aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/GlobalISel/LegacyLegalizerInfo.cpp
blob: 6271a4514c2729c0eaeb979c334ba62bf2e272cf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
//===- lib/CodeGen/GlobalISel/LegacyLegalizerInfo.cpp - Legalizer ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implement an interface to specify and query how an illegal operation on a
// given type should be expanded.
//
// Issues to be resolved:
//   + Make it fast.
//   + Support weird types like i3, <7 x i3>, ...
//   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/LegacyLegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include <map>

using namespace llvm;
using namespace LegacyLegalizeActions;

#define DEBUG_TYPE "legalizer-info"

raw_ostream &llvm::operator<<(raw_ostream &OS, LegacyLegalizeAction Action) {
  switch (Action) {
  case Legal:
    OS << "Legal";
    break;
  case NarrowScalar:
    OS << "NarrowScalar";
    break;
  case WidenScalar:
    OS << "WidenScalar";
    break;
  case FewerElements:
    OS << "FewerElements";
    break;
  case MoreElements:
    OS << "MoreElements";
    break;
  case Bitcast:
    OS << "Bitcast";
    break;
  case Lower:
    OS << "Lower";
    break;
  case Libcall:
    OS << "Libcall";
    break;
  case Custom:
    OS << "Custom";
    break;
  case Unsupported:
    OS << "Unsupported";
    break;
  case NotFound:
    OS << "NotFound";
    break;
  }
  return OS;
}

LegacyLegalizerInfo::LegacyLegalizerInfo() {
  // Set defaults.
  // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
  // fundamental load/store Jakob proposed. Once loads & stores are supported.
  setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
  setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
  setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
  setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
  setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});

  setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
  setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});

  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);

  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
  setLegalizeScalarToDifferentSizeStrategy(
      TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
  setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
}

void LegacyLegalizerInfo::computeTables() {
  assert(TablesInitialized == false);

  for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
    const unsigned Opcode = FirstOp + OpcodeIdx;
    for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
         ++TypeIdx) {
      // 0. Collect information specified through the setAction API, i.e.
      // for specific bit sizes.
      // For scalar types:
      SizeAndActionsVec ScalarSpecifiedActions;
      // For pointer types:
      std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
      // For vector types:
      std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
      for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
        const LLT Type = LLT2Action.first;
        const LegacyLegalizeAction Action = LLT2Action.second;

        auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
        if (Type.isPointer())
          AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
              SizeAction);
        else if (Type.isVector())
          ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
              .push_back(SizeAction);
        else
          ScalarSpecifiedActions.push_back(SizeAction);
      }

      // 1. Handle scalar types
      {
        // Decide how to handle bit sizes for which no explicit specification
        // was given.
        SizeChangeStrategy S = &unsupportedForDifferentSizes;
        if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
            ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
          S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
        llvm::sort(ScalarSpecifiedActions);
        checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
        setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
      }

      // 2. Handle pointer types
      for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
        llvm::sort(PointerSpecifiedActions.second);
        checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
        // For pointer types, we assume that there isn't a meaningfull way
        // to change the number of bits used in the pointer.
        setPointerAction(
            Opcode, TypeIdx, PointerSpecifiedActions.first,
            unsupportedForDifferentSizes(PointerSpecifiedActions.second));
      }

      // 3. Handle vector types
      SizeAndActionsVec ElementSizesSeen;
      for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
        llvm::sort(VectorSpecifiedActions.second);
        const uint16_t ElementSize = VectorSpecifiedActions.first;
        ElementSizesSeen.push_back({ElementSize, Legal});
        checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
        // For vector types, we assume that the best way to adapt the number
        // of elements is to the next larger number of elements type for which
        // the vector type is legal, unless there is no such type. In that case,
        // legalize towards a vector type with a smaller number of elements.
        SizeAndActionsVec NumElementsActions;
        for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
          assert(BitsizeAndAction.first % ElementSize == 0);
          const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
          NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
        }
        setVectorNumElementAction(
            Opcode, TypeIdx, ElementSize,
            moreToWiderTypesAndLessToWidest(NumElementsActions));
      }
      llvm::sort(ElementSizesSeen);
      SizeChangeStrategy VectorElementSizeChangeStrategy =
          &unsupportedForDifferentSizes;
      if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
          VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
        VectorElementSizeChangeStrategy =
            VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
      setScalarInVectorAction(
          Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
    }
  }

  TablesInitialized = true;
}

// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
// probably going to need specialized lookup structures for various types before
// we have any hope of doing well with something like <13 x i3>. Even the common
// cases should do better than what we have now.
std::pair<LegacyLegalizeAction, LLT>
LegacyLegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
  assert(TablesInitialized && "backend forgot to call computeTables");
  // These *have* to be implemented for now, they're the fundamental basis of
  // how everything else is transformed.
  if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
    return findScalarLegalAction(Aspect);
  assert(Aspect.Type.isVector());
  return findVectorLegalAction(Aspect);
}

LegacyLegalizerInfo::SizeAndActionsVec
LegacyLegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
    const SizeAndActionsVec &v, LegacyLegalizeAction IncreaseAction,
    LegacyLegalizeAction DecreaseAction) {
  SizeAndActionsVec result;
  unsigned LargestSizeSoFar = 0;
  if (v.size() >= 1 && v[0].first != 1)
    result.push_back({1, IncreaseAction});
  for (size_t i = 0; i < v.size(); ++i) {
    result.push_back(v[i]);
    LargestSizeSoFar = v[i].first;
    if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
      result.push_back({LargestSizeSoFar + 1, IncreaseAction});
      LargestSizeSoFar = v[i].first + 1;
    }
  }
  result.push_back({LargestSizeSoFar + 1, DecreaseAction});
  return result;
}

LegacyLegalizerInfo::SizeAndActionsVec
LegacyLegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
    const SizeAndActionsVec &v, LegacyLegalizeAction DecreaseAction,
    LegacyLegalizeAction IncreaseAction) {
  SizeAndActionsVec result;
  if (v.size() == 0 || v[0].first != 1)
    result.push_back({1, IncreaseAction});
  for (size_t i = 0; i < v.size(); ++i) {
    result.push_back(v[i]);
    if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
      result.push_back({v[i].first + 1, DecreaseAction});
    }
  }
  return result;
}

LegacyLegalizerInfo::SizeAndAction
LegacyLegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
  assert(Size >= 1);
  // Find the last element in Vec that has a bitsize equal to or smaller than
  // the requested bit size.
  // That is the element just before the first element that is bigger than Size.
  auto It = partition_point(
      Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
  assert(It != Vec.begin() && "Does Vec not start with size 1?");
  int VecIdx = It - Vec.begin() - 1;

  LegacyLegalizeAction Action = Vec[VecIdx].second;
  switch (Action) {
  case Legal:
  case Bitcast:
  case Lower:
  case Libcall:
  case Custom:
    return {Size, Action};
  case FewerElements:
    // FIXME: is this special case still needed and correct?
    // Special case for scalarization:
    if (Vec == SizeAndActionsVec({{1, FewerElements}}))
      return {1, FewerElements};
    LLVM_FALLTHROUGH;
  case NarrowScalar: {
    // The following needs to be a loop, as for now, we do allow needing to
    // go over "Unsupported" bit sizes before finding a legalizable bit size.
    // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
    // we need to iterate over s9, and then to s32 to return (s32, Legal).
    // If we want to get rid of the below loop, we should have stronger asserts
    // when building the SizeAndActionsVecs, probably not allowing
    // "Unsupported" unless at the ends of the vector.
    for (int i = VecIdx - 1; i >= 0; --i)
      if (!needsLegalizingToDifferentSize(Vec[i].second) &&
          Vec[i].second != Unsupported)
        return {Vec[i].first, Action};
    llvm_unreachable("");
  }
  case WidenScalar:
  case MoreElements: {
    // See above, the following needs to be a loop, at least for now.
    for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
      if (!needsLegalizingToDifferentSize(Vec[i].second) &&
          Vec[i].second != Unsupported)
        return {Vec[i].first, Action};
    llvm_unreachable("");
  }
  case Unsupported:
    return {Size, Unsupported};
  case NotFound:
    llvm_unreachable("NotFound");
  }
  llvm_unreachable("Action has an unknown enum value");
}

std::pair<LegacyLegalizeAction, LLT>
LegacyLegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
  assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
  if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
    return {NotFound, LLT()};
  const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
  if (Aspect.Type.isPointer() &&
      AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
          AddrSpace2PointerActions[OpcodeIdx].end()) {
    return {NotFound, LLT()};
  }
  const SmallVector<SizeAndActionsVec, 1> &Actions =
      Aspect.Type.isPointer()
          ? AddrSpace2PointerActions[OpcodeIdx]
                .find(Aspect.Type.getAddressSpace())
                ->second
          : ScalarActions[OpcodeIdx];
  if (Aspect.Idx >= Actions.size())
    return {NotFound, LLT()};
  const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
  // FIXME: speed up this search, e.g. by using a results cache for repeated
  // queries?
  auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
  return {SizeAndAction.second,
          Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
                                 : LLT::pointer(Aspect.Type.getAddressSpace(),
                                                SizeAndAction.first)};
}

std::pair<LegacyLegalizeAction, LLT>
LegacyLegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
  assert(Aspect.Type.isVector());
  // First legalize the vector element size, then legalize the number of
  // lanes in the vector.
  if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
    return {NotFound, Aspect.Type};
  const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
  const unsigned TypeIdx = Aspect.Idx;
  if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
    return {NotFound, Aspect.Type};
  const SizeAndActionsVec &ElemSizeVec =
      ScalarInVectorActions[OpcodeIdx][TypeIdx];

  LLT IntermediateType;
  auto ElementSizeAndAction =
      findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
  IntermediateType = LLT::fixed_vector(Aspect.Type.getNumElements(),
                                       ElementSizeAndAction.first);
  if (ElementSizeAndAction.second != Legal)
    return {ElementSizeAndAction.second, IntermediateType};

  auto i = NumElements2Actions[OpcodeIdx].find(
      IntermediateType.getScalarSizeInBits());
  if (i == NumElements2Actions[OpcodeIdx].end()) {
    return {NotFound, IntermediateType};
  }
  const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
  auto NumElementsAndAction =
      findAction(NumElementsVec, IntermediateType.getNumElements());
  return {NumElementsAndAction.second,
          LLT::fixed_vector(NumElementsAndAction.first,
                            IntermediateType.getScalarSizeInBits())};
}

unsigned LegacyLegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
  assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
  return Opcode - FirstOp;
}


LegacyLegalizeActionStep
LegacyLegalizerInfo::getAction(const LegalityQuery &Query) const {
  for (unsigned i = 0; i < Query.Types.size(); ++i) {
    auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
    if (Action.first != Legal) {
      LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
                        << Action.first << ", " << Action.second << "\n");
      return {Action.first, i, Action.second};
    } else
      LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
  }
  LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
  return {Legal, 0, LLT{}};
}