1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
|
//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Provides analysis for querying information about KnownBits during GISel
/// passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/Module.h"
#define DEBUG_TYPE "gisel-known-bits"
using namespace llvm;
char llvm::GISelKnownBitsAnalysis::ID = 0;
INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE,
"Analysis for ComputingKnownBits", false, true)
GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth)
: MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {}
Align GISelKnownBits::computeKnownAlignment(Register R, unsigned Depth) {
const MachineInstr *MI = MRI.getVRegDef(R);
switch (MI->getOpcode()) {
case TargetOpcode::COPY:
return computeKnownAlignment(MI->getOperand(1).getReg(), Depth);
case TargetOpcode::G_ASSERT_ALIGN: {
// TODO: Min with source
int64_t LogAlign = MI->getOperand(2).getImm();
return Align(1ull << LogAlign);
}
case TargetOpcode::G_FRAME_INDEX: {
int FrameIdx = MI->getOperand(1).getIndex();
return MF.getFrameInfo().getObjectAlign(FrameIdx);
}
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
default:
return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1);
}
}
KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
assert(MI.getNumExplicitDefs() == 1 &&
"expected single return generic instruction");
return getKnownBits(MI.getOperand(0).getReg());
}
KnownBits GISelKnownBits::getKnownBits(Register R) {
const LLT Ty = MRI.getType(R);
APInt DemandedElts =
Ty.isVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
return getKnownBits(R, DemandedElts);
}
KnownBits GISelKnownBits::getKnownBits(Register R, const APInt &DemandedElts,
unsigned Depth) {
// For now, we only maintain the cache during one request.
assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared");
KnownBits Known;
computeKnownBitsImpl(R, Known, DemandedElts);
ComputeKnownBitsCache.clear();
return Known;
}
bool GISelKnownBits::signBitIsZero(Register R) {
LLT Ty = MRI.getType(R);
unsigned BitWidth = Ty.getScalarSizeInBits();
return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
}
APInt GISelKnownBits::getKnownZeroes(Register R) {
return getKnownBits(R).Zero;
}
APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }
LLVM_ATTRIBUTE_UNUSED static void
dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) {
dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth
<< "] Computed for: " << MI << "[" << Depth << "] Known: 0x"
<< toString(Known.Zero | Known.One, 16, false) << "\n"
<< "[" << Depth << "] Zero: 0x" << toString(Known.Zero, 16, false)
<< "\n"
<< "[" << Depth << "] One: 0x" << toString(Known.One, 16, false)
<< "\n";
}
/// Compute known bits for the intersection of \p Src0 and \p Src1
void GISelKnownBits::computeKnownBitsMin(Register Src0, Register Src1,
KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
// Test src1 first, since we canonicalize simpler expressions to the RHS.
computeKnownBitsImpl(Src1, Known, DemandedElts, Depth);
// If we don't know any bits, early out.
if (Known.isUnknown())
return;
KnownBits Known2;
computeKnownBitsImpl(Src0, Known2, DemandedElts, Depth);
// Only known if known in both the LHS and RHS.
Known = KnownBits::commonBits(Known, Known2);
}
// Bitfield extract is computed as (Src >> Offset) & Mask, where Mask is
// created using Width. Use this function when the inputs are KnownBits
// objects. TODO: Move this KnownBits.h if this is usable in more cases.
static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown,
const KnownBits &OffsetKnown,
const KnownBits &WidthKnown) {
KnownBits Mask(BitWidth);
Mask.Zero = APInt::getBitsSetFrom(
BitWidth, WidthKnown.getMaxValue().getLimitedValue(BitWidth));
Mask.One = APInt::getLowBitsSet(
BitWidth, WidthKnown.getMinValue().getLimitedValue(BitWidth));
return KnownBits::lshr(SrcOpKnown, OffsetKnown) & Mask;
}
void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
LLT DstTy = MRI.getType(R);
// Handle the case where this is called on a register that does not have a
// type constraint (i.e. it has a register class constraint instead). This is
// unlikely to occur except by looking through copies but it is possible for
// the initial register being queried to be in this state.
if (!DstTy.isValid()) {
Known = KnownBits();
return;
}
unsigned BitWidth = DstTy.getScalarSizeInBits();
auto CacheEntry = ComputeKnownBitsCache.find(R);
if (CacheEntry != ComputeKnownBitsCache.end()) {
Known = CacheEntry->second;
LLVM_DEBUG(dbgs() << "Cache hit at ");
LLVM_DEBUG(dumpResult(MI, Known, Depth));
assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match");
return;
}
Known = KnownBits(BitWidth); // Don't know anything
// Depth may get bigger than max depth if it gets passed to a different
// GISelKnownBits object.
// This may happen when say a generic part uses a GISelKnownBits object
// with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
// which creates a new GISelKnownBits object with a different and smaller
// depth. If we just check for equality, we would never exit if the depth
// that is passed down to the target specific GISelKnownBits object is
// already bigger than its max depth.
if (Depth >= getMaxDepth())
return;
if (!DemandedElts)
return; // No demanded elts, better to assume we don't know anything.
KnownBits Known2;
switch (Opcode) {
default:
TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
Depth);
break;
case TargetOpcode::G_BUILD_VECTOR: {
// Collect the known bits that are shared by every demanded vector element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = MI.getNumOperands() - 1; i < e; ++i) {
if (!DemandedElts[i])
continue;
computeKnownBitsImpl(MI.getOperand(i + 1).getReg(), Known2, DemandedElts,
Depth + 1);
// Known bits are the values that are shared by every demanded element.
Known = KnownBits::commonBits(Known, Known2);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
break;
}
case TargetOpcode::COPY:
case TargetOpcode::G_PHI:
case TargetOpcode::PHI: {
Known.One = APInt::getAllOnes(BitWidth);
Known.Zero = APInt::getAllOnes(BitWidth);
// Destination registers should not have subregisters at this
// point of the pipeline, otherwise the main live-range will be
// defined more than once, which is against SSA.
assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?");
// Record in the cache that we know nothing for MI.
// This will get updated later and in the meantime, if we reach that
// phi again, because of a loop, we will cut the search thanks to this
// cache entry.
// We could actually build up more information on the phi by not cutting
// the search, but that additional information is more a side effect
// than an intended choice.
// Therefore, for now, save on compile time until we derive a proper way
// to derive known bits for PHIs within loops.
ComputeKnownBitsCache[R] = KnownBits(BitWidth);
// PHI's operand are a mix of registers and basic blocks interleaved.
// We only care about the register ones.
for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
const MachineOperand &Src = MI.getOperand(Idx);
Register SrcReg = Src.getReg();
// Look through trivial copies and phis but don't look through trivial
// copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits
// analysis is currently unable to determine the bit width of a
// register class.
//
// We can't use NoSubRegister by name as it's defined by each target but
// it's always defined to be 0 by tablegen.
if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ &&
MRI.getType(SrcReg).isValid()) {
// For COPYs we don't do anything, don't increase the depth.
computeKnownBitsImpl(SrcReg, Known2, DemandedElts,
Depth + (Opcode != TargetOpcode::COPY));
Known = KnownBits::commonBits(Known, Known2);
// If we reach a point where we don't know anything
// just stop looking through the operands.
if (Known.One == 0 && Known.Zero == 0)
break;
} else {
// We know nothing.
Known = KnownBits(BitWidth);
break;
}
}
break;
}
case TargetOpcode::G_CONSTANT: {
auto CstVal = getIConstantVRegVal(R, MRI);
if (!CstVal)
break;
Known = KnownBits::makeConstant(*CstVal);
break;
}
case TargetOpcode::G_FRAME_INDEX: {
int FrameIdx = MI.getOperand(1).getIndex();
TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
break;
}
case TargetOpcode::G_SUB: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known,
Known2);
break;
}
case TargetOpcode::G_XOR: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known ^= Known2;
break;
}
case TargetOpcode::G_PTR_ADD: {
if (DstTy.isVector())
break;
// G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
break;
LLVM_FALLTHROUGH;
}
case TargetOpcode::G_ADD: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known =
KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2);
break;
}
case TargetOpcode::G_AND: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known &= Known2;
break;
}
case TargetOpcode::G_OR: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known |= Known2;
break;
}
case TargetOpcode::G_MUL: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::mul(Known, Known2);
break;
}
case TargetOpcode::G_SELECT: {
computeKnownBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(),
Known, DemandedElts, Depth + 1);
break;
}
case TargetOpcode::G_SMIN: {
// TODO: Handle clamp pattern with number of sign bits
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::smin(Known, KnownRHS);
break;
}
case TargetOpcode::G_SMAX: {
// TODO: Handle clamp pattern with number of sign bits
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::smax(Known, KnownRHS);
break;
}
case TargetOpcode::G_UMIN: {
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
DemandedElts, Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
DemandedElts, Depth + 1);
Known = KnownBits::umin(Known, KnownRHS);
break;
}
case TargetOpcode::G_UMAX: {
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
DemandedElts, Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
DemandedElts, Depth + 1);
Known = KnownBits::umax(Known, KnownRHS);
break;
}
case TargetOpcode::G_FCMP:
case TargetOpcode::G_ICMP: {
if (DstTy.isVector())
break;
if (TL.getBooleanContents(DstTy.isVector(),
Opcode == TargetOpcode::G_FCMP) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
case TargetOpcode::G_SEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
// If the sign bit is known to be zero or one, then sext will extend
// it to the top bits, else it will just zext.
Known = Known.sext(BitWidth);
break;
}
case TargetOpcode::G_ASSERT_SEXT:
case TargetOpcode::G_SEXT_INREG: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
Known = Known.sextInReg(MI.getOperand(2).getImm());
break;
}
case TargetOpcode::G_ANYEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
Known = Known.anyext(BitWidth);
break;
}
case TargetOpcode::G_LOAD: {
const MachineMemOperand *MMO = *MI.memoperands_begin();
if (const MDNode *Ranges = MMO->getRanges()) {
computeKnownBitsFromRangeMetadata(*Ranges, Known);
}
break;
}
case TargetOpcode::G_ZEXTLOAD: {
if (DstTy.isVector())
break;
// Everything above the retrieved bits is zero
Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
break;
}
case TargetOpcode::G_ASHR: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::ashr(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_LSHR: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::lshr(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_SHL: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::shl(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_INTTOPTR:
case TargetOpcode::G_PTRTOINT:
if (DstTy.isVector())
break;
// Fall through and handle them the same as zext/trunc.
LLVM_FALLTHROUGH;
case TargetOpcode::G_ASSERT_ZEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_TRUNC: {
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
unsigned SrcBitWidth;
// G_ASSERT_ZEXT stores the original bitwidth in the immediate operand.
if (Opcode == TargetOpcode::G_ASSERT_ZEXT)
SrcBitWidth = MI.getOperand(2).getImm();
else {
SrcBitWidth = SrcTy.isPointer()
? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
: SrcTy.getSizeInBits();
}
assert(SrcBitWidth && "SrcBitWidth can't be zero");
Known = Known.zextOrTrunc(SrcBitWidth);
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.zextOrTrunc(BitWidth);
if (BitWidth > SrcBitWidth)
Known.Zero.setBitsFrom(SrcBitWidth);
break;
}
case TargetOpcode::G_ASSERT_ALIGN: {
int64_t LogOfAlign = MI.getOperand(2).getImm();
if (LogOfAlign == 0)
break;
// TODO: Should use maximum with source
// If a node is guaranteed to be aligned, set low zero bits accordingly as
// well as clearing one bits.
Known.Zero.setLowBits(LogOfAlign);
Known.One.clearLowBits(LogOfAlign);
break;
}
case TargetOpcode::G_MERGE_VALUES: {
unsigned NumOps = MI.getNumOperands();
unsigned OpSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
for (unsigned I = 0; I != NumOps - 1; ++I) {
KnownBits SrcOpKnown;
computeKnownBitsImpl(MI.getOperand(I + 1).getReg(), SrcOpKnown,
DemandedElts, Depth + 1);
Known.insertBits(SrcOpKnown, I * OpSize);
}
break;
}
case TargetOpcode::G_UNMERGE_VALUES: {
if (DstTy.isVector())
break;
unsigned NumOps = MI.getNumOperands();
Register SrcReg = MI.getOperand(NumOps - 1).getReg();
if (MRI.getType(SrcReg).isVector())
return; // TODO: Handle vectors.
KnownBits SrcOpKnown;
computeKnownBitsImpl(SrcReg, SrcOpKnown, DemandedElts, Depth + 1);
// Figure out the result operand index
unsigned DstIdx = 0;
for (; DstIdx != NumOps - 1 && MI.getOperand(DstIdx).getReg() != R;
++DstIdx)
;
Known = SrcOpKnown.extractBits(BitWidth, BitWidth * DstIdx);
break;
}
case TargetOpcode::G_BSWAP: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.byteSwap();
break;
}
case TargetOpcode::G_BITREVERSE: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.reverseBits();
break;
}
case TargetOpcode::G_CTPOP: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
// We can bound the space the count needs. Also, bits known to be zero can't
// contribute to the population.
unsigned BitsPossiblySet = Known2.countMaxPopulation();
unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Known.Zero.setBitsFrom(LowBits);
// TODO: we could bound Known.One using the lower bound on the number of
// bits which might be set provided by popcnt KnownOne2.
break;
}
case TargetOpcode::G_UBFX: {
KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
Depth + 1);
Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
break;
}
case TargetOpcode::G_SBFX: {
KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
Depth + 1);
Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
// Sign extend the extracted value using shift left and arithmetic shift
// right.
KnownBits ExtKnown = KnownBits::makeConstant(APInt(BitWidth, BitWidth));
KnownBits ShiftKnown = KnownBits::computeForAddSub(
/*Add*/ false, /*NSW*/ false, ExtKnown, WidthKnown);
Known = KnownBits::ashr(KnownBits::shl(Known, ShiftKnown), ShiftKnown);
break;
}
}
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
LLVM_DEBUG(dumpResult(MI, Known, Depth));
// Update the cache.
ComputeKnownBitsCache[R] = Known;
}
/// Compute number of sign bits for the intersection of \p Src0 and \p Src1
unsigned GISelKnownBits::computeNumSignBitsMin(Register Src0, Register Src1,
const APInt &DemandedElts,
unsigned Depth) {
// Test src1 first, since we canonicalize simpler expressions to the RHS.
unsigned Src1SignBits = computeNumSignBits(Src1, DemandedElts, Depth);
if (Src1SignBits == 1)
return 1;
return std::min(computeNumSignBits(Src0, DemandedElts, Depth), Src1SignBits);
}
unsigned GISelKnownBits::computeNumSignBits(Register R,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
if (Opcode == TargetOpcode::G_CONSTANT)
return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
if (Depth == getMaxDepth())
return 1;
if (!DemandedElts)
return 1; // No demanded elts, better to assume we don't know anything.
LLT DstTy = MRI.getType(R);
const unsigned TyBits = DstTy.getScalarSizeInBits();
// Handle the case where this is called on a register that does not have a
// type constraint. This is unlikely to occur except by looking through copies
// but it is possible for the initial register being queried to be in this
// state.
if (!DstTy.isValid())
return 1;
unsigned FirstAnswer = 1;
switch (Opcode) {
case TargetOpcode::COPY: {
MachineOperand &Src = MI.getOperand(1);
if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
MRI.getType(Src.getReg()).isValid()) {
// Don't increment Depth for this one since we didn't do any work.
return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
}
return 1;
}
case TargetOpcode::G_SEXT: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
}
case TargetOpcode::G_ASSERT_SEXT:
case TargetOpcode::G_SEXT_INREG: {
// Max of the input and what this extends.
Register Src = MI.getOperand(1).getReg();
unsigned SrcBits = MI.getOperand(2).getImm();
unsigned InRegBits = TyBits - SrcBits + 1;
return std::max(computeNumSignBits(Src, DemandedElts, Depth + 1), InRegBits);
}
case TargetOpcode::G_SEXTLOAD: {
// FIXME: We need an in-memory type representation.
if (DstTy.isVector())
return 1;
// e.g. i16->i32 = '17' bits known.
const MachineMemOperand *MMO = *MI.memoperands_begin();
return TyBits - MMO->getSizeInBits() + 1;
}
case TargetOpcode::G_ZEXTLOAD: {
// FIXME: We need an in-memory type representation.
if (DstTy.isVector())
return 1;
// e.g. i16->i32 = '16' bits known.
const MachineMemOperand *MMO = *MI.memoperands_begin();
return TyBits - MMO->getSizeInBits();
}
case TargetOpcode::G_TRUNC: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
// Check if the sign bits of source go down as far as the truncated value.
unsigned DstTyBits = DstTy.getScalarSizeInBits();
unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
if (NumSrcSignBits > (NumSrcBits - DstTyBits))
return NumSrcSignBits - (NumSrcBits - DstTyBits);
break;
}
case TargetOpcode::G_SELECT: {
return computeNumSignBitsMin(MI.getOperand(2).getReg(),
MI.getOperand(3).getReg(), DemandedElts,
Depth + 1);
}
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
default: {
unsigned NumBits =
TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth);
if (NumBits > 1)
FirstAnswer = std::max(FirstAnswer, NumBits);
break;
}
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
KnownBits Known = getKnownBits(R, DemandedElts, Depth);
APInt Mask;
if (Known.isNonNegative()) { // sign bit is 0
Mask = Known.Zero;
} else if (Known.isNegative()) { // sign bit is 1;
Mask = Known.One;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLO to determine
// the number of identical bits in the top of the input value.
Mask <<= Mask.getBitWidth() - TyBits;
return std::max(FirstAnswer, Mask.countLeadingOnes());
}
unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) {
LLT Ty = MRI.getType(R);
APInt DemandedElts =
Ty.isVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
return computeNumSignBits(R, DemandedElts, Depth);
}
void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
return false;
}
|