aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Analysis/StratifiedSets.h
blob: 60ea2451b0ef9a988d56fce1a8ff96e304f15428 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_STRATIFIEDSETS_H
#define LLVM_ADT_STRATIFIEDSETS_H

#include "AliasAnalysisSummary.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include <bitset>
#include <cassert>
#include <cmath>
#include <type_traits>
#include <utility>
#include <vector>

namespace llvm {
namespace cflaa {
/// An index into Stratified Sets.
typedef unsigned StratifiedIndex;
/// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
/// ~1M sets exist.

// Container of information related to a value in a StratifiedSet.
struct StratifiedInfo {
  StratifiedIndex Index;
  /// For field sensitivity, etc. we can tack fields on here.
};

/// A "link" between two StratifiedSets.
struct StratifiedLink {
  /// This is a value used to signify "does not exist" where the
  /// StratifiedIndex type is used.
  ///
  /// This is used instead of Optional<StratifiedIndex> because
  /// Optional<StratifiedIndex> would eat up a considerable amount of extra
  /// memory, after struct padding/alignment is taken into account.
  static const StratifiedIndex SetSentinel;

  /// The index for the set "above" current
  StratifiedIndex Above;

  /// The link for the set "below" current
  StratifiedIndex Below;

  /// Attributes for these StratifiedSets.
  AliasAttrs Attrs;

  StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}

  bool hasBelow() const { return Below != SetSentinel; }
  bool hasAbove() const { return Above != SetSentinel; }

  void clearBelow() { Below = SetSentinel; }
  void clearAbove() { Above = SetSentinel; }
};

/// These are stratified sets, as described in "Fast algorithms for
/// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
/// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
/// of Value*s. If two Value*s are in the same set, or if both sets have
/// overlapping attributes, then the Value*s are said to alias.
///
/// Sets may be related by position, meaning that one set may be considered as
/// above or below another. In CFL Alias Analysis, this gives us an indication
/// of how two variables are related; if the set of variable A is below a set
/// containing variable B, then at some point, a variable that has interacted
/// with B (or B itself) was either used in order to extract the variable A, or
/// was used as storage of variable A.
///
/// Sets may also have attributes (as noted above). These attributes are
/// generally used for noting whether a variable in the set has interacted with
/// a variable whose origins we don't quite know (i.e. globals/arguments), or if
/// the variable may have had operations performed on it (modified in a function
/// call). All attributes that exist in a set A must exist in all sets marked as
/// below set A.
template <typename T> class StratifiedSets {
public:
  StratifiedSets() = default;
  StratifiedSets(StratifiedSets &&) = default;
  StratifiedSets &operator=(StratifiedSets &&) = default;

  StratifiedSets(DenseMap<T, StratifiedInfo> Map,
                 std::vector<StratifiedLink> Links)
      : Values(std::move(Map)), Links(std::move(Links)) {}

  Optional<StratifiedInfo> find(const T &Elem) const {
    auto Iter = Values.find(Elem);
    if (Iter == Values.end())
      return None;
    return Iter->second;
  }

  const StratifiedLink &getLink(StratifiedIndex Index) const {
    assert(inbounds(Index));
    return Links[Index];
  }

private:
  DenseMap<T, StratifiedInfo> Values;
  std::vector<StratifiedLink> Links;

  bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
};

/// Generic Builder class that produces StratifiedSets instances.
///
/// The goal of this builder is to efficiently produce correct StratifiedSets
/// instances. To this end, we use a few tricks:
///   > Set chains (A method for linking sets together)
///   > Set remaps (A method for marking a set as an alias [irony?] of another)
///
/// ==== Set chains ====
/// This builder has a notion of some value A being above, below, or with some
/// other value B:
///   > The `A above B` relationship implies that there is a reference edge
///   going from A to B. Namely, it notes that A can store anything in B's set.
///   > The `A below B` relationship is the opposite of `A above B`. It implies
///   that there's a dereference edge going from A to B.
///   > The `A with B` relationship states that there's an assignment edge going
///   from A to B, and that A and B should be treated as equals.
///
/// As an example, take the following code snippet:
///
/// %a = alloca i32, align 4
/// %ap = alloca i32*, align 8
/// %app = alloca i32**, align 8
/// store %a, %ap
/// store %ap, %app
/// %aw = getelementptr %ap, i32 0
///
/// Given this, the following relations exist:
///   - %a below %ap & %ap above %a
///   - %ap below %app & %app above %ap
///   - %aw with %ap & %ap with %aw
///
/// These relations produce the following sets:
///   [{%a}, {%ap, %aw}, {%app}]
///
/// ...Which state that the only MayAlias relationship in the above program is
/// between %ap and %aw.
///
/// Because LLVM allows arbitrary casts, code like the following needs to be
/// supported:
///   %ip = alloca i64, align 8
///   %ipp = alloca i64*, align 8
///   %i = bitcast i64** ipp to i64
///   store i64* %ip, i64** %ipp
///   store i64 %i, i64* %ip
///
/// Which, because %ipp ends up *both* above and below %ip, is fun.
///
/// This is solved by merging %i and %ipp into a single set (...which is the
/// only way to solve this, since their bit patterns are equivalent). Any sets
/// that ended up in between %i and %ipp at the time of merging (in this case,
/// the set containing %ip) also get conservatively merged into the set of %i
/// and %ipp. In short, the resulting StratifiedSet from the above code would be
/// {%ip, %ipp, %i}.
///
/// ==== Set remaps ====
/// More of an implementation detail than anything -- when merging sets, we need
/// to update the numbers of all of the elements mapped to those sets. Rather
/// than doing this at each merge, we note in the BuilderLink structure that a
/// remap has occurred, and use this information so we can defer renumbering set
/// elements until build time.
template <typename T> class StratifiedSetsBuilder {
  /// Represents a Stratified Set, with information about the Stratified
  /// Set above it, the set below it, and whether the current set has been
  /// remapped to another.
  struct BuilderLink {
    const StratifiedIndex Number;

    BuilderLink(StratifiedIndex N) : Number(N) {
      Remap = StratifiedLink::SetSentinel;
    }

    bool hasAbove() const {
      assert(!isRemapped());
      return Link.hasAbove();
    }

    bool hasBelow() const {
      assert(!isRemapped());
      return Link.hasBelow();
    }

    void setBelow(StratifiedIndex I) {
      assert(!isRemapped());
      Link.Below = I;
    }

    void setAbove(StratifiedIndex I) {
      assert(!isRemapped());
      Link.Above = I;
    }

    void clearBelow() {
      assert(!isRemapped());
      Link.clearBelow();
    }

    void clearAbove() {
      assert(!isRemapped());
      Link.clearAbove();
    }

    StratifiedIndex getBelow() const {
      assert(!isRemapped());
      assert(hasBelow());
      return Link.Below;
    }

    StratifiedIndex getAbove() const {
      assert(!isRemapped());
      assert(hasAbove());
      return Link.Above;
    }

    AliasAttrs getAttrs() {
      assert(!isRemapped());
      return Link.Attrs;
    }

    void setAttrs(AliasAttrs Other) {
      assert(!isRemapped());
      Link.Attrs |= Other;
    }

    bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }

    /// For initial remapping to another set
    void remapTo(StratifiedIndex Other) {
      assert(!isRemapped());
      Remap = Other;
    }

    StratifiedIndex getRemapIndex() const {
      assert(isRemapped());
      return Remap;
    }

    /// Should only be called when we're already remapped.
    void updateRemap(StratifiedIndex Other) {
      assert(isRemapped());
      Remap = Other;
    }

    /// Prefer the above functions to calling things directly on what's returned
    /// from this -- they guard against unexpected calls when the current
    /// BuilderLink is remapped.
    const StratifiedLink &getLink() const { return Link; }

  private:
    StratifiedLink Link;
    StratifiedIndex Remap;
  };

  /// This function performs all of the set unioning/value renumbering
  /// that we've been putting off, and generates a vector<StratifiedLink> that
  /// may be placed in a StratifiedSets instance.
  void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
    DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
    for (auto &Link : Links) {
      if (Link.isRemapped())
        continue;

      StratifiedIndex Number = StratLinks.size();
      Remaps.insert(std::make_pair(Link.Number, Number));
      StratLinks.push_back(Link.getLink());
    }

    for (auto &Link : StratLinks) {
      if (Link.hasAbove()) {
        auto &Above = linksAt(Link.Above);
        auto Iter = Remaps.find(Above.Number);
        assert(Iter != Remaps.end());
        Link.Above = Iter->second;
      }

      if (Link.hasBelow()) {
        auto &Below = linksAt(Link.Below);
        auto Iter = Remaps.find(Below.Number);
        assert(Iter != Remaps.end());
        Link.Below = Iter->second;
      }
    }

    for (auto &Pair : Values) {
      auto &Info = Pair.second;
      auto &Link = linksAt(Info.Index);
      auto Iter = Remaps.find(Link.Number);
      assert(Iter != Remaps.end());
      Info.Index = Iter->second;
    }
  }

  /// There's a guarantee in StratifiedLink where all bits set in a
  /// Link.externals will be set in all Link.externals "below" it.
  static void propagateAttrs(std::vector<StratifiedLink> &Links) {
    const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
      const auto *Link = &Links[Idx];
      while (Link->hasAbove()) {
        Idx = Link->Above;
        Link = &Links[Idx];
      }
      return Idx;
    };

    SmallSet<StratifiedIndex, 16> Visited;
    for (unsigned I = 0, E = Links.size(); I < E; ++I) {
      auto CurrentIndex = getHighestParentAbove(I);
      if (!Visited.insert(CurrentIndex).second)
        continue;

      while (Links[CurrentIndex].hasBelow()) {
        auto &CurrentBits = Links[CurrentIndex].Attrs;
        auto NextIndex = Links[CurrentIndex].Below;
        auto &NextBits = Links[NextIndex].Attrs;
        NextBits |= CurrentBits;
        CurrentIndex = NextIndex;
      }
    }
  }

public:
  /// Builds a StratifiedSet from the information we've been given since either
  /// construction or the prior build() call.
  StratifiedSets<T> build() {
    std::vector<StratifiedLink> StratLinks;
    finalizeSets(StratLinks);
    propagateAttrs(StratLinks);
    Links.clear();
    return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
  }

  bool has(const T &Elem) const { return get(Elem).hasValue(); }

  bool add(const T &Main) {
    if (get(Main).hasValue())
      return false;

    auto NewIndex = getNewUnlinkedIndex();
    return addAtMerging(Main, NewIndex);
  }

  /// Restructures the stratified sets as necessary to make "ToAdd" in a
  /// set above "Main". There are some cases where this is not possible (see
  /// above), so we merge them such that ToAdd and Main are in the same set.
  bool addAbove(const T &Main, const T &ToAdd) {
    assert(has(Main));
    auto Index = *indexOf(Main);
    if (!linksAt(Index).hasAbove())
      addLinkAbove(Index);

    auto Above = linksAt(Index).getAbove();
    return addAtMerging(ToAdd, Above);
  }

  /// Restructures the stratified sets as necessary to make "ToAdd" in a
  /// set below "Main". There are some cases where this is not possible (see
  /// above), so we merge them such that ToAdd and Main are in the same set.
  bool addBelow(const T &Main, const T &ToAdd) {
    assert(has(Main));
    auto Index = *indexOf(Main);
    if (!linksAt(Index).hasBelow())
      addLinkBelow(Index);

    auto Below = linksAt(Index).getBelow();
    return addAtMerging(ToAdd, Below);
  }

  bool addWith(const T &Main, const T &ToAdd) {
    assert(has(Main));
    auto MainIndex = *indexOf(Main);
    return addAtMerging(ToAdd, MainIndex);
  }

  void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
    assert(has(Main));
    auto *Info = *get(Main);
    auto &Link = linksAt(Info->Index);
    Link.setAttrs(NewAttrs);
  }

private:
  DenseMap<T, StratifiedInfo> Values;
  std::vector<BuilderLink> Links;

  /// Adds the given element at the given index, merging sets if necessary.
  bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
    StratifiedInfo Info = {Index};
    auto Pair = Values.insert(std::make_pair(ToAdd, Info));
    if (Pair.second)
      return true;

    auto &Iter = Pair.first;
    auto &IterSet = linksAt(Iter->second.Index);
    auto &ReqSet = linksAt(Index);

    // Failed to add where we wanted to. Merge the sets.
    if (&IterSet != &ReqSet)
      merge(IterSet.Number, ReqSet.Number);

    return false;
  }

  /// Gets the BuilderLink at the given index, taking set remapping into
  /// account.
  BuilderLink &linksAt(StratifiedIndex Index) {
    auto *Start = &Links[Index];
    if (!Start->isRemapped())
      return *Start;

    auto *Current = Start;
    while (Current->isRemapped())
      Current = &Links[Current->getRemapIndex()];

    auto NewRemap = Current->Number;

    // Run through everything that has yet to be updated, and update them to
    // remap to NewRemap
    Current = Start;
    while (Current->isRemapped()) {
      auto *Next = &Links[Current->getRemapIndex()];
      Current->updateRemap(NewRemap);
      Current = Next;
    }

    return *Current;
  }

  /// Merges two sets into one another. Assumes that these sets are not
  /// already one in the same.
  void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    assert(inbounds(Idx1) && inbounds(Idx2));
    assert(&linksAt(Idx1) != &linksAt(Idx2) &&
           "Merging a set into itself is not allowed");

    // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
    // both the
    // given sets, and all sets between them, into one.
    if (tryMergeUpwards(Idx1, Idx2))
      return;

    if (tryMergeUpwards(Idx2, Idx1))
      return;

    // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
    // We therefore need to merge the two chains together.
    mergeDirect(Idx1, Idx2);
  }

  /// Merges two sets assuming that the set at `Idx1` is unreachable from
  /// traversing above or below the set at `Idx2`.
  void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    assert(inbounds(Idx1) && inbounds(Idx2));

    auto *LinksInto = &linksAt(Idx1);
    auto *LinksFrom = &linksAt(Idx2);
    // Merging everything above LinksInto then proceeding to merge everything
    // below LinksInto becomes problematic, so we go as far "up" as possible!
    while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
      LinksInto = &linksAt(LinksInto->getAbove());
      LinksFrom = &linksAt(LinksFrom->getAbove());
    }

    if (LinksFrom->hasAbove()) {
      LinksInto->setAbove(LinksFrom->getAbove());
      auto &NewAbove = linksAt(LinksInto->getAbove());
      NewAbove.setBelow(LinksInto->Number);
    }

    // Merging strategy:
    //  > If neither has links below, stop.
    //  > If only `LinksInto` has links below, stop.
    //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to
    //  match `LinksFrom.Below`
    //  > If both have links above, deal with those next.
    while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
      auto FromAttrs = LinksFrom->getAttrs();
      LinksInto->setAttrs(FromAttrs);

      // Remap needs to happen after getBelow(), but before
      // assignment of LinksFrom
      auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
      LinksFrom->remapTo(LinksInto->Number);
      LinksFrom = NewLinksFrom;
      LinksInto = &linksAt(LinksInto->getBelow());
    }

    if (LinksFrom->hasBelow()) {
      LinksInto->setBelow(LinksFrom->getBelow());
      auto &NewBelow = linksAt(LinksInto->getBelow());
      NewBelow.setAbove(LinksInto->Number);
    }

    LinksInto->setAttrs(LinksFrom->getAttrs());
    LinksFrom->remapTo(LinksInto->Number);
  }

  /// Checks to see if lowerIndex is at a level lower than upperIndex. If so, it
  /// will merge lowerIndex with upperIndex (and all of the sets between) and
  /// return true. Otherwise, it will return false.
  bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
    assert(inbounds(LowerIndex) && inbounds(UpperIndex));
    auto *Lower = &linksAt(LowerIndex);
    auto *Upper = &linksAt(UpperIndex);
    if (Lower == Upper)
      return true;

    SmallVector<BuilderLink *, 8> Found;
    auto *Current = Lower;
    auto Attrs = Current->getAttrs();
    while (Current->hasAbove() && Current != Upper) {
      Found.push_back(Current);
      Attrs |= Current->getAttrs();
      Current = &linksAt(Current->getAbove());
    }

    if (Current != Upper)
      return false;

    Upper->setAttrs(Attrs);

    if (Lower->hasBelow()) {
      auto NewBelowIndex = Lower->getBelow();
      Upper->setBelow(NewBelowIndex);
      auto &NewBelow = linksAt(NewBelowIndex);
      NewBelow.setAbove(UpperIndex);
    } else {
      Upper->clearBelow();
    }

    for (const auto &Ptr : Found)
      Ptr->remapTo(Upper->Number);

    return true;
  }

  Optional<const StratifiedInfo *> get(const T &Val) const {
    auto Result = Values.find(Val);
    if (Result == Values.end())
      return None;
    return &Result->second;
  }

  Optional<StratifiedInfo *> get(const T &Val) {
    auto Result = Values.find(Val);
    if (Result == Values.end())
      return None;
    return &Result->second;
  }

  Optional<StratifiedIndex> indexOf(const T &Val) {
    auto MaybeVal = get(Val);
    if (!MaybeVal.hasValue())
      return None;
    auto *Info = *MaybeVal;
    auto &Link = linksAt(Info->Index);
    return Link.Number;
  }

  StratifiedIndex addLinkBelow(StratifiedIndex Set) {
    auto At = addLinks();
    Links[Set].setBelow(At);
    Links[At].setAbove(Set);
    return At;
  }

  StratifiedIndex addLinkAbove(StratifiedIndex Set) {
    auto At = addLinks();
    Links[At].setBelow(Set);
    Links[Set].setAbove(At);
    return At;
  }

  StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }

  StratifiedIndex addLinks() {
    auto Link = Links.size();
    Links.push_back(BuilderLink(Link));
    return Link;
  }

  bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
};
}
}
#endif // LLVM_ADT_STRATIFIEDSETS_H