aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/ExpandVectorPredication.cpp
blob: bb8d2b3e9a7854879afcf1c5d4d602e61063184a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
//===----- CodeGen/ExpandVectorPredication.cpp - Expand VP intrinsics -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements IR expansion for vector predication intrinsics, allowing
// targets to enable vector predication until just before codegen.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ExpandVectorPredication.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"

using namespace llvm;

using VPLegalization = TargetTransformInfo::VPLegalization;
using VPTransform = TargetTransformInfo::VPLegalization::VPTransform;

// Keep this in sync with TargetTransformInfo::VPLegalization.
#define VPINTERNAL_VPLEGAL_CASES                                               \
  VPINTERNAL_CASE(Legal)                                                       \
  VPINTERNAL_CASE(Discard)                                                     \
  VPINTERNAL_CASE(Convert)

#define VPINTERNAL_CASE(X) "|" #X

// Override options.
static cl::opt<std::string> EVLTransformOverride(
    "expandvp-override-evl-transform", cl::init(""), cl::Hidden,
    cl::desc("Options: <empty>" VPINTERNAL_VPLEGAL_CASES
             ". If non-empty, ignore "
             "TargetTransformInfo and "
             "always use this transformation for the %evl parameter (Used in "
             "testing)."));

static cl::opt<std::string> MaskTransformOverride(
    "expandvp-override-mask-transform", cl::init(""), cl::Hidden,
    cl::desc("Options: <empty>" VPINTERNAL_VPLEGAL_CASES
             ". If non-empty, Ignore "
             "TargetTransformInfo and "
             "always use this transformation for the %mask parameter (Used in "
             "testing)."));

#undef VPINTERNAL_CASE
#define VPINTERNAL_CASE(X) .Case(#X, VPLegalization::X)

static VPTransform parseOverrideOption(const std::string &TextOpt) {
  return StringSwitch<VPTransform>(TextOpt) VPINTERNAL_VPLEGAL_CASES;
}

#undef VPINTERNAL_VPLEGAL_CASES

// Whether any override options are set.
static bool anyExpandVPOverridesSet() {
  return !EVLTransformOverride.empty() || !MaskTransformOverride.empty();
}

#define DEBUG_TYPE "expandvp"

STATISTIC(NumFoldedVL, "Number of folded vector length params");
STATISTIC(NumLoweredVPOps, "Number of folded vector predication operations");

///// Helpers {

/// \returns Whether the vector mask \p MaskVal has all lane bits set.
static bool isAllTrueMask(Value *MaskVal) {
  auto *ConstVec = dyn_cast<ConstantVector>(MaskVal);
  return ConstVec && ConstVec->isAllOnesValue();
}

/// \returns A non-excepting divisor constant for this type.
static Constant *getSafeDivisor(Type *DivTy) {
  assert(DivTy->isIntOrIntVectorTy() && "Unsupported divisor type");
  return ConstantInt::get(DivTy, 1u, false);
}

/// Transfer operation properties from \p OldVPI to \p NewVal.
static void transferDecorations(Value &NewVal, VPIntrinsic &VPI) {
  auto *NewInst = dyn_cast<Instruction>(&NewVal);
  if (!NewInst || !isa<FPMathOperator>(NewVal))
    return;

  auto *OldFMOp = dyn_cast<FPMathOperator>(&VPI);
  if (!OldFMOp)
    return;

  NewInst->setFastMathFlags(OldFMOp->getFastMathFlags());
}

/// Transfer all properties from \p OldOp to \p NewOp and replace all uses.
/// OldVP gets erased.
static void replaceOperation(Value &NewOp, VPIntrinsic &OldOp) {
  transferDecorations(NewOp, OldOp);
  OldOp.replaceAllUsesWith(&NewOp);
  OldOp.eraseFromParent();
}

//// } Helpers

namespace {

// Expansion pass state at function scope.
struct CachingVPExpander {
  Function &F;
  const TargetTransformInfo &TTI;

  /// \returns A (fixed length) vector with ascending integer indices
  /// (<0, 1, ..., NumElems-1>).
  /// \p Builder
  ///    Used for instruction creation.
  /// \p LaneTy
  ///    Integer element type of the result vector.
  /// \p NumElems
  ///    Number of vector elements.
  Value *createStepVector(IRBuilder<> &Builder, Type *LaneTy,
                          unsigned NumElems);

  /// \returns A bitmask that is true where the lane position is less-than \p
  /// EVLParam
  ///
  /// \p Builder
  ///    Used for instruction creation.
  /// \p VLParam
  ///    The explicit vector length parameter to test against the lane
  ///    positions.
  /// \p ElemCount
  ///    Static (potentially scalable) number of vector elements.
  Value *convertEVLToMask(IRBuilder<> &Builder, Value *EVLParam,
                          ElementCount ElemCount);

  Value *foldEVLIntoMask(VPIntrinsic &VPI);

  /// "Remove" the %evl parameter of \p PI by setting it to the static vector
  /// length of the operation.
  void discardEVLParameter(VPIntrinsic &PI);

  /// \brief Lower this VP binary operator to a unpredicated binary operator.
  Value *expandPredicationInBinaryOperator(IRBuilder<> &Builder,
                                           VPIntrinsic &PI);

  /// \brief Lower this VP reduction to a call to an unpredicated reduction
  /// intrinsic.
  Value *expandPredicationInReduction(IRBuilder<> &Builder,
                                      VPReductionIntrinsic &PI);

  /// \brief Query TTI and expand the vector predication in \p P accordingly.
  Value *expandPredication(VPIntrinsic &PI);

  /// \brief  Determine how and whether the VPIntrinsic \p VPI shall be
  /// expanded. This overrides TTI with the cl::opts listed at the top of this
  /// file.
  VPLegalization getVPLegalizationStrategy(const VPIntrinsic &VPI) const;
  bool UsingTTIOverrides;

public:
  CachingVPExpander(Function &F, const TargetTransformInfo &TTI)
      : F(F), TTI(TTI), UsingTTIOverrides(anyExpandVPOverridesSet()) {}

  bool expandVectorPredication();
};

//// CachingVPExpander {

Value *CachingVPExpander::createStepVector(IRBuilder<> &Builder, Type *LaneTy,
                                           unsigned NumElems) {
  // TODO add caching
  SmallVector<Constant *, 16> ConstElems;

  for (unsigned Idx = 0; Idx < NumElems; ++Idx)
    ConstElems.push_back(ConstantInt::get(LaneTy, Idx, false));

  return ConstantVector::get(ConstElems);
}

Value *CachingVPExpander::convertEVLToMask(IRBuilder<> &Builder,
                                           Value *EVLParam,
                                           ElementCount ElemCount) {
  // TODO add caching
  // Scalable vector %evl conversion.
  if (ElemCount.isScalable()) {
    auto *M = Builder.GetInsertBlock()->getModule();
    Type *BoolVecTy = VectorType::get(Builder.getInt1Ty(), ElemCount);
    Function *ActiveMaskFunc = Intrinsic::getDeclaration(
        M, Intrinsic::get_active_lane_mask, {BoolVecTy, EVLParam->getType()});
    // `get_active_lane_mask` performs an implicit less-than comparison.
    Value *ConstZero = Builder.getInt32(0);
    return Builder.CreateCall(ActiveMaskFunc, {ConstZero, EVLParam});
  }

  // Fixed vector %evl conversion.
  Type *LaneTy = EVLParam->getType();
  unsigned NumElems = ElemCount.getFixedValue();
  Value *VLSplat = Builder.CreateVectorSplat(NumElems, EVLParam);
  Value *IdxVec = createStepVector(Builder, LaneTy, NumElems);
  return Builder.CreateICmp(CmpInst::ICMP_ULT, IdxVec, VLSplat);
}

Value *
CachingVPExpander::expandPredicationInBinaryOperator(IRBuilder<> &Builder,
                                                     VPIntrinsic &VPI) {
  assert((isSafeToSpeculativelyExecute(&VPI) ||
          VPI.canIgnoreVectorLengthParam()) &&
         "Implicitly dropping %evl in non-speculatable operator!");

  auto OC = static_cast<Instruction::BinaryOps>(*VPI.getFunctionalOpcode());
  assert(Instruction::isBinaryOp(OC));

  Value *Op0 = VPI.getOperand(0);
  Value *Op1 = VPI.getOperand(1);
  Value *Mask = VPI.getMaskParam();

  // Blend in safe operands.
  if (Mask && !isAllTrueMask(Mask)) {
    switch (OC) {
    default:
      // Can safely ignore the predicate.
      break;

    // Division operators need a safe divisor on masked-off lanes (1).
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
      // 2nd operand must not be zero.
      Value *SafeDivisor = getSafeDivisor(VPI.getType());
      Op1 = Builder.CreateSelect(Mask, Op1, SafeDivisor);
    }
  }

  Value *NewBinOp = Builder.CreateBinOp(OC, Op0, Op1, VPI.getName());

  replaceOperation(*NewBinOp, VPI);
  return NewBinOp;
}

static Value *getNeutralReductionElement(const VPReductionIntrinsic &VPI,
                                         Type *EltTy) {
  bool Negative = false;
  unsigned EltBits = EltTy->getScalarSizeInBits();
  switch (VPI.getIntrinsicID()) {
  default:
    llvm_unreachable("Expecting a VP reduction intrinsic");
  case Intrinsic::vp_reduce_add:
  case Intrinsic::vp_reduce_or:
  case Intrinsic::vp_reduce_xor:
  case Intrinsic::vp_reduce_umax:
    return Constant::getNullValue(EltTy);
  case Intrinsic::vp_reduce_mul:
    return ConstantInt::get(EltTy, 1, /*IsSigned*/ false);
  case Intrinsic::vp_reduce_and:
  case Intrinsic::vp_reduce_umin:
    return ConstantInt::getAllOnesValue(EltTy);
  case Intrinsic::vp_reduce_smin:
    return ConstantInt::get(EltTy->getContext(),
                            APInt::getSignedMaxValue(EltBits));
  case Intrinsic::vp_reduce_smax:
    return ConstantInt::get(EltTy->getContext(),
                            APInt::getSignedMinValue(EltBits));
  case Intrinsic::vp_reduce_fmax:
    Negative = true;
    LLVM_FALLTHROUGH;
  case Intrinsic::vp_reduce_fmin: {
    FastMathFlags Flags = VPI.getFastMathFlags();
    const fltSemantics &Semantics = EltTy->getFltSemantics();
    return !Flags.noNaNs() ? ConstantFP::getQNaN(EltTy, Negative)
           : !Flags.noInfs()
               ? ConstantFP::getInfinity(EltTy, Negative)
               : ConstantFP::get(EltTy,
                                 APFloat::getLargest(Semantics, Negative));
  }
  case Intrinsic::vp_reduce_fadd:
    return ConstantFP::getNegativeZero(EltTy);
  case Intrinsic::vp_reduce_fmul:
    return ConstantFP::get(EltTy, 1.0);
  }
}

Value *
CachingVPExpander::expandPredicationInReduction(IRBuilder<> &Builder,
                                                VPReductionIntrinsic &VPI) {
  assert((isSafeToSpeculativelyExecute(&VPI) ||
          VPI.canIgnoreVectorLengthParam()) &&
         "Implicitly dropping %evl in non-speculatable operator!");

  Value *Mask = VPI.getMaskParam();
  Value *RedOp = VPI.getOperand(VPI.getVectorParamPos());

  // Insert neutral element in masked-out positions
  if (Mask && !isAllTrueMask(Mask)) {
    auto *NeutralElt = getNeutralReductionElement(VPI, VPI.getType());
    auto *NeutralVector = Builder.CreateVectorSplat(
        cast<VectorType>(RedOp->getType())->getElementCount(), NeutralElt);
    RedOp = Builder.CreateSelect(Mask, RedOp, NeutralVector);
  }

  Value *Reduction;
  Value *Start = VPI.getOperand(VPI.getStartParamPos());

  switch (VPI.getIntrinsicID()) {
  default:
    llvm_unreachable("Impossible reduction kind");
  case Intrinsic::vp_reduce_add:
    Reduction = Builder.CreateAddReduce(RedOp);
    Reduction = Builder.CreateAdd(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_mul:
    Reduction = Builder.CreateMulReduce(RedOp);
    Reduction = Builder.CreateMul(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_and:
    Reduction = Builder.CreateAndReduce(RedOp);
    Reduction = Builder.CreateAnd(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_or:
    Reduction = Builder.CreateOrReduce(RedOp);
    Reduction = Builder.CreateOr(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_xor:
    Reduction = Builder.CreateXorReduce(RedOp);
    Reduction = Builder.CreateXor(Reduction, Start);
    break;
  case Intrinsic::vp_reduce_smax:
    Reduction = Builder.CreateIntMaxReduce(RedOp, /*IsSigned*/ true);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::smax, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_smin:
    Reduction = Builder.CreateIntMinReduce(RedOp, /*IsSigned*/ true);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::smin, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_umax:
    Reduction = Builder.CreateIntMaxReduce(RedOp, /*IsSigned*/ false);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::umax, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_umin:
    Reduction = Builder.CreateIntMinReduce(RedOp, /*IsSigned*/ false);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::umin, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_fmax:
    Reduction = Builder.CreateFPMaxReduce(RedOp);
    transferDecorations(*Reduction, VPI);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_fmin:
    Reduction = Builder.CreateFPMinReduce(RedOp);
    transferDecorations(*Reduction, VPI);
    Reduction =
        Builder.CreateBinaryIntrinsic(Intrinsic::minnum, Reduction, Start);
    break;
  case Intrinsic::vp_reduce_fadd:
    Reduction = Builder.CreateFAddReduce(Start, RedOp);
    break;
  case Intrinsic::vp_reduce_fmul:
    Reduction = Builder.CreateFMulReduce(Start, RedOp);
    break;
  }

  replaceOperation(*Reduction, VPI);
  return Reduction;
}

void CachingVPExpander::discardEVLParameter(VPIntrinsic &VPI) {
  LLVM_DEBUG(dbgs() << "Discard EVL parameter in " << VPI << "\n");

  if (VPI.canIgnoreVectorLengthParam())
    return;

  Value *EVLParam = VPI.getVectorLengthParam();
  if (!EVLParam)
    return;

  ElementCount StaticElemCount = VPI.getStaticVectorLength();
  Value *MaxEVL = nullptr;
  Type *Int32Ty = Type::getInt32Ty(VPI.getContext());
  if (StaticElemCount.isScalable()) {
    // TODO add caching
    auto *M = VPI.getModule();
    Function *VScaleFunc =
        Intrinsic::getDeclaration(M, Intrinsic::vscale, Int32Ty);
    IRBuilder<> Builder(VPI.getParent(), VPI.getIterator());
    Value *FactorConst = Builder.getInt32(StaticElemCount.getKnownMinValue());
    Value *VScale = Builder.CreateCall(VScaleFunc, {}, "vscale");
    MaxEVL = Builder.CreateMul(VScale, FactorConst, "scalable_size",
                               /*NUW*/ true, /*NSW*/ false);
  } else {
    MaxEVL = ConstantInt::get(Int32Ty, StaticElemCount.getFixedValue(), false);
  }
  VPI.setVectorLengthParam(MaxEVL);
}

Value *CachingVPExpander::foldEVLIntoMask(VPIntrinsic &VPI) {
  LLVM_DEBUG(dbgs() << "Folding vlen for " << VPI << '\n');

  IRBuilder<> Builder(&VPI);

  // Ineffective %evl parameter and so nothing to do here.
  if (VPI.canIgnoreVectorLengthParam())
    return &VPI;

  // Only VP intrinsics can have an %evl parameter.
  Value *OldMaskParam = VPI.getMaskParam();
  Value *OldEVLParam = VPI.getVectorLengthParam();
  assert(OldMaskParam && "no mask param to fold the vl param into");
  assert(OldEVLParam && "no EVL param to fold away");

  LLVM_DEBUG(dbgs() << "OLD evl: " << *OldEVLParam << '\n');
  LLVM_DEBUG(dbgs() << "OLD mask: " << *OldMaskParam << '\n');

  // Convert the %evl predication into vector mask predication.
  ElementCount ElemCount = VPI.getStaticVectorLength();
  Value *VLMask = convertEVLToMask(Builder, OldEVLParam, ElemCount);
  Value *NewMaskParam = Builder.CreateAnd(VLMask, OldMaskParam);
  VPI.setMaskParam(NewMaskParam);

  // Drop the %evl parameter.
  discardEVLParameter(VPI);
  assert(VPI.canIgnoreVectorLengthParam() &&
         "transformation did not render the evl param ineffective!");

  // Reassess the modified instruction.
  return &VPI;
}

Value *CachingVPExpander::expandPredication(VPIntrinsic &VPI) {
  LLVM_DEBUG(dbgs() << "Lowering to unpredicated op: " << VPI << '\n');

  IRBuilder<> Builder(&VPI);

  // Try lowering to a LLVM instruction first.
  auto OC = VPI.getFunctionalOpcode();

  if (OC && Instruction::isBinaryOp(*OC))
    return expandPredicationInBinaryOperator(Builder, VPI);

  if (auto *VPRI = dyn_cast<VPReductionIntrinsic>(&VPI))
    return expandPredicationInReduction(Builder, *VPRI);

  return &VPI;
}

//// } CachingVPExpander

struct TransformJob {
  VPIntrinsic *PI;
  TargetTransformInfo::VPLegalization Strategy;
  TransformJob(VPIntrinsic *PI, TargetTransformInfo::VPLegalization InitStrat)
      : PI(PI), Strategy(InitStrat) {}

  bool isDone() const { return Strategy.shouldDoNothing(); }
};

void sanitizeStrategy(Instruction &I, VPLegalization &LegalizeStrat) {
  // Speculatable instructions do not strictly need predication.
  if (isSafeToSpeculativelyExecute(&I)) {
    // Converting a speculatable VP intrinsic means dropping %mask and %evl.
    // No need to expand %evl into the %mask only to ignore that code.
    if (LegalizeStrat.OpStrategy == VPLegalization::Convert)
      LegalizeStrat.EVLParamStrategy = VPLegalization::Discard;
    return;
  }

  // We have to preserve the predicating effect of %evl for this
  // non-speculatable VP intrinsic.
  // 1) Never discard %evl.
  // 2) If this VP intrinsic will be expanded to non-VP code, make sure that
  //    %evl gets folded into %mask.
  if ((LegalizeStrat.EVLParamStrategy == VPLegalization::Discard) ||
      (LegalizeStrat.OpStrategy == VPLegalization::Convert)) {
    LegalizeStrat.EVLParamStrategy = VPLegalization::Convert;
  }
}

VPLegalization
CachingVPExpander::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
  auto VPStrat = TTI.getVPLegalizationStrategy(VPI);
  if (LLVM_LIKELY(!UsingTTIOverrides)) {
    // No overrides - we are in production.
    return VPStrat;
  }

  // Overrides set - we are in testing, the following does not need to be
  // efficient.
  VPStrat.EVLParamStrategy = parseOverrideOption(EVLTransformOverride);
  VPStrat.OpStrategy = parseOverrideOption(MaskTransformOverride);
  return VPStrat;
}

/// \brief Expand llvm.vp.* intrinsics as requested by \p TTI.
bool CachingVPExpander::expandVectorPredication() {
  SmallVector<TransformJob, 16> Worklist;

  // Collect all VPIntrinsics that need expansion and determine their expansion
  // strategy.
  for (auto &I : instructions(F)) {
    auto *VPI = dyn_cast<VPIntrinsic>(&I);
    if (!VPI)
      continue;
    auto VPStrat = getVPLegalizationStrategy(*VPI);
    sanitizeStrategy(I, VPStrat);
    if (!VPStrat.shouldDoNothing())
      Worklist.emplace_back(VPI, VPStrat);
  }
  if (Worklist.empty())
    return false;

  // Transform all VPIntrinsics on the worklist.
  LLVM_DEBUG(dbgs() << "\n:::: Transforming " << Worklist.size()
                    << " instructions ::::\n");
  for (TransformJob Job : Worklist) {
    // Transform the EVL parameter.
    switch (Job.Strategy.EVLParamStrategy) {
    case VPLegalization::Legal:
      break;
    case VPLegalization::Discard:
      discardEVLParameter(*Job.PI);
      break;
    case VPLegalization::Convert:
      if (foldEVLIntoMask(*Job.PI))
        ++NumFoldedVL;
      break;
    }
    Job.Strategy.EVLParamStrategy = VPLegalization::Legal;

    // Replace with a non-predicated operation.
    switch (Job.Strategy.OpStrategy) {
    case VPLegalization::Legal:
      break;
    case VPLegalization::Discard:
      llvm_unreachable("Invalid strategy for operators.");
    case VPLegalization::Convert:
      expandPredication(*Job.PI);
      ++NumLoweredVPOps;
      break;
    }
    Job.Strategy.OpStrategy = VPLegalization::Legal;

    assert(Job.isDone() && "incomplete transformation");
  }

  return true;
}
class ExpandVectorPredication : public FunctionPass {
public:
  static char ID;
  ExpandVectorPredication() : FunctionPass(ID) {
    initializeExpandVectorPredicationPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    CachingVPExpander VPExpander(F, *TTI);
    return VPExpander.expandVectorPredication();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }
};
} // namespace

char ExpandVectorPredication::ID;
INITIALIZE_PASS_BEGIN(ExpandVectorPredication, "expandvp",
                      "Expand vector predication intrinsics", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(ExpandVectorPredication, "expandvp",
                    "Expand vector predication intrinsics", false, false)

FunctionPass *llvm::createExpandVectorPredicationPass() {
  return new ExpandVectorPredication();
}

PreservedAnalyses
ExpandVectorPredicationPass::run(Function &F, FunctionAnalysisManager &AM) {
  const auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  CachingVPExpander VPExpander(F, TTI);
  if (!VPExpander.expandVectorPredication())
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}