says it's clobbered.
    if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
      defReg(ID, CurBB, InstID);
  }
  Masks.push_back(std::make_pair(MO, InstID));
}

Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
  SpillLocationNo SpillID(SpillLocs.idFor(L));

  if (SpillID.id() == 0) {
    // If there is no location, and we have reached the limit of how many stack
    // slots to track, then don't track this one.
    if (SpillLocs.size() >= StackWorkingSetLimit)
      return None;

    // Spill location is untracked: create record for this one, and all
    // subregister slots too.
    SpillID = SpillLocationNo(SpillLocs.insert(L));
    for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
      unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
      LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
      LocIdxToIDNum.grow(Idx);
      LocIdxToLocID.grow(Idx);
      LocIDToLocIdx.push_back(Idx);
      LocIdxToLocID[Idx] = L;
      // Initialize to PHI value; corresponds to the location's live-in value
      // during transfer function construction.
      LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
    }
  }
  return SpillID;
}

std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
  unsigned ID = LocIdxToLocID[Idx];
  if (ID >= NumRegs) {
    StackSlotPos Pos = locIDToSpillIdx(ID);
    ID -= NumRegs;
    unsigned Slot = ID / NumSlotIdxes;
    return Twine("slot ")
        .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
        .concat(Twine(" offs ").concat(Twine(Pos.second))))))
        .str();
  } else {
    return TRI.getRegAsmName(ID).str();
  }
}

std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
  std::string DefName = LocIdxToName(Num.getLoc());
  return Num.asString(DefName);
}

#ifndef NDEBUG
LLVM_DUMP_METHOD void MLocTracker::dump() {
  for (auto Location : locations()) {
    std::string MLocName = LocIdxToName(Location.Value.getLoc());
    std::string DefName = Location.Value.asString(MLocName);
    dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
  }
}

LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
  for (auto Location : locations()) {
    std::string foo = LocIdxToName(Location.Idx);
    dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
  }
}
#endif

MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
                                         const DebugVariable &Var,
                                         const DbgValueProperties &Properties) {
  DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
                                Var.getVariable()->getScope(),
                                const_cast<DILocation *>(Var.getInlinedAt()));
  auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));

  const DIExpression *Expr = Properties.DIExpr;
  if (!MLoc) {
    // No location -> DBG_VALUE $noreg
    MIB.addReg(0);
    MIB.addReg(0);
  } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
    unsigned LocID = LocIdxToLocID[*MLoc];
    SpillLocationNo SpillID = locIDToSpill(LocID);
    StackSlotPos StackIdx = locIDToSpillIdx(LocID);
    unsigned short Offset = StackIdx.second;

    // TODO: support variables that are located in spill slots, with non-zero
    // offsets from the start of the spill slot. It would require some more
    // complex DIExpression calculations. This doesn't seem to be produced by
    // LLVM right now, so don't try and support it.
    // Accept no-subregister slots and subregisters where the offset is zero.
    // The consumer should already have type information to work out how large
    // the variable is.
    if (Offset == 0) {
      const SpillLoc &Spill = SpillLocs[SpillID.id()];
      Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
                                         Spill.SpillOffset);
      unsigned Base = Spill.SpillBase;
      MIB.addReg(Base);
      MIB.addImm(0);

      // Being on the stack makes this location indirect; if it was _already_
      // indirect though, we need to add extra indirection. See this test for
      // a scenario where this happens:
      //     llvm/test/DebugInfo/X86/spill-nontrivial-param.ll
      if (Properties.Indirect) {
        std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
        Expr = DIExpression::append(Expr, Elts);
      }
    } else {
      // This is a stack location with a weird subregister offset: emit an undef
      // DBG_VALUE instead.
      MIB.addReg(0);
      MIB.addReg(0);
    }
  } else {
    // Non-empty, non-stack slot, must be a plain register.
    unsigned LocID = LocIdxToLocID[*MLoc];
    MIB.addReg(LocID);
    if (Properties.Indirect)
      MIB.addImm(0);
    else
      MIB.addReg(0);
  }

  MIB.addMetadata(Var.getVariable());
  MIB.addMetadata(Expr);
  return MIB;
}

/// Default construct and initialize the pass.
InstrRefBasedLDV::InstrRefBasedLDV() {}

bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
  unsigned Reg = MTracker->LocIdxToLocID[L];
  for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
    if (CalleeSavedRegs.test(*RAI))
      return true;
  return false;
}

//===----------------------------------------------------------------------===//
//            Debug Range Extension Implementation
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
// Something to restore in the future.
// void InstrRefBasedLDV::printVarLocInMBB(..)
#endif

Optional<SpillLocationNo>
InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
  assert(MI.hasOneMemOperand() &&
         "Spill instruction does not have exactly one memory operand?");
  auto MMOI = MI.memoperands_begin();
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
         "Inconsistent memory operand in spill instruction");
  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
  const MachineBasicBlock *MBB = MI.getParent();
  Register Reg;
  StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
  return MTracker->getOrTrackSpillLoc({Reg, Offset});
}

Optional<LocIdx>
InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
  Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
  if (!SpillLoc)
    return None;

  // Where in the stack slot is this value defined -- i.e., what size of value
  // is this? An important question, because it could be loaded into a register
  // from the stack at some point. Happily the memory operand will tell us
  // the size written to the stack.
  auto *MemOperand = *MI.memoperands_begin();
  unsigned SizeInBits = MemOperand->getSizeInBits();

  // Find that position in the stack indexes we're tracking.
  auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
  if (IdxIt == MTracker->StackSlotIdxes.end())
    // That index is not tracked. This is suprising, and unlikely to ever
    // occur, but the safe action is to indicate the variable is optimised out.
    return None;

  unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
  return MTracker->getSpillMLoc(SpillID);
}

/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
  if (!MI.isDebugValue())
    return false;

  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  const DILocation *DebugLoc = MI.getDebugLoc();
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
         "Expected inlined-at fields to agree");

  DebugVariable V(Var, Expr, InlinedAt);
  DbgValueProperties Properties(MI);

  // If there are no instructions in this lexical scope, do no location tracking
  // at all, this variable shouldn't get a legitimate location range.
  auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
  if (Scope == nullptr)
    return true; // handled it; by doing nothing

  // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
  // contribute to locations in this block, but don't propagate further.
  // Interpret it like a DBG_VALUE $noreg.
  if (MI.isDebugValueList()) {
    if (VTracker)
      VTracker->defVar(MI, Properties, None);
    if (TTracker)
      TTracker->redefVar(MI, Properties, None);
    return true;
  }

  const MachineOperand &MO = MI.getOperand(0);

  // MLocTracker needs to know that this register is read, even if it's only
  // read by a debug inst.
  if (MO.isReg() && MO.getReg() != 0)
    (void)MTracker->readReg(MO.getReg());

  // If we're preparing for the second analysis (variables), the machine value
  // locations are already solved, and we report this DBG_VALUE and the value
  // it refers to to VLocTracker.
  if (VTracker) {
    if (MO.isReg()) {
      // Feed defVar the new variable location, or if this is a
      // DBG_VALUE $noreg, feed defVar None.
      if (MO.getReg())
        VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
      else
        VTracker->defVar(MI, Properties, None);
    } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
               MI.getOperand(0).isCImm()) {
      VTracker->defVar(MI, MI.getOperand(0));
    }
  }

  // If performing final tracking of transfers, report this variable definition
  // to the TransferTracker too.
  if (TTracker)
    TTracker->redefVar(MI);
  return true;
}

bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
                                             ValueIDNum **MLiveOuts,
                                             ValueIDNum **MLiveIns) {
  if (!MI.isDebugRef())
    return false;

  // Only handle this instruction when we are building the variable value
  // transfer function.
  if (!VTracker && !TTracker)
    return false;

  unsigned InstNo = MI.getOperand(0).getImm();
  unsigned OpNo = MI.getOperand(1).getImm();

  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  const DILocation *DebugLoc = MI.getDebugLoc();
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
         "Expected inlined-at fields to agree");

  DebugVariable V(Var, Expr, InlinedAt);

  auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
  if (Scope == nullptr)
    return true; // Handled by doing nothing. This variable is never in scope.

  const MachineFunction &MF = *MI.getParent()->getParent();

  // Various optimizations may have happened to the value during codegen,
  // recorded in the value substitution table. Apply any substitutions to
  // the instruction / operand number in this DBG_INSTR_REF, and collect
  // any subregister extractions performed during optimization.

  // Create dummy substitution with Src set, for lookup.
  auto SoughtSub =
      MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);

  SmallVector<unsigned, 4> SeenSubregs;
  auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
  while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
         LowerBoundIt->Src == SoughtSub.Src) {
    std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
    SoughtSub.Src = LowerBoundIt->Dest;
    if (unsigned Subreg = LowerBoundIt->Subreg)
      SeenSubregs.push_back(Subreg);
    LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
  }

  // Default machine value number is <None> -- if no instruction defines
  // the corresponding value, it must have been optimized out.
  Optional<ValueIDNum> NewID = None;

  // Try to lookup the instruction number, and find the machine value number
  // that it defines. It could be an instruction, or a PHI.
  auto InstrIt = DebugInstrNumToInstr.find(InstNo);
  auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
                                DebugPHINumToValue.end(), InstNo);
  if (InstrIt != DebugInstrNumToInstr.end()) {
    const MachineInstr &TargetInstr = *InstrIt->second.first;
    uint64_t BlockNo = TargetInstr.getParent()->getNumber();

    // Pick out the designated operand. It might be a memory reference, if
    // a register def was folded into a stack store.
    if (OpNo == MachineFunction::DebugOperandMemNumber &&
        TargetInstr.hasOneMemOperand()) {
      Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
      if (L)
        NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
    } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
      assert(OpNo < TargetInstr.getNumOperands());
      const MachineOperand &MO = TargetInstr.getOperand(OpNo);

      // Today, this can only be a register.
      assert(MO.isReg() && MO.isDef());

      unsigned LocID = MTracker->getLocID(MO.getReg());
      LocIdx L = MTracker->LocIDToLocIdx[LocID];
      NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
    }
    // else: NewID is left as None.
  } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
    // It's actually a PHI value. Which value it is might not be obvious, use
    // the resolver helper to find out.
    NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
                           MI, InstNo);
  }

  // Apply any subregister extractions, in reverse. We might have seen code
  // like this:
  //    CALL64 @foo, implicit-def $rax
  //    %0:gr64 = COPY $rax
  //    %1:gr32 = COPY %0.sub_32bit
  //    %2:gr16 = COPY %1.sub_16bit
  //    %3:gr8  = COPY %2.sub_8bit
  // In which case each copy would have been recorded as a substitution with
  // a subregister qualifier. Apply those qualifiers now.
  if (NewID && !SeenSubregs.empty()) {
    unsigned Offset = 0;
    unsigned Size = 0;

    // Look at each subregister that we passed through, and progressively
    // narrow in, accumulating any offsets that occur. Substitutions should
    // only ever be the same or narrower width than what they read from;
    // iterate in reverse order so that we go from wide to small.
    for (unsigned Subreg : reverse(SeenSubregs)) {
      unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
      unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
      Offset += ThisOffset;
      Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
    }

    // If that worked, look for an appropriate subregister with the register
    // where the define happens. Don't look at values that were defined during
    // a stack write: we can't currently express register locations within
    // spills.
    LocIdx L = NewID->getLoc();
    if (NewID && !MTracker->isSpill(L)) {
      // Find the register class for the register where this def happened.
      // FIXME: no index for this?
      Register Reg = MTracker->LocIdxToLocID[L];
      const TargetRegisterClass *TRC = nullptr;
      for (auto *TRCI : TRI->regclasses())
        if (TRCI->contains(Reg))
          TRC = TRCI;
      assert(TRC && "Couldn't find target register class?");

      // If the register we have isn't the right size or in the right place,
      // Try to find a subregister inside it.
      unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
      if (Size != MainRegSize || Offset) {
        // Enumerate all subregisters, searching.
        Register NewReg = 0;
        for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
          unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
          unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
          unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
          if (SubregSize == Size && SubregOffset == Offset) {
            NewReg = *SRI;
            break;
          }
        }

        // If we didn't find anything: there's no way to express our value.
        if (!NewReg) {
          NewID = None;
        } else {
          // Re-state the value as being defined within the subregister
          // that we found.
          LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
          NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
        }
      }
    } else {
      // If we can't handle subregisters, unset the new value.
      NewID = None;
    }
  }

  // We, we have a value number or None. Tell the variable value tracker about
  // it. The rest of this LiveDebugValues implementation acts exactly the same
  // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
  // aren't immediately available).
  DbgValueProperties Properties(Expr, false);
  if (VTracker)
    VTracker->defVar(MI, Properties, NewID);

  // If we're on the final pass through the function, decompose this INSTR_REF
  // into a plain DBG_VALUE.
  if (!TTracker)
    return true;

  // Pick a location for the machine value number, if such a location exists.
  // (This information could be stored in TransferTracker to make it faster).
  Optional<LocIdx> FoundLoc = None;
  for (auto Location : MTracker->locations()) {
    LocIdx CurL = Location.Idx;
    ValueIDNum ID = MTracker->readMLoc(CurL);
    if (NewID && ID == NewID) {
      // If this is the first location with that value, pick it. Otherwise,
      // consider whether it's a "longer term" location.
      if (!FoundLoc) {
        FoundLoc = CurL;
        continue;
      }

      if (MTracker->isSpill(CurL))
        FoundLoc = CurL; // Spills are a longer term location.
      else if (!MTracker->isSpill(*FoundLoc) &&
               !MTracker->isSpill(CurL) &&
               !isCalleeSaved(*FoundLoc) &&
               isCalleeSaved(CurL))
        FoundLoc = CurL; // Callee saved regs are longer term than normal.
    }
  }

  // Tell transfer tracker that the variable value has changed.
  TTracker->redefVar(MI, Properties, FoundLoc);

  // If there was a value with no location; but the value is defined in a
  // later instruction in this block, this is a block-local use-before-def.
  if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
      NewID->getInst() > CurInst)
    TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);

  // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
  // This DBG_VALUE is potentially a $noreg / undefined location, if
  // FoundLoc is None.
  // (XXX -- could morph the DBG_INSTR_REF in the future).
  MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
  TTracker->PendingDbgValues.push_back(DbgMI);
  TTracker->flushDbgValues(MI.getIterator(), nullptr);
  return true;
}

bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
  if (!MI.isDebugPHI())
    return false;

  // Analyse these only when solving the machine value location problem.
  if (VTracker || TTracker)
    return true;

  // First operand is the value location, either a stack slot or register.
  // Second is the debug instruction number of the original PHI.
  const MachineOperand &MO = MI.getOperand(0);
  unsigned InstrNum = MI.getOperand(1).getImm();

  if (MO.isReg()) {
    // The value is whatever's currently in the register. Read and record it,
    // to be analysed later.
    Register Reg = MO.getReg();
    ValueIDNum Num = MTracker->readReg(Reg);
    auto PHIRec = DebugPHIRecord(
        {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
    DebugPHINumToValue.push_back(PHIRec);

    // Ensure this register is tracked.
    for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
      MTracker->lookupOrTrackRegister(*RAI);
  } else {
    // The value is whatever's in this stack slot.
    assert(MO.isFI());
    unsigned FI = MO.getIndex();

    // If the stack slot is dead, then this was optimized away.
    // FIXME: stack slot colouring should account for slots that get merged.
    if (MFI->isDeadObjectIndex(FI))
      return true;

    // Identify this spill slot, ensure it's tracked.
    Register Base;
    StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
    SpillLoc SL = {Base, Offs};
    Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);

    // We might be able to find a value, but have chosen not to, to avoid
    // tracking too much stack information.
    if (!SpillNo)
      return true;

    // Problem: what value should we extract from the stack? LLVM does not
    // record what size the last store to the slot was, and it would become
    // sketchy after stack slot colouring anyway. Take a look at what values
    // are stored on the stack, and pick the largest one that wasn't def'd
    // by a spill (i.e., the value most likely to have been def'd in a register
    // and then spilt.
    std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
    Optional<ValueIDNum> Result = None;
    Optional<LocIdx> SpillLoc = None;
    for (unsigned CS : CandidateSizes) {
      unsigned SpillID = MTracker->getLocID(*SpillNo, {CS, 0});
      SpillLoc = MTracker->getSpillMLoc(SpillID);
      ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
      // If this value was defined in it's own position, then it was probably
      // an aliasing index of a small value that was spilt.
      if (Val.getLoc() != SpillLoc->asU64()) {
        Result = Val;
        break;
      }
    }

    // If we didn't find anything, we're probably looking at a PHI, or a memory
    // store folded into an instruction. FIXME: Take a guess that's it's 64
    // bits. This isn't ideal, but tracking the size that the spill is
    // "supposed" to be is more complex, and benefits a small number of
    // locations.
    if (!Result) {
      unsigned SpillID = MTracker->getLocID(*SpillNo, {64, 0});
      SpillLoc = MTracker->getSpillMLoc(SpillID);
      Result = MTracker->readMLoc(*SpillLoc);
    }

    // Record this DBG_PHI for later analysis.
    auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
    DebugPHINumToValue.push_back(DbgPHI);
  }

  return true;
}

void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
  // Meta Instructions do not affect the debug liveness of any register they
  // define.
  if (MI.isImplicitDef()) {
    // Except when there's an implicit def, and the location it's defining has
    // no value number. The whole point of an implicit def is to announce that
    // the register is live, without be specific about it's value. So define
    // a value if there isn't one already.
    ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
    // Has a legitimate value -> ignore the implicit def.
    if (Num.getLoc() != 0)
      return;
    // Otherwise, def it here.
  } else if (MI.isMetaInstruction())
    return;

  // We always ignore SP defines on call instructions, they don't actually
  // change the value of the stack pointer... except for win32's _chkstk. This
  // is rare: filter quickly for the common case (no stack adjustments, not a
  // call, etc). If it is a call that modifies SP, recognise the SP register
  // defs.
  bool CallChangesSP = false;
  if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
      !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
    CallChangesSP = true;

  // Test whether we should ignore a def of this register due to it being part
  // of the stack pointer.
  auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
    if (CallChangesSP)
      return false;
    return MI.isCall() && MTracker->SPAliases.count(R);
  };

  // Find the regs killed by MI, and find regmasks of preserved regs.
  // Max out the number of statically allocated elements in `DeadRegs`, as this
  // prevents fallback to std::set::count() operations.
  SmallSet<uint32_t, 32> DeadRegs;
  SmallVector<const uint32_t *, 4> RegMasks;
  SmallVector<const MachineOperand *, 4> RegMaskPtrs;
  for (const MachineOperand &MO : MI.operands()) {
    // Determine whether the operand is a register def.
    if (MO.isReg() && MO.isDef() && MO.getReg() &&
        Register::isPhysicalRegister(MO.getReg()) &&
        !IgnoreSPAlias(MO.getReg())) {
      // Remove ranges of all aliased registers.
      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
        // FIXME: Can we break out of this loop early if no insertion occurs?
        DeadRegs.insert(*RAI);
    } else if (MO.isRegMask()) {
      RegMasks.push_back(MO.getRegMask());
      RegMaskPtrs.push_back(&MO);
    }
  }

  // Tell MLocTracker about all definitions, of regmasks and otherwise.
  for (uint32_t DeadReg : DeadRegs)
    MTracker->defReg(DeadReg, CurBB, CurInst);

  for (auto *MO : RegMaskPtrs)
    MTracker->writeRegMask(MO, CurBB, CurInst);

  // If this instruction writes to a spill slot, def that slot.
  if (hasFoldedStackStore(MI)) {
    if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
      for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
        unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
        LocIdx L = MTracker->getSpillMLoc(SpillID);
        MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
      }
    }
  }

  if (!TTracker)
    return;

  // When committing variable values to locations: tell transfer tracker that
  // we've clobbered things. It may be able to recover the variable from a
  // different location.

  // Inform TTracker about any direct clobbers.
  for (uint32_t DeadReg : DeadRegs) {
    LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
    TTracker->clobberMloc(Loc, MI.getIterator(), false);
  }

  // Look for any clobbers performed by a register mask. Only test locations
  // that are actually being tracked.
  if (!RegMaskPtrs.empty()) {
    for (auto L : MTracker->locations()) {
      // Stack locations can't be clobbered by regmasks.
      if (MTracker->isSpill(L.Idx))
        continue;

      Register Reg = MTracker->LocIdxToLocID[L.Idx];
      if (IgnoreSPAlias(Reg))
        continue;

      for (auto *MO : RegMaskPtrs)
        if (MO->clobbersPhysReg(Reg))
          TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
    }
  }

  // Tell TTracker about any folded stack store.
  if (hasFoldedStackStore(MI)) {
    if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
      for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
        unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
        LocIdx L = MTracker->getSpillMLoc(SpillID);
        TTracker->clobberMloc(L, MI.getIterator(), true);
      }
    }
  }
}

void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
  // In all circumstances, re-def all aliases. It's definitely a new value now.
  for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
    MTracker->defReg(*RAI, CurBB, CurInst);

  ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
  MTracker->setReg(DstRegNum, SrcValue);

  // Copy subregisters from one location to another.
  for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
    unsigned SrcSubReg = SRI.getSubReg();
    unsigned SubRegIdx = SRI.getSubRegIndex();
    unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
    if (!DstSubReg)
      continue;

    // Do copy. There are two matching subregisters, the source value should
    // have been def'd when the super-reg was, the latter might not be tracked
    // yet.
    // This will force SrcSubReg to be tracked, if it isn't yet. Will read
    // mphi values if it wasn't tracked.
    LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
    LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
    (void)SrcL;
    (void)DstL;
    ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);

    MTracker->setReg(DstSubReg, CpyValue);
  }
}

Optional<SpillLocationNo>
InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
                                     MachineFunction *MF) {
  // TODO: Handle multiple stores folded into one.
  if (!MI.hasOneMemOperand())
    return None;

  // Reject any memory operand that's aliased -- we can't guarantee its value.
  auto MMOI = MI.memoperands_begin();
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
  if (PVal->isAliased(MFI))
    return None;

  if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
    return None; // This is not a spill instruction, since no valid size was
                 // returned from either function.

  return extractSpillBaseRegAndOffset(MI);
}

bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
                                       MachineFunction *MF, unsigned &Reg) {
  if (!isSpillInstruction(MI, MF))
    return false;

  int FI;
  Reg = TII->isStoreToStackSlotPostFE(MI, FI);
  return Reg != 0;
}

Optional<SpillLocationNo>
InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
                                       MachineFunction *MF, unsigned &Reg) {
  if (!MI.hasOneMemOperand())
    return None;

  // FIXME: Handle folded restore instructions with more than one memory
  // operand.
  if (MI.getRestoreSize(TII)) {
    Reg = MI.getOperand(0).getReg();
    return extractSpillBaseRegAndOffset(MI);
  }
  return None;
}

bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
  // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
  // limitations under the new model. Therefore, when comparing them, compare
  // versions that don't attempt spills or restores at all.
  if (EmulateOldLDV)
    return false;

  // Strictly limit ourselves to plain loads and stores, not all instructions
  // that can access the stack.
  int DummyFI = -1;
  if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
      !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
    return false;

  MachineFunction *MF = MI.getMF();
  unsigned Reg;

  LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););

  // Strictly limit ourselves to plain loads and stores, not all instructions
  // that can access the stack.
  int FIDummy;
  if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
      !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
    return false;

  // First, if there are any DBG_VALUEs pointing at a spill slot that is
  // written to, terminate that variable location. The value in memory
  // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
  if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
    // Un-set this location and clobber, so that earlier locations don't
    // continue past this store.
    for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
      unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
      Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
      if (!MLoc)
        continue;

      // We need to over-write the stack slot with something (here, a def at
      // this instruction) to ensure no values are preserved in this stack slot
      // after the spill. It also prevents TTracker from trying to recover the
      // location and re-installing it in the same place.
      ValueIDNum Def(CurBB, CurInst, *MLoc);
      MTracker->setMLoc(*MLoc, Def);
      if (TTracker)
        TTracker->clobberMloc(*MLoc, MI.getIterator());
    }
  }

  // Try to recognise spill and restore instructions that may transfer a value.
  if (isLocationSpill(MI, MF, Reg)) {
    // isLocationSpill returning true should guarantee we can extract a
    // location.
    SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);

    auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
      auto ReadValue = MTracker->readReg(SrcReg);
      LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
      MTracker->setMLoc(DstLoc, ReadValue);

      if (TTracker) {
        LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
        TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
      }
    };

    // Then, transfer subreg bits.
    for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
      // Ensure this reg is tracked,
      (void)MTracker->lookupOrTrackRegister(*SRI);
      unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
      unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
      DoTransfer(*SRI, SpillID);
    }

    // Directly lookup size of main source reg, and transfer.
    unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
    unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
    DoTransfer(Reg, SpillID);
  } else {
    Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
    if (!Loc)
      return false;

    // Assumption: we're reading from the base of the stack slot, not some
    // offset into it. It seems very unlikely LLVM would ever generate
    // restores where this wasn't true. This then becomes a question of what
    // subregisters in the destination register line up with positions in the
    // stack slot.

    // Def all registers that alias the destination.
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
      MTracker->defReg(*RAI, CurBB, CurInst);

    // Now find subregisters within the destination register, and load values
    // from stack slot positions.
    auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
      LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
      auto ReadValue = MTracker->readMLoc(SrcIdx);
      MTracker->setReg(DestReg, ReadValue);

      if (TTracker) {
        LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
        TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
      }
    };

    for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
      unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
      unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
      DoTransfer(*SRI, SpillID);
    }

    // Directly look up this registers slot idx by size, and transfer.
    unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
    unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
    DoTransfer(Reg, SpillID);
  }
  return true;
}

bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
  auto DestSrc = TII->isCopyInstr(MI);
  if (!DestSrc)
    return false;

  const MachineOperand *DestRegOp = DestSrc->Destination;
  const MachineOperand *SrcRegOp = DestSrc->Source;

  auto isCalleeSavedReg = [&](unsigned Reg) {
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
      if (CalleeSavedRegs.test(*RAI))
        return true;
    return false;
  };

  Register SrcReg = SrcRegOp->getReg();
  Register DestReg = DestRegOp->getReg();

  // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
  if (SrcReg == DestReg)
    return true;

  // For emulating VarLocBasedImpl:
  // We want to recognize instructions where destination register is callee
  // saved register. If register that could be clobbered by the call is
  // included, there would be a great chance that it is going to be clobbered
  // soon. It is more likely that previous register, which is callee saved, is
  // going to stay unclobbered longer, even if it is killed.
  //
  // For InstrRefBasedImpl, we can track multiple locations per value, so
  // ignore this condition.
  if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
    return false;

  // InstrRefBasedImpl only followed killing copies.
  if (EmulateOldLDV && !SrcRegOp->isKill())
    return false;

  // Copy MTracker info, including subregs if available.
  InstrRefBasedLDV::performCopy(SrcReg, DestReg);

  // Only produce a transfer of DBG_VALUE within a block where old LDV
  // would have. We might make use of the additional value tracking in some
  // other way, later.
  if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
    TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
                            MTracker->getRegMLoc(DestReg), MI.getIterator());

  // VarLocBasedImpl would quit tracking the old location after copying.
  if (EmulateOldLDV && SrcReg != DestReg)
    MTracker->defReg(SrcReg, CurBB, CurInst);

  // Finally, the copy might have clobbered variables based on the destination
  // register. Tell TTracker about it, in case a backup location exists.
  if (TTracker) {
    for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
      LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
      TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
    }
  }

  return true;
}

/// Accumulate a mapping between each DILocalVariable fragment and other
/// fragments of that DILocalVariable which overlap. This reduces work during
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
/// known-to-overlap fragments are present".
/// \param MI A previously unprocessed debug instruction to analyze for
///           fragment usage.
void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
  assert(MI.isDebugValue() || MI.isDebugRef());
  DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
  FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();

  // If this is the first sighting of this variable, then we are guaranteed
  // there are currently no overlapping fragments either. Initialize the set
  // of seen fragments, record no overlaps for the current one, and return.
  auto SeenIt = SeenFragments.find(MIVar.getVariable());
  if (SeenIt == SeenFragments.end()) {
    SmallSet<FragmentInfo, 4> OneFragment;
    OneFragment.insert(ThisFragment);
    SeenFragments.insert({MIVar.getVariable(), OneFragment});

    OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
    return;
  }

  // If this particular Variable/Fragment pair already exists in the overlap
  // map, it has already been accounted for.
  auto IsInOLapMap =
      OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
  if (!IsInOLapMap.second)
    return;

  auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
  auto &AllSeenFragments = SeenIt->second;

  // Otherwise, examine all other seen fragments for this variable, with "this"
  // fragment being a previously unseen fragment. Record any pair of
  // overlapping fragments.
  for (auto &ASeenFragment : AllSeenFragments) {
    // Does this previously seen fragment overlap?
    if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
      // Yes: Mark the current fragment as being overlapped.
      ThisFragmentsOverlaps.push_back(ASeenFragment);
      // Mark the previously seen fragment as being overlapped by the current
      // one.
      auto ASeenFragmentsOverlaps =
          OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
      assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
             "Previously seen var fragment has no vector of overlaps");
      ASeenFragmentsOverlaps->second.push_back(ThisFragment);
    }
  }

  AllSeenFragments.insert(ThisFragment);
}

void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
                               ValueIDNum **MLiveIns) {
  // Try to interpret an MI as a debug or transfer instruction. Only if it's
  // none of these should we interpret it's register defs as new value
  // definitions.
  if (transferDebugValue(MI))
    return;
  if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
    return;
  if (transferDebugPHI(MI))
    return;
  if (transferRegisterCopy(MI))
    return;
  if (transferSpillOrRestoreInst(MI))
    return;
  transferRegisterDef(MI);
}

void InstrRefBasedLDV::produceMLocTransferFunction(
    MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
    unsigned MaxNumBlocks) {
  // Because we try to optimize around register mask operands by ignoring regs
  // that aren't currently tracked, we set up something ugly for later: RegMask
  // operands that are seen earlier than the first use of a register, still need
  // to clobber that register in the transfer function. But this information
  // isn't actively recorded. Instead, we track each RegMask used in each block,
  // and accumulated the clobbered but untracked registers in each block into
  // the following bitvector. Later, if new values are tracked, we can add
  // appropriate clobbers.
  SmallVector<BitVector, 32> BlockMasks;
  BlockMasks.resize(MaxNumBlocks);

  // Reserve one bit per register for the masks described above.
  unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
  for (auto &BV : BlockMasks)
    BV.resize(TRI->getNumRegs(), true);

  // Step through all instructions and inhale the transfer function.
  for (auto &MBB : MF) {
    // Object fields that are read by trackers to know where we are in the
    // function.
    CurBB = MBB.getNumber();
    CurInst = 1;

    // Set all machine locations to a PHI value. For transfer function
    // production only, this signifies the live-in value to the block.
    MTracker->reset();
    MTracker->setMPhis(CurBB);

    // Step through each instruction in this block.
    for (auto &MI : MBB) {
      process(MI);
      // Also accumulate fragment map.
      if (MI.isDebugValue() || MI.isDebugRef())
        accumulateFragmentMap(MI);

      // Create a map from the instruction number (if present) to the
      // MachineInstr and its position.
      if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
        auto InstrAndPos = std::make_pair(&MI, CurInst);
        auto InsertResult =
            DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));

        // There should never be duplicate instruction numbers.
        assert(InsertResult.second);
        (void)InsertResult;
      }

      ++CurInst;
    }

    // Produce the transfer function, a map of machine location to new value. If
    // any machine location has the live-in phi value from the start of the
    // block, it's live-through and doesn't need recording in the transfer
    // function.
    for (auto Location : MTracker->locations()) {
      LocIdx Idx = Location.Idx;
      ValueIDNum &P = Location.Value;
      if (P.isPHI() && P.getLoc() == Idx.asU64())
        continue;

      // Insert-or-update.
      auto &TransferMap = MLocTransfer[CurBB];
      auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
      if (!Result.second)
        Result.first->second = P;
    }

    // Accumulate any bitmask operands into the clobberred reg mask for this
    // block.
    for (auto &P : MTracker->Masks) {
      BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
    }
  }

  // Compute a bitvector of all the registers that are tracked in this block.
  BitVector UsedRegs(TRI->getNumRegs());
  for (auto Location : MTracker->locations()) {
    unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
    // Ignore stack slots, and aliases of the stack pointer.
    if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
      continue;
    UsedRegs.set(ID);
  }

  // Check that any regmask-clobber of a register that gets tracked, is not
  // live-through in the transfer function. It needs to be clobbered at the
  // very least.
  for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
    BitVector &BV = BlockMasks[I];
    BV.flip();
    BV &= UsedRegs;
    // This produces all the bits that we clobber, but also use. Check that
    // they're all clobbered or at least set in the designated transfer
    // elem.
    for (unsigned Bit : BV.set_bits()) {
      unsigned ID = MTracker->getLocID(Bit);
      LocIdx Idx = MTracker->LocIDToLocIdx[ID];
      auto &TransferMap = MLocTransfer[I];

      // Install a value representing the fact that this location is effectively
      // written to in this block. As there's no reserved value, instead use
      // a value number that is never generated. Pick the value number for the
      // first instruction in the block, def'ing this location, which we know
      // this block never used anyway.
      ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
      auto Result =
        TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
      if (!Result.second) {
        ValueIDNum &ValueID = Result.first->second;
        if (ValueID.getBlock() == I && ValueID.isPHI())
          // It was left as live-through. Set it to clobbered.
          ValueID = NotGeneratedNum;
      }
    }
  }
}

bool InstrRefBasedLDV::mlocJoin(
    MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
    ValueIDNum **OutLocs, ValueIDNum *InLocs) {
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
  bool Changed = false;

  // Handle value-propagation when control flow merges on entry to a block. For
  // any location without a PHI already placed, the location has the same value
  // as its predecessors. If a PHI is placed, test to see whether it's now a
  // redundant PHI that we can eliminate.

  SmallVector<const MachineBasicBlock *, 8> BlockOrders;
  for (auto Pred : MBB.predecessors())
    BlockOrders.push_back(Pred);

  // Visit predecessors in RPOT order.
  auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
    return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
  };
  llvm::sort(BlockOrders, Cmp);

  // Skip entry block.
  if (BlockOrders.size() == 0)
    return false;

  // Step through all machine locations, look at each predecessor and test
  // whether we can eliminate redundant PHIs.
  for (auto Location : MTracker->locations()) {
    LocIdx Idx = Location.Idx;

    // Pick out the first predecessors live-out value for this location. It's
    // guaranteed to not be a backedge, as we order by RPO.
    ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];

    // If we've already eliminated a PHI here, do no further checking, just
    // propagate the first live-in value into this block.
    if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
      if (InLocs[Idx.asU64()] != FirstVal) {
        InLocs[Idx.asU64()] = FirstVal;
        Changed |= true;
      }
      continue;
    }

    // We're now examining a PHI to see whether it's un-necessary. Loop around
    // the other live-in values and test whether they're all the same.
    bool Disagree = false;
    for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
      const MachineBasicBlock *PredMBB = BlockOrders[I];
      const ValueIDNum &PredLiveOut =
          OutLocs[PredMBB->getNumber()][Idx.asU64()];

      // Incoming values agree, continue trying to eliminate this PHI.
      if (FirstVal == PredLiveOut)
        continue;

      // We can also accept a PHI value that feeds back into itself.
      if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
        continue;

      // Live-out of a predecessor disagrees with the first predecessor.
      Disagree = true;
    }

    // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
    if (!Disagree) {
      InLocs[Idx.asU64()] = FirstVal;
      Changed |= true;
    }
  }

  // TODO: Reimplement NumInserted and NumRemoved.
  return Changed;
}

void InstrRefBasedLDV::findStackIndexInterference(
    SmallVectorImpl<unsigned> &Slots) {
  // We could spend a bit of time finding the exact, minimal, set of stack
  // indexes that interfere with each other, much like reg units. Or, we can
  // rely on the fact that:
  //  * The smallest / lowest index will interfere with everything at zero
  //    offset, which will be the largest set of registers,
  //  * Most indexes with non-zero offset will end up being interference units
  //    anyway.
  // So just pick those out and return them.

  // We can rely on a single-byte stack index existing already, because we
  // initialize them in MLocTracker.
  auto It = MTracker->StackSlotIdxes.find({8, 0});
  assert(It != MTracker->StackSlotIdxes.end());
  Slots.push_back(It->second);

  // Find anything that has a non-zero offset and add that too.
  for (auto &Pair : MTracker->StackSlotIdxes) {
    // Is offset zero? If so, ignore.
    if (!Pair.first.second)
      continue;
    Slots.push_back(Pair.second);
  }
}

void InstrRefBasedLDV::placeMLocPHIs(
    MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
    ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
  SmallVector<unsigned, 4> StackUnits;
  findStackIndexInterference(StackUnits);

  // To avoid repeatedly running the PHI placement algorithm, leverage the
  // fact that a def of register MUST also def its register units. Find the
  // units for registers, place PHIs for them, and then replicate them for
  // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
  // arguments) don't lead to register units being tracked, just place PHIs for
  // those registers directly. Stack slots have their own form of "unit",
  // store them to one side.
  SmallSet<Register, 32> RegUnitsToPHIUp;
  SmallSet<LocIdx, 32> NormalLocsToPHI;
  SmallSet<SpillLocationNo, 32> StackSlots;
  for (auto Location : MTracker->locations()) {
    LocIdx L = Location.Idx;
    if (MTracker->isSpill(L)) {
      StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
      continue;
    }

    Register R = MTracker->LocIdxToLocID[L];
    SmallSet<Register, 8> FoundRegUnits;
    bool AnyIllegal = false;
    for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
      for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
        if (!MTracker->isRegisterTracked(*URoot)) {
          // Not all roots were loaded into the tracking map: this register
          // isn't actually def'd anywhere, we only read from it. Generate PHIs
          // for this reg, but don't iterate units.
          AnyIllegal = true;
        } else {
          FoundRegUnits.insert(*URoot);
        }
      }
    }

    if (AnyIllegal) {
      NormalLocsToPHI.insert(L);
      continue;
    }

    RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
  }

  // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
  // collection.
  SmallVector<MachineBasicBlock *, 32> PHIBlocks;
  auto CollectPHIsForLoc = [&](LocIdx L) {
    // Collect the set of defs.
    SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
    for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
      MachineBasicBlock *MBB = OrderToBB[I];
      const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
      if (TransferFunc.find(L) != TransferFunc.end())
        DefBlocks.insert(MBB);
    }

    // The entry block defs the location too: it's the live-in / argument value.
    // Only insert if there are other defs though; everything is trivially live
    // through otherwise.
    if (!DefBlocks.empty())
      DefBlocks.insert(&*MF.begin());

    // Ask the SSA construction algorithm where we should put PHIs. Clear
    // anything that might have been hanging around from earlier.
    PHIBlocks.clear();
    BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
  };

  auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
    for (const MachineBasicBlock *MBB : PHIBlocks)
      MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
  };

  // For locations with no reg units, just place PHIs.
  for (LocIdx L : NormalLocsToPHI) {
    CollectPHIsForLoc(L);
    // Install those PHI values into the live-in value array.
    InstallPHIsAtLoc(L);
  }

  // For stack slots, calculate PHIs for the equivalent of the units, then
  // install for each index.
  for (SpillLocationNo Slot : StackSlots) {
    for (unsigned Idx : StackUnits) {
      unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
      LocIdx L = MTracker->getSpillMLoc(SpillID);
      CollectPHIsForLoc(L);
      InstallPHIsAtLoc(L);

      // Find anything that aliases this stack index, install PHIs for it too.
      unsigned Size, Offset;
      std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
      for (auto &Pair : MTracker->StackSlotIdxes) {
        unsigned ThisSize, ThisOffset;
        std::tie(ThisSize, ThisOffset) = Pair.first;
        if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
          continue;

        unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
        LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
        InstallPHIsAtLoc(ThisL);
      }
    }
  }

  // For reg units, place PHIs, and then place them for any aliasing registers.
  for (Register R : RegUnitsToPHIUp) {
    LocIdx L = MTracker->lookupOrTrackRegister(R);
    CollectPHIsForLoc(L);

    // Install those PHI values into the live-in value array.
    InstallPHIsAtLoc(L);

    // Now find aliases and install PHIs for those.
    for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
      // Super-registers that are "above" the largest register read/written by
      // the function will alias, but will not be tracked.
      if (!MTracker->isRegisterTracked(*RAI))
        continue;

      LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
      InstallPHIsAtLoc(AliasLoc);
    }
  }
}

void InstrRefBasedLDV::buildMLocValueMap(
    MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
    SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Worklist, Pending;

  // We track what is on the current and pending worklist to avoid inserting
  // the same thing twice. We could avoid this with a custom priority queue,
  // but this is probably not worth it.
  SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;

  // Initialize worklist with every block to be visited. Also produce list of
  // all blocks.
  SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
  for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
    Worklist.push(I);
    OnWorklist.insert(OrderToBB[I]);
    AllBlocks.insert(OrderToBB[I]);
  }

  // Initialize entry block to PHIs. These represent arguments.
  for (auto Location : MTracker->locations())
    MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);

  MTracker->reset();

  // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
  // any machine-location that isn't live-through a block to be def'd in that
  // block.
  placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);

  // Propagate values to eliminate redundant PHIs. At the same time, this
  // produces the table of Block x Location => Value for the entry to each
  // block.
  // The kind of PHIs we can eliminate are, for example, where one path in a
  // conditional spills and restores a register, and the register still has
  // the same value once control flow joins, unbeknowns to the PHI placement
  // code. Propagating values allows us to identify such un-necessary PHIs and
  // remove them.
  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
  while (!Worklist.empty() || !Pending.empty()) {
    // Vector for storing the evaluated block transfer function.
    SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;

    while (!Worklist.empty()) {
      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
      CurBB = MBB->getNumber();
      Worklist.pop();

      // Join the values in all predecessor blocks.
      bool InLocsChanged;
      InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
      InLocsChanged |= Visited.insert(MBB).second;

      // Don't examine transfer function if we've visited this loc at least
      // once, and inlocs haven't changed.
      if (!InLocsChanged)
        continue;

      // Load the current set of live-ins into MLocTracker.
      MTracker->loadFromArray(MInLocs[CurBB], CurBB);

      // Each element of the transfer function can be a new def, or a read of
      // a live-in value. Evaluate each element, and store to "ToRemap".
      ToRemap.clear();
      for (auto &P : MLocTransfer[CurBB]) {
        if (P.second.getBlock() == CurBB && P.second.isPHI()) {
          // This is a movement of whatever was live in. Read it.
          ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
          ToRemap.push_back(std::make_pair(P.first, NewID));
        } else {
          // It's a def. Just set it.
          assert(P.second.getBlock() == CurBB);
          ToRemap.push_back(std::make_pair(P.first, P.second));
        }
      }

      // Commit the transfer function changes into mloc tracker, which
      // transforms the contents of the MLocTracker into the live-outs.
      for (auto &P : ToRemap)
        MTracker->setMLoc(P.first, P.second);

      // Now copy out-locs from mloc tracker into out-loc vector, checking
      // whether changes have occurred. These changes can have come from both
      // the transfer function, and mlocJoin.
      bool OLChanged = false;
      for (auto Location : MTracker->locations()) {
        OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
        MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
      }

      MTracker->reset();

      // No need to examine successors again if out-locs didn't change.
      if (!OLChanged)
        continue;

      // All successors should be visited: put any back-edges on the pending
      // list for the next pass-through, and any other successors to be
      // visited this pass, if they're not going to be already.
      for (auto s : MBB->successors()) {
        // Does branching to this successor represent a back-edge?
        if (BBToOrder[s] > BBToOrder[MBB]) {
          // No: visit it during this dataflow iteration.
          if (OnWorklist.insert(s).second)
            Worklist.push(BBToOrder[s]);
        } else {
          // Yes: visit it on the next iteration.
          if (OnPending.insert(s).second)
            Pending.push(BBToOrder[s]);
        }
      }
    }

    Worklist.swap(Pending);
    std::swap(OnPending, OnWorklist);
    OnPending.clear();
    // At this point, pending must be empty, since it was just the empty
    // worklist
    assert(Pending.empty() && "Pending should be empty");
  }

  // Once all the live-ins don't change on mlocJoin(), we've eliminated all
  // redundant PHIs.
}

void InstrRefBasedLDV::BlockPHIPlacement(
    const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
    const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
    SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
  // Apply IDF calculator to the designated set of location defs, storing
  // required PHIs into PHIBlocks. Uses the dominator tree stored in the
  // InstrRefBasedLDV object.
  IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());

  IDF.setLiveInBlocks(AllBlocks);
  IDF.setDefiningBlocks(DefBlocks);
  IDF.calculate(PHIBlocks);
}

Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
    const MachineBasicBlock &MBB, const DebugVariable &Var,
    const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
    const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
  // Collect a set of locations from predecessor where its live-out value can
  // be found.
  SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
  SmallVector<const DbgValueProperties *, 4> Properties;
  unsigned NumLocs = MTracker->getNumLocs();

  // No predecessors means no PHIs.
  if (BlockOrders.empty())
    return None;

  for (auto p : BlockOrders) {
    unsigned ThisBBNum = p->getNumber();
    auto OutValIt = LiveOuts.find(p);
    if (OutValIt == LiveOuts.end())
      // If we have a predecessor not in scope, we'll never find a PHI position.
      return None;
    const DbgValue &OutVal = *OutValIt->second;

    if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
      // Consts and no-values cannot have locations we can join on.
      return None;

    Properties.push_back(&OutVal.Properties);

    // Create new empty vector of locations.
    Locs.resize(Locs.size() + 1);

    // If the live-in value is a def, find the locations where that value is
    // present. Do the same for VPHIs where we know the VPHI value.
    if (OutVal.Kind == DbgValue::Def ||
        (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
         OutVal.ID != ValueIDNum::EmptyValue)) {
      ValueIDNum ValToLookFor = OutVal.ID;
      // Search the live-outs of the predecessor for the specified value.
      for (unsigned int I = 0; I < NumLocs; ++I) {
        if (MOutLocs[ThisBBNum][I] == ValToLookFor)
          Locs.back().push_back(LocIdx(I));
      }
    } else {
      assert(OutVal.Kind == DbgValue::VPHI);
      // For VPHIs where we don't know the location, we definitely can't find
      // a join loc.
      if (OutVal.BlockNo != MBB.getNumber())
        return None;

      // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
      // a value that's live-through the whole loop. (It has to be a backedge,
      // because a block can't dominate itself). We can accept as a PHI location
      // any location where the other predecessors agree, _and_ the machine
      // locations feed back into themselves. Therefore, add all self-looping
      // machine-value PHI locations.
      for (unsigned int I = 0; I < NumLocs; ++I) {
        ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
        if (MOutLocs[ThisBBNum][I] == MPHI)
          Locs.back().push_back(LocIdx(I));
      }
    }
  }

  // We should have found locations for all predecessors, or returned.
  assert(Locs.size() == BlockOrders.size());

  // Check that all properties are the same. We can't pick a location if they're
  // not.
  const DbgValueProperties *Properties0 = Properties[0];
  for (auto *Prop : Properties)
    if (*Prop != *Properties0)
      return None;

  // Starting with the first set of locations, take the intersection with
  // subsequent sets.
  SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
  for (unsigned int I = 1; I < Locs.size(); ++I) {
    auto &LocVec = Locs[I];
    SmallVector<LocIdx, 4> NewCandidates;
    std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
                          LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
    CandidateLocs = NewCandidates;
  }
  if (CandidateLocs.empty())
    return None;

  // We now have a set of LocIdxes that contain the right output value in
  // each of the predecessors. Pick the lowest; if there's a register loc,
  // that'll be it.
  LocIdx L = *CandidateLocs.begin();

  // Return a PHI-value-number for the found location.
  ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
  return PHIVal;
}

bool InstrRefBasedLDV::vlocJoin(
    MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
    SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
    DbgValue &LiveIn) {
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
  bool Changed = false;

  // Order predecessors by RPOT order, for exploring them in that order.
  SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());

  auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return BBToOrder[A] < BBToOrder[B];
  };

  llvm::sort(BlockOrders, Cmp);

  unsigned CurBlockRPONum = BBToOrder[&MBB];

  // Collect all the incoming DbgValues for this variable, from predecessor
  // live-out values.
  SmallVector<InValueT, 8> Values;
  bool Bail = false;
  int BackEdgesStart = 0;
  for (auto p : BlockOrders) {
    // If the predecessor isn't in scope / to be explored, we'll never be
    // able to join any locations.
    if (!BlocksToExplore.contains(p)) {
      Bail = true;
      break;
    }

    // All Live-outs will have been initialized.
    DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;

    // Keep track of where back-edges begin in the Values vector. Relies on
    // BlockOrders being sorted by RPO.
    unsigned ThisBBRPONum = BBToOrder[p];
    if (ThisBBRPONum < CurBlockRPONum)
      ++BackEdgesStart;

    Values.push_back(std::make_pair(p, &OutLoc));
  }

  // If there were no values, or one of the predecessors couldn't have a
  // value, then give up immediately. It's not safe to produce a live-in
  // value. Leave as whatever it was before.
  if (Bail || Values.size() == 0)
    return false;

  // All (non-entry) blocks have at least one non-backedge predecessor.
  // Pick the variable value from the first of these, to compare against
  // all others.
  const DbgValue &FirstVal = *Values[0].second;

  // If the old live-in value is not a PHI then either a) no PHI is needed
  // here, or b) we eliminated the PHI that was here. If so, we can just
  // propagate in the first parent's incoming value.
  if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
    Changed = LiveIn != FirstVal;
    if (Changed)
      LiveIn = FirstVal;
    return Changed;
  }

  // Scan for variable values that can never be resolved: if they have
  // different DIExpressions, different indirectness, or are mixed constants /
  // non-constants.
  for (auto &V : Values) {
    if (V.second->Properties != FirstVal.Properties)
      return false;
    if (V.second->Kind == DbgValue::NoVal)
      return false;
    if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
      return false;
  }

  // Try to eliminate this PHI. Do the incoming values all agree?
  bool Disagree = false;
  for (auto &V : Values) {
    if (*V.second == FirstVal)
      continue; // No disagreement.

    // Eliminate if a backedge feeds a VPHI back into itself.
    if (V.second->Kind == DbgValue::VPHI &&
        V.second->BlockNo == MBB.getNumber() &&
        // Is this a backedge?
        std::distance(Values.begin(), &V) >= BackEdgesStart)
      continue;

    Disagree = true;
  }

  // No disagreement -> live-through value.
  if (!Disagree) {
    Changed = LiveIn != FirstVal;
    if (Changed)
      LiveIn = FirstVal;
    return Changed;
  } else {
    // Otherwise use a VPHI.
    DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
    Changed = LiveIn != VPHI;
    if (Changed)
      LiveIn = VPHI;
    return Changed;
  }
}

void InstrRefBasedLDV::getBlocksForScope(
    const DILocation *DILoc,
    SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
    const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
  // Get the set of "normal" in-lexical-scope blocks.
  LS.getMachineBasicBlocks(DILoc, BlocksToExplore);

  // VarLoc LiveDebugValues tracks variable locations that are defined in
  // blocks not in scope. This is something we could legitimately ignore, but
  // lets allow it for now for the sake of coverage.
  BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());

  // Storage for artificial blocks we intend to add to BlocksToExplore.
  DenseSet<const MachineBasicBlock *> ToAdd;

  // To avoid needlessly dropping large volumes of variable locations, propagate
  // variables through aritifical blocks, i.e. those that don't have any
  // instructions in scope at all. To accurately replicate VarLoc
  // LiveDebugValues, this means exploring all artificial successors too.
  // Perform a depth-first-search to enumerate those blocks.
  for (auto *MBB : BlocksToExplore) {
    // Depth-first-search state: each node is a block and which successor
    // we're currently exploring.
    SmallVector<std::pair<const MachineBasicBlock *,
                          MachineBasicBlock::const_succ_iterator>,
                8>
        DFS;

    // Find any artificial successors not already tracked.
    for (auto *succ : MBB->successors()) {
      if (BlocksToExplore.count(succ))
        continue;
      if (!ArtificialBlocks.count(succ))
        continue;
      ToAdd.insert(succ);
      DFS.push_back({succ, succ->succ_begin()});
    }

    // Search all those blocks, depth first.
    while (!DFS.empty()) {
      const MachineBasicBlock *CurBB = DFS.back().first;
      MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
      // Walk back if we've explored this blocks successors to the end.
      if (CurSucc == CurBB->succ_end()) {
        DFS.pop_back();
        continue;
      }

      // If the current successor is artificial and unexplored, descend into
      // it.
      if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
        ToAdd.insert(*CurSucc);
        DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
        continue;
      }

      ++CurSucc;
    }
  };

  BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
}

void InstrRefBasedLDV::buildVLocValueMap(
    const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
    SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
    ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
    SmallVectorImpl<VLocTracker> &AllTheVLocs) {
  // This method is much like buildMLocValueMap: but focuses on a single
  // LexicalScope at a time. Pick out a set of blocks and variables that are
  // to have their value assignments solved, then run our dataflow algorithm
  // until a fixedpoint is reached.
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Worklist, Pending;
  SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;

  // The set of blocks we'll be examining.
  SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;

  // The order in which to examine them (RPO).
  SmallVector<MachineBasicBlock *, 8> BlockOrders;

  // RPO ordering function.
  auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return BBToOrder[A] < BBToOrder[B];
  };

  getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);

  // Single block scope: not interesting! No propagation at all. Note that
  // this could probably go above ArtificialBlocks without damage, but
  // that then produces output differences from original-live-debug-values,
  // which propagates from a single block into many artificial ones.
  if (BlocksToExplore.size() == 1)
    return;

  // Convert a const set to a non-const set. LexicalScopes
  // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
  // (Neither of them mutate anything).
  SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
  for (const auto *MBB : BlocksToExplore)
    MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));

  // Picks out relevants blocks RPO order and sort them.
  for (auto *MBB : BlocksToExplore)
    BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));

  llvm::sort(BlockOrders, Cmp);
  unsigned NumBlocks = BlockOrders.size();

  // Allocate some vectors for storing the live ins and live outs. Large.
  SmallVector<DbgValue, 32> LiveIns, LiveOuts;
  LiveIns.reserve(NumBlocks);
  LiveOuts.reserve(NumBlocks);

  // Initialize all values to start as NoVals. This signifies "it's live
  // through, but we don't know what it is".
  DbgValueProperties EmptyProperties(EmptyExpr, false);
  for (unsigned int I = 0; I < NumBlocks; ++I) {
    DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
    LiveIns.push_back(EmptyDbgValue);
    LiveOuts.push_back(EmptyDbgValue);
  }

  // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
  // vlocJoin.
  LiveIdxT LiveOutIdx, LiveInIdx;
  LiveOutIdx.reserve(NumBlocks);
  LiveInIdx.reserve(NumBlocks);
  for (unsigned I = 0; I < NumBlocks; ++I) {
    LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
    LiveInIdx[BlockOrders[I]] = &LiveIns[I];
  }

  // Loop over each variable and place PHIs for it, then propagate values
  // between blocks. This keeps the locality of working on one lexical scope at
  // at time, but avoids re-processing variable values because some other
  // variable has been assigned.
  for (auto &Var : VarsWeCareAbout) {
    // Re-initialize live-ins and live-outs, to clear the remains of previous
    // variables live-ins / live-outs.
    for (unsigned int I = 0; I < NumBlocks; ++I) {
      DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
      LiveIns[I] = EmptyDbgValue;
      LiveOuts[I] = EmptyDbgValue;
    }

    // Place PHIs for variable values, using the LLVM IDF calculator.
    // Collect the set of blocks where variables are def'd.
    SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
    for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
      auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
      if (TransferFunc.find(Var) != TransferFunc.end())
        DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
    }

    SmallVector<MachineBasicBlock *, 32> PHIBlocks;

    // Request the set of PHIs we should insert for this variable. If there's
    // only one value definition, things are very simple.
    if (DefBlocks.size() == 1) {
      placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
                                      AllTheVLocs, Var, Output);
      continue;
    }

    // Otherwise: we need to place PHIs through SSA and propagate values.
    BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);

    // Insert PHIs into the per-block live-in tables for this variable.
    for (MachineBasicBlock *PHIMBB : PHIBlocks) {
      unsigned BlockNo = PHIMBB->getNumber();
      DbgValue *LiveIn = LiveInIdx[PHIMBB];
      *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
    }

    for (auto *MBB : BlockOrders) {
      Worklist.push(BBToOrder[MBB]);
      OnWorklist.insert(MBB);
    }

    // Iterate over all the blocks we selected, propagating the variables value.
    // This loop does two things:
    //  * Eliminates un-necessary VPHIs in vlocJoin,
    //  * Evaluates the blocks transfer function (i.e. variable assignments) and
    //    stores the result to the blocks live-outs.
    // Always evaluate the transfer function on the first iteration, and when
    // the live-ins change thereafter.
    bool FirstTrip = true;
    while (!Worklist.empty() || !Pending.empty()) {
      while (!Worklist.empty()) {
        auto *MBB = OrderToBB[Worklist.top()];
        CurBB = MBB->getNumber();
        Worklist.pop();

        auto LiveInsIt = LiveInIdx.find(MBB);
        assert(LiveInsIt != LiveInIdx.end());
        DbgValue *LiveIn = LiveInsIt->second;

        // Join values from predecessors. Updates LiveInIdx, and writes output
        // into JoinedInLocs.
        bool InLocsChanged =
            vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);

        SmallVector<const MachineBasicBlock *, 8> Preds;
        for (const auto *Pred : MBB->predecessors())
          Preds.push_back(Pred);

        // If this block's live-in value is a VPHI, try to pick a machine-value
        // for it. This makes the machine-value available and propagated
        // through all blocks by the time value propagation finishes. We can't
        // do this any earlier as it needs to read the block live-outs.
        if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
          // There's a small possibility that on a preceeding path, a VPHI is
          // eliminated and transitions from VPHI-with-location to
          // live-through-value. As a result, the selected location of any VPHI
          // might change, so we need to re-compute it on each iteration.
          Optional<ValueIDNum> ValueNum =
              pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);

          if (ValueNum) {
            InLocsChanged |= LiveIn->ID != *ValueNum;
            LiveIn->ID = *ValueNum;
          }
        }

        if (!InLocsChanged && !FirstTrip)
          continue;

        DbgValue *LiveOut = LiveOutIdx[MBB];
        bool OLChanged = false;

        // Do transfer function.
        auto &VTracker = AllTheVLocs[MBB->getNumber()];
        auto TransferIt = VTracker.Vars.find(Var);
        if (TransferIt != VTracker.Vars.end()) {
          // Erase on empty transfer (DBG_VALUE $noreg).
          if (TransferIt->second.Kind == DbgValue::Undef) {
            DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
            if (*LiveOut != NewVal) {
              *LiveOut = NewVal;
              OLChanged = true;
            }
          } else {
            // Insert new variable value; or overwrite.
            if (*LiveOut != TransferIt->second) {
              *LiveOut = TransferIt->second;
              OLChanged = true;
            }
          }
        } else {
          // Just copy live-ins to live-outs, for anything not transferred.
          if (*LiveOut != *LiveIn) {
            *LiveOut = *LiveIn;
            OLChanged = true;
          }
        }

        // If no live-out value changed, there's no need to explore further.
        if (!OLChanged)
          continue;

        // We should visit all successors. Ensure we'll visit any non-backedge
        // successors during this dataflow iteration; book backedge successors
        // to be visited next time around.
        for (auto s : MBB->successors()) {
          // Ignore out of scope / not-to-be-explored successors.
          if (LiveInIdx.find(s) == LiveInIdx.end())
            continue;

          if (BBToOrder[s] > BBToOrder[MBB]) {
            if (OnWorklist.insert(s).second)
              Worklist.push(BBToOrder[s]);
          } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
            Pending.push(BBToOrder[s]);
          }
        }
      }
      Worklist.swap(Pending);
      std::swap(OnWorklist, OnPending);
      OnPending.clear();
      assert(Pending.empty());
      FirstTrip = false;
    }

    // Save live-ins to output vector. Ignore any that are still marked as being
    // VPHIs with no location -- those are variables that we know the value of,
    // but are not actually available in the register file.
    for (auto *MBB : BlockOrders) {
      DbgValue *BlockLiveIn = LiveInIdx[MBB];
      if (BlockLiveIn->Kind == DbgValue::NoVal)
        continue;
      if (BlockLiveIn->Kind == DbgValue::VPHI &&
          BlockLiveIn->ID == ValueIDNum::EmptyValue)
        continue;
      if (BlockLiveIn->Kind == DbgValue::VPHI)
        BlockLiveIn->Kind = DbgValue::Def;
      assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
             Var.getFragment() && "Fragment info missing during value prop");
      Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
    }
  } // Per-variable loop.

  BlockOrders.clear();
  BlocksToExplore.clear();
}

void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
    const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
    MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
    const DebugVariable &Var, LiveInsT &Output) {
  // If there is a single definition of the variable, then working out it's
  // value everywhere is very simple: it's every block dominated by the
  // definition. At the dominance frontier, the usual algorithm would:
  //  * Place PHIs,
  //  * Propagate values into them,
  //  * Find there's no incoming variable value from the other incoming branches
  //    of the dominance frontier,
  //  * Specify there's no variable value in blocks past the frontier.
  // This is a common case, hence it's worth special-casing it.

  // Pick out the variables value from the block transfer function.
  VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
  auto ValueIt = VLocs.Vars.find(Var);
  const DbgValue &Value = ValueIt->second;

  // If it's an explicit assignment of "undef", that means there is no location
  // anyway, anywhere.
  if (Value.Kind == DbgValue::Undef)
    return;

  // Assign the variable value to entry to each dominated block that's in scope.
  // Skip the definition block -- it's assigned the variable value in the middle
  // of the block somewhere.
  for (auto *ScopeBlock : InScopeBlocks) {
    if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
      continue;

    Output[ScopeBlock->getNumber()].push_back({Var, Value});
  }

  // All blocks that aren't dominated have no live-in value, thus no variable
  // value will be given to them.
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void InstrRefBasedLDV::dump_mloc_transfer(
    const MLocTransferMap &mloc_transfer) const {
  for (auto &P : mloc_transfer) {
    std::string foo = MTracker->LocIdxToName(P.first);
    std::string bar = MTracker->IDAsString(P.second);
    dbgs() << "Loc " << foo << " --> " << bar << "\n";
  }
}
#endif

void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
  // Build some useful data structures.

  LLVMContext &Context = MF.getFunction().getContext();
  EmptyExpr = DIExpression::get(Context, {});

  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
    if (const DebugLoc &DL = MI.getDebugLoc())
      return DL.getLine() != 0;
    return false;
  };
  // Collect a set of all the artificial blocks.
  for (auto &MBB : MF)
    if (none_of(MBB.instrs(), hasNonArtificialLocation))
      ArtificialBlocks.insert(&MBB);

  // Compute mappings of block <=> RPO order.
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  unsigned int RPONumber = 0;
  for (MachineBasicBlock *MBB : RPOT) {
    OrderToBB[RPONumber] = MBB;
    BBToOrder[MBB] = RPONumber;
    BBNumToRPO[MBB->getNumber()] = RPONumber;
    ++RPONumber;
  }

  // Order value substitutions by their "source" operand pair, for quick lookup.
  llvm::sort(MF.DebugValueSubstitutions);

#ifdef EXPENSIVE_CHECKS
  // As an expensive check, test whether there are any duplicate substitution
  // sources in the collection.
  if (MF.DebugValueSubstitutions.size() > 2) {
    for (auto It = MF.DebugValueSubstitutions.begin();
         It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
      assert(It->Src != std::next(It)->Src && "Duplicate variable location "
                                              "substitution seen");
    }
  }
#endif
}

// Produce an "ejection map" for blocks, i.e., what's the highest-numbered
// lexical scope it's used in. When exploring in DFS order and we pass that
// scope, the block can be processed and any tracking information freed.
void InstrRefBasedLDV::makeDepthFirstEjectionMap(
    SmallVectorImpl<unsigned> &EjectionMap,
    const ScopeToDILocT &ScopeToDILocation,
    ScopeToAssignBlocksT &ScopeToAssignBlocks) {
  SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
  SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
  auto *TopScope = LS.getCurrentFunctionScope();

  // Unlike lexical scope explorers, we explore in reverse order, to find the
  // "last" lexical scope used for each block early.
  WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});

  while (!WorkStack.empty()) {
    auto &ScopePosition = WorkStack.back();
    LexicalScope *WS = ScopePosition.first;
    ssize_t ChildNum = ScopePosition.second--;

    const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
    if (ChildNum >= 0) {
      // If ChildNum is positive, there are remaining children to explore.
      // Push the child and its children-count onto the stack.
      auto &ChildScope = Children[ChildNum];
      WorkStack.push_back(
          std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
    } else {
      WorkStack.pop_back();

      // We've explored all children and any later blocks: examine all blocks
      // in our scope. If they haven't yet had an ejection number set, then
      // this scope will be the last to use that block.
      auto DILocationIt = ScopeToDILocation.find(WS);
      if (DILocationIt != ScopeToDILocation.end()) {
        getBlocksForScope(DILocationIt->second, BlocksToExplore,
                          ScopeToAssignBlocks.find(WS)->second);
        for (auto *MBB : BlocksToExplore) {
          unsigned BBNum = MBB->getNumber();
          if (EjectionMap[BBNum] == 0)
            EjectionMap[BBNum] = WS->getDFSOut();
        }

        BlocksToExplore.clear();
      }
    }
  }
}

bool InstrRefBasedLDV::depthFirstVLocAndEmit(
    unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
    const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
    LiveInsT &Output, ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
    SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
    DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
    const TargetPassConfig &TPC) {
  TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
  unsigned NumLocs = MTracker->getNumLocs();
  VTracker = nullptr;

  // No scopes? No variable locations.
  if (!LS.getCurrentFunctionScope()) {
    // FIXME: this is a sticking plaster to prevent a memory leak, these
    // pointers will be automagically freed by being unique pointers, shortly.
    for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
      delete[] MInLocs[I];
      delete[] MOutLocs[I];
    }
    return false;
  }

  // Build map from block number to the last scope that uses the block.
  SmallVector<unsigned, 16> EjectionMap;
  EjectionMap.resize(MaxNumBlocks, 0);
  makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
                            ScopeToAssignBlocks);

  // Helper lambda for ejecting a block -- if nothing is going to use the block,
  // we can translate the variable location information into DBG_VALUEs and then
  // free all of InstrRefBasedLDV's data structures.
  auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
    unsigned BBNum = MBB.getNumber();
    AllTheVLocs[BBNum].clear();

    // Prime the transfer-tracker, and then step through all the block
    // instructions, installing transfers.
    MTracker->reset();
    MTracker->loadFromArray(MInLocs[BBNum], BBNum);
    TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs);

    CurBB = BBNum;
    CurInst = 1;
    for (auto &MI : MBB) {
      process(MI, MOutLocs, MInLocs);
      TTracker->checkInstForNewValues(CurInst, MI.getIterator());
      ++CurInst;
    }

    // Free machine-location tables for this block.
    delete[] MInLocs[BBNum];
    delete[] MOutLocs[BBNum];
    // Make ourselves brittle to use-after-free errors.
    MInLocs[BBNum] = nullptr;
    MOutLocs[BBNum] = nullptr;
    // We don't need live-in variable values for this block either.
    Output[BBNum].clear();
    AllTheVLocs[BBNum].clear();
  };

  SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
  SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
  WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
  unsigned HighestDFSIn = 0;

  // Proceed to explore in depth first order.
  while (!WorkStack.empty()) {
    auto &ScopePosition = WorkStack.back();
    LexicalScope *WS = ScopePosition.first;
    ssize_t ChildNum = ScopePosition.second++;

    // We obesrve scopes with children twice here, once descending in, once
    // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
    // we don't process a scope twice. Additionally, ignore scopes that don't
    // have a DILocation -- by proxy, this means we never tracked any variable
    // assignments in that scope.
    auto DILocIt = ScopeToDILocation.find(WS);
    if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
      const DILocation *DILoc = DILocIt->second;
      auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
      auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;

      buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
                        MInLocs, AllTheVLocs);
    }

    HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());

    // Descend into any scope nests.
    const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
    if (ChildNum < (ssize_t)Children.size()) {
      // There are children to explore -- push onto stack and continue.
      auto &ChildScope = Children[ChildNum];
      WorkStack.push_back(std::make_pair(ChildScope, 0));
    } else {
      WorkStack.pop_back();

      // We've explored a leaf, or have explored all the children of a scope.
      // Try to eject any blocks where this is the last scope it's relevant to.
      auto DILocationIt = ScopeToDILocation.find(WS);
      if (DILocationIt == ScopeToDILocation.end())
        continue;

      getBlocksForScope(DILocationIt->second, BlocksToExplore,
                        ScopeToAssignBlocks.find(WS)->second);
      for (auto *MBB : BlocksToExplore)
        if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
          EjectBlock(const_cast<MachineBasicBlock &>(*MBB));

      BlocksToExplore.clear();
    }
  }

  // Some artificial blocks may not have been ejected, meaning they're not
  // connected to an actual legitimate scope. This can technically happen
  // with things like the entry block. In theory, we shouldn't need to do
  // anything for such out-of-scope blocks, but for the sake of being similar
  // to VarLocBasedLDV, eject these too.
  for (auto *MBB : ArtificialBlocks)
    if (MOutLocs[MBB->getNumber()])
      EjectBlock(*MBB);

  // Finally, there might have been gaps in the block numbering, from dead
  // blocks being deleted or folded. In those scenarios, we might allocate a
  // block-table that's never ejected, meaning we have to free it at the end.
  for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
    if (MInLocs[I]) {
      delete[] MInLocs[I];
      delete[] MOutLocs[I];
    }
  }

  return emitTransfers(AllVarsNumbering);
}

bool InstrRefBasedLDV::emitTransfers(
    DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
  // Go through all the transfers recorded in the TransferTracker -- this is
  // both the live-ins to a block, and any movements of values that happen
  // in the middle.
  for (const auto &P : TTracker->Transfers) {
    // We have to insert DBG_VALUEs in a consistent order, otherwise they
    // appear in DWARF in different orders. Use the order that they appear
    // when walking through each block / each instruction, stored in
    // AllVarsNumbering.
    SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
    for (MachineInstr *MI : P.Insts) {
      DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
                        MI->getDebugLoc()->getInlinedAt());
      Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
    }
    llvm::sort(Insts,
               [](const auto &A, const auto &B) { return A.first < B.first; });

    // Insert either before or after the designated point...
    if (P.MBB) {
      MachineBasicBlock &MBB = *P.MBB;
      for (const auto &Pair : Insts)
        MBB.insert(P.Pos, Pair.second);
    } else {
      // Terminators, like tail calls, can clobber things. Don't try and place
      // transfers after them.
      if (P.Pos->isTerminator())
        continue;

      MachineBasicBlock &MBB = *P.Pos->getParent();
      for (const auto &Pair : Insts)
        MBB.insertAfterBundle(P.Pos, Pair.second);
    }
  }

  return TTracker->Transfers.size() != 0;
}

/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
                                    MachineDominatorTree *DomTree,
                                    TargetPassConfig *TPC,
                                    unsigned InputBBLimit,
                                    unsigned InputDbgValLimit) {
  // No subprogram means this function contains no debuginfo.
  if (!MF.getFunction().getSubprogram())
    return false;

  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
  this->TPC = TPC;

  this->DomTree = DomTree;
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();
  TII = MF.getSubtarget().getInstrInfo();
  TFI = MF.getSubtarget().getFrameLowering();
  TFI->getCalleeSaves(MF, CalleeSavedRegs);
  MFI = &MF.getFrameInfo();
  LS.initialize(MF);

  const auto &STI = MF.getSubtarget();
  AdjustsStackInCalls = MFI->adjustsStack() &&
                        STI.getFrameLowering()->stackProbeFunctionModifiesSP();
  if (AdjustsStackInCalls)
    StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);

  MTracker =
      new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
  VTracker = nullptr;
  TTracker = nullptr;

  SmallVector<MLocTransferMap, 32> MLocTransfer;
  SmallVector<VLocTracker, 8> vlocs;
  LiveInsT SavedLiveIns;

  int MaxNumBlocks = -1;
  for (auto &MBB : MF)
    MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
  assert(MaxNumBlocks >= 0);
  ++MaxNumBlocks;

  MLocTransfer.resize(MaxNumBlocks);
  vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
  SavedLiveIns.resize(MaxNumBlocks);

  initialSetup(MF);

  produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);

  // Allocate and initialize two array-of-arrays for the live-in and live-out
  // machine values. The outer dimension is the block number; while the inner
  // dimension is a LocIdx from MLocTracker.
  ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
  ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
  unsigned NumLocs = MTracker->getNumLocs();
  for (int i = 0; i < MaxNumBlocks; ++i) {
    // These all auto-initialize to ValueIDNum::EmptyValue
    MOutLocs[i] = new ValueIDNum[NumLocs];
    MInLocs[i] = new ValueIDNum[NumLocs];
  }

  // Solve the machine value dataflow problem using the MLocTransfer function,
  // storing the computed live-ins / live-outs into the array-of-arrays. We use
  // both live-ins and live-outs for decision making in the variable value
  // dataflow problem.
  buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);

  // Patch up debug phi numbers, turning unknown block-live-in values into
  // either live-through machine values, or PHIs.
  for (auto &DBG_PHI : DebugPHINumToValue) {
    // Identify unresolved block-live-ins.
    ValueIDNum &Num = DBG_PHI.ValueRead;
    if (!Num.isPHI())
      continue;

    unsigned BlockNo = Num.getBlock();
    LocIdx LocNo = Num.getLoc();
    Num = MInLocs[BlockNo][LocNo.asU64()];
  }
  // Later, we'll be looking up ranges of instruction numbers.
  llvm::sort(DebugPHINumToValue);

  // Walk back through each block / instruction, collecting DBG_VALUE
  // instructions and recording what machine value their operands refer to.
  for (auto &OrderPair : OrderToBB) {
    MachineBasicBlock &MBB = *OrderPair.second;
    CurBB = MBB.getNumber();
    VTracker = &vlocs[CurBB];
    VTracker->MBB = &MBB;
    MTracker->loadFromArray(MInLocs[CurBB], CurBB);
    CurInst = 1;
    for (auto &MI : MBB) {
      process(MI, MOutLocs, MInLocs);
      ++CurInst;
    }
    MTracker->reset();
  }

  // Number all variables in the order that they appear, to be used as a stable
  // insertion order later.
  DenseMap<DebugVariable, unsigned> AllVarsNumbering;

  // Map from one LexicalScope to all the variables in that scope.
  ScopeToVarsT ScopeToVars;

  // Map from One lexical scope to all blocks where assignments happen for
  // that scope.
  ScopeToAssignBlocksT ScopeToAssignBlocks;

  // Store map of DILocations that describes scopes.
  ScopeToDILocT ScopeToDILocation;

  // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
  // the order is unimportant, it just has to be stable.
  unsigned VarAssignCount = 0;
  for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
    auto *MBB = OrderToBB[I];
    auto *VTracker = &vlocs[MBB->getNumber()];
    // Collect each variable with a DBG_VALUE in this block.
    for (auto &idx : VTracker->Vars) {
      const auto &Var = idx.first;
      const DILocation *ScopeLoc = VTracker->Scopes[Var];
      assert(ScopeLoc != nullptr);
      auto *Scope = LS.findLexicalScope(ScopeLoc);

      // No insts in scope -> shouldn't have been recorded.
      assert(Scope != nullptr);

      AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
      ScopeToVars[Scope].insert(Var);
      ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
      ScopeToDILocation[Scope] = ScopeLoc;
      ++VarAssignCount;
    }
  }

  bool Changed = false;

  // If we have an extremely large number of variable assignments and blocks,
  // bail out at this point. We've burnt some time doing analysis already,
  // however we should cut our losses.
  if ((unsigned)MaxNumBlocks > InputBBLimit &&
      VarAssignCount > InputDbgValLimit) {
    LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
                      << " has " << MaxNumBlocks << " basic blocks and "
                      << VarAssignCount
                      << " variable assignments, exceeding limits.\n");

    // Perform memory cleanup that emitLocations would do otherwise.
    for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
      delete[] MOutLocs[Idx];
      delete[] MInLocs[Idx];
    }
  } else {
    // Optionally, solve the variable value problem and emit to blocks by using
    // a lexical-scope-depth search. It should be functionally identical to
    // the "else" block of this condition.
    Changed = depthFirstVLocAndEmit(
        MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
        SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
  }

  // Elements of these arrays will be deleted by emitLocations.
  delete[] MOutLocs;
  delete[] MInLocs;

  delete MTracker;
  delete TTracker;
  MTracker = nullptr;
  VTracker = nullptr;
  TTracker = nullptr;

  ArtificialBlocks.clear();
  OrderToBB.clear();
  BBToOrder.clear();
  BBNumToRPO.clear();
  DebugInstrNumToInstr.clear();
  DebugPHINumToValue.clear();
  OverlapFragments.clear();
  SeenFragments.clear();
  SeenDbgPHIs.clear();

  return Changed;
}

LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
  return new InstrRefBasedLDV();
}

namespace {
class LDVSSABlock;
class LDVSSAUpdater;

// Pick a type to identify incoming block values as we construct SSA. We
// can't use anything more robust than an integer unfortunately, as SSAUpdater
// expects to zero-initialize the type.
typedef uint64_t BlockValueNum;

/// Represents an SSA PHI node for the SSA updater class. Contains the block
/// this PHI is in, the value number it would have, and the expected incoming
/// values from parent blocks.
class LDVSSAPhi {
public:
  SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
  LDVSSABlock *ParentBlock;
  BlockValueNum PHIValNum;
  LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
      : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}

  LDVSSABlock *getParent() { return ParentBlock; }
};

/// Thin wrapper around a block predecessor iterator. Only difference from a
/// normal block iterator is that it dereferences to an LDVSSABlock.
class LDVSSABlockIterator {
public:
  MachineBasicBlock::pred_iterator PredIt;
  LDVSSAUpdater &Updater;

  LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
                      LDVSSAUpdater &Updater)
      : PredIt(PredIt), Updater(Updater) {}

  bool operator!=(const LDVSSABlockIterator &OtherIt) const {
    return OtherIt.PredIt != PredIt;
  }

  LDVSSABlockIterator &operator++() {
    ++PredIt;
    return *this;
  }

  LDVSSABlock *operator*();
};

/// Thin wrapper around a block for SSA Updater interface. Necessary because
/// we need to track the PHI value(s) that we may have observed as necessary
/// in this block.
class LDVSSABlock {
public:
  MachineBasicBlock &BB;
  LDVSSAUpdater &Updater;
  using PHIListT = SmallVector<LDVSSAPhi, 1>;
  /// List of PHIs in this block. There should only ever be one.
  PHIListT PHIList;

  LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
      : BB(BB), Updater(Updater) {}

  LDVSSABlockIterator succ_begin() {
    return LDVSSABlockIterator(BB.succ_begin(), Updater);
  }

  LDVSSABlockIterator succ_end() {
    return LDVSSABlockIterator(BB.succ_end(), Updater);
  }

  /// SSAUpdater has requested a PHI: create that within this block record.
  LDVSSAPhi *newPHI(BlockValueNum Value) {
    PHIList.emplace_back(Value, this);
    return &PHIList.back();
  }

  /// SSAUpdater wishes to know what PHIs already exist in this block.
  PHIListT &phis() { return PHIList; }
};

/// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
/// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
// SSAUpdaterTraits<LDVSSAUpdater>.
class LDVSSAUpdater {
public:
  /// Map of value numbers to PHI records.
  DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
  /// Map of which blocks generate Undef values -- blocks that are not
  /// dominated by any Def.
  DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
  /// Map of machine blocks to our own records of them.
  DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
  /// Machine location where any PHI must occur.
  LocIdx Loc;
  /// Table of live-in machine value numbers for blocks / locations.
  ValueIDNum **MLiveIns;

  LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}

  void reset() {
    for (auto &Block : BlockMap)
      delete Block.second;

    PHIs.clear();
    UndefMap.clear();
    BlockMap.clear();
  }

  ~LDVSSAUpdater() { reset(); }

  /// For a given MBB, create a wrapper block for it. Stores it in the
  /// LDVSSAUpdater block map.
  LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
    auto it = BlockMap.find(BB);
    if (it == BlockMap.end()) {
      BlockMap[BB] = new LDVSSABlock(*BB, *this);
      it = BlockMap.find(BB);
    }
    return it->second;
  }

  /// Find the live-in value number for the given block. Looks up the value at
  /// the PHI location on entry.
  BlockValueNum getValue(LDVSSABlock *LDVBB) {
    return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
  }
};

LDVSSABlock *LDVSSABlockIterator::operator*() {
  return Updater.getSSALDVBlock(*PredIt);
}

#ifndef NDEBUG

raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
  out << "SSALDVPHI " << PHI.PHIValNum;
  return out;
}

#endif

} // namespace

namespace llvm {

/// Template specialization to give SSAUpdater access to CFG and value
/// information. SSAUpdater calls methods in these traits, passing in the
/// LDVSSAUpdater object, to learn about blocks and the values they define.
/// It also provides methods to create PHI nodes and track them.
template <> class SSAUpdaterTraits<LDVSSAUpdater> {
public:
  using BlkT = LDVSSABlock;
  using ValT = BlockValueNum;
  using PhiT = LDVSSAPhi;
  using BlkSucc_iterator = LDVSSABlockIterator;

  // Methods to access block successors -- dereferencing to our wrapper class.
  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }

  /// Iterator for PHI operands.
  class PHI_iterator {
  private:
    LDVSSAPhi *PHI;
    unsigned Idx;

  public:
    explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
        : PHI(P), Idx(0) {}
    PHI_iterator(LDVSSAPhi *P, bool) // end iterator
        : PHI(P), Idx(PHI->IncomingValues.size()) {}

    PHI_iterator &operator++() {
      Idx++;
      return *this;
    }
    bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
    bool operator!=(const PHI_iterator &X) const { return !operator==(X); }

    BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }

    LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
  };

  static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }

  static inline PHI_iterator PHI_end(PhiT *PHI) {
    return PHI_iterator(PHI, true);
  }

  /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
  /// vector.
  static void FindPredecessorBlocks(LDVSSABlock *BB,
                                    SmallVectorImpl<LDVSSABlock *> *Preds) {
    for (MachineBasicBlock *Pred : BB->BB.predecessors())
      Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
  }

  /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
  /// register. For LiveDebugValues, represents a block identified as not having
  /// any DBG_PHI predecessors.
  static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
    // Create a value number for this block -- it needs to be unique and in the
    // "undef" collection, so that we know it's not real. Use a number
    // representing a PHI into this block.
    BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
    Updater->UndefMap[&BB->BB] = Num;
    return Num;
  }

  /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
  /// SSAUpdater will populate it with information about incoming values. The
  /// value number of this PHI is whatever the  machine value number problem
  /// solution determined it to be. This includes non-phi values if SSAUpdater
  /// tries to create a PHI where the incoming values are identical.
  static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
                                   LDVSSAUpdater *Updater) {
    BlockValueNum PHIValNum = Updater->getValue(BB);
    LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
    Updater->PHIs[PHIValNum] = PHI;
    return PHIValNum;
  }

  /// AddPHIOperand - Add the specified value as an operand of the PHI for
  /// the specified predecessor block.
  static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
    PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
  }

  /// ValueIsPHI - Check if the instruction that defines the specified value
  /// is a PHI instruction.
  static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
    auto PHIIt = Updater->PHIs.find(Val);
    if (PHIIt == Updater->PHIs.end())
      return nullptr;
    return PHIIt->second;
  }

  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
  /// operands, i.e., it was just added.
  static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
    LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
    if (PHI && PHI->IncomingValues.size() == 0)
      return PHI;
    return nullptr;
  }

  /// GetPHIValue - For the specified PHI instruction, return the value
  /// that it defines.
  static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
};

} // end namespace llvm

Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
                                                      ValueIDNum **MLiveOuts,
                                                      ValueIDNum **MLiveIns,
                                                      MachineInstr &Here,
                                                      uint64_t InstrNum) {
  // This function will be called twice per DBG_INSTR_REF, and might end up
  // computing lots of SSA information: memoize it.
  auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
  if (SeenDbgPHIIt != SeenDbgPHIs.end())
    return SeenDbgPHIIt->second;

  Optional<ValueIDNum> Result =
      resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
  SeenDbgPHIs.insert({&Here, Result});
  return Result;
}

Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
    MachineFunction &MF, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns,
    MachineInstr &Here, uint64_t InstrNum) {
  // Pick out records of DBG_PHI instructions that have been observed. If there
  // are none, then we cannot compute a value number.
  auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
                                    DebugPHINumToValue.end(), InstrNum);
  auto LowerIt = RangePair.first;
  auto UpperIt = RangePair.second;

  // No DBG_PHI means there can be no location.
  if (LowerIt == UpperIt)
    return None;

  // If there's only one DBG_PHI, then that is our value number.
  if (std::distance(LowerIt, UpperIt) == 1)
    return LowerIt->ValueRead;

  auto DBGPHIRange = make_range(LowerIt, UpperIt);

  // Pick out the location (physreg, slot) where any PHIs must occur. It's
  // technically possible for us to merge values in different registers in each
  // block, but highly unlikely that LLVM will generate such code after register
  // allocation.
  LocIdx Loc = LowerIt->ReadLoc;

  // We have several DBG_PHIs, and a use position (the Here inst). All each
  // DBG_PHI does is identify a value at a program position. We can treat each
  // DBG_PHI like it's a Def of a value, and the use position is a Use of a
  // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
  // determine which Def is used at the Use, and any PHIs that happen along
  // the way.
  // Adapted LLVM SSA Updater:
  LDVSSAUpdater Updater(Loc, MLiveIns);
  // Map of which Def or PHI is the current value in each block.
  DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
  // Set of PHIs that we have created along the way.
  SmallVector<LDVSSAPhi *, 8> CreatedPHIs;

  // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
  // for the SSAUpdater.
  for (const auto &DBG_PHI : DBGPHIRange) {
    LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
    const ValueIDNum &Num = DBG_PHI.ValueRead;
    AvailableValues.insert(std::make_pair(Block, Num.asU64()));
  }

  LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
  const auto &AvailIt = AvailableValues.find(HereBlock);
  if (AvailIt != AvailableValues.end()) {
    // Actually, we already know what the value is -- the Use is in the same
    // block as the Def.
    return ValueIDNum::fromU64(AvailIt->second);
  }

  // Otherwise, we must use the SSA Updater. It will identify the value number
  // that we are to use, and the PHIs that must happen along the way.
  SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
  BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
  ValueIDNum Result = ValueIDNum::fromU64(ResultInt);

  // We have the number for a PHI, or possibly live-through value, to be used
  // at this Use. There are a number of things we have to check about it though:
  //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
  //    Use was not completely dominated by DBG_PHIs and we should abort.
  //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
  //    we've left SSA form. Validate that the inputs to each PHI are the
  //    expected values.
  //  * Is a PHI we've created actually a merging of values, or are all the
  //    predecessor values the same, leading to a non-PHI machine value number?
  //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
  //    the ValidatedValues collection below to sort this out.
  DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;

  // Define all the input DBG_PHI values in ValidatedValues.
  for (const auto &DBG_PHI : DBGPHIRange) {
    LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
    const ValueIDNum &Num = DBG_PHI.ValueRead;
    ValidatedValues.insert(std::make_pair(Block, Num));
  }

  // Sort PHIs to validate into RPO-order.
  SmallVector<LDVSSAPhi *, 8> SortedPHIs;
  for (auto &PHI : CreatedPHIs)
    SortedPHIs.push_back(PHI);

  std::sort(
      SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
        return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
      });

  for (auto &PHI : SortedPHIs) {
    ValueIDNum ThisBlockValueNum =
        MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];

    // Are all these things actually defined?
    for (auto &PHIIt : PHI->IncomingValues) {
      // Any undef input means DBG_PHIs didn't dominate the use point.
      if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
        return None;

      ValueIDNum ValueToCheck;
      ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];

      auto VVal = ValidatedValues.find(PHIIt.first);
      if (VVal == ValidatedValues.end()) {
        // We cross a loop, and this is a backedge. LLVMs tail duplication
        // happens so late that DBG_PHI instructions should not be able to
        // migrate into loops -- meaning we can only be live-through this
        // loop.
        ValueToCheck = ThisBlockValueNum;
      } else {
        // Does the block have as a live-out, in the location we're examining,
        // the value that we expect? If not, it's been moved or clobbered.
        ValueToCheck = VVal->second;
      }

      if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
        return None;
    }

    // Record this value as validated.
    ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
  }

  // All the PHIs are valid: we can return what the SSAUpdater said our value
  // number was.
  return Result;
}