1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
//===- MemoryLocation.cpp - Memory location descriptions -------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
using namespace llvm;
void LocationSize::print(raw_ostream &OS) const {
OS << "LocationSize::";
if (*this == beforeOrAfterPointer())
OS << "beforeOrAfterPointer";
else if (*this == afterPointer())
OS << "afterPointer";
else if (*this == mapEmpty())
OS << "mapEmpty";
else if (*this == mapTombstone())
OS << "mapTombstone";
else if (isPrecise())
OS << "precise(" << getValue() << ')';
else
OS << "upperBound(" << getValue() << ')';
}
MemoryLocation MemoryLocation::get(const LoadInst *LI) {
const auto &DL = LI->getModule()->getDataLayout();
return MemoryLocation(
LI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(LI->getType())),
LI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const StoreInst *SI) {
const auto &DL = SI->getModule()->getDataLayout();
return MemoryLocation(SI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(
SI->getValueOperand()->getType())),
SI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const VAArgInst *VI) {
return MemoryLocation(VI->getPointerOperand(),
LocationSize::afterPointer(), VI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const AtomicCmpXchgInst *CXI) {
const auto &DL = CXI->getModule()->getDataLayout();
return MemoryLocation(CXI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(
CXI->getCompareOperand()->getType())),
CXI->getAAMetadata());
}
MemoryLocation MemoryLocation::get(const AtomicRMWInst *RMWI) {
const auto &DL = RMWI->getModule()->getDataLayout();
return MemoryLocation(RMWI->getPointerOperand(),
LocationSize::precise(DL.getTypeStoreSize(
RMWI->getValOperand()->getType())),
RMWI->getAAMetadata());
}
Optional<MemoryLocation> MemoryLocation::getOrNone(const Instruction *Inst) {
switch (Inst->getOpcode()) {
case Instruction::Load:
return get(cast<LoadInst>(Inst));
case Instruction::Store:
return get(cast<StoreInst>(Inst));
case Instruction::VAArg:
return get(cast<VAArgInst>(Inst));
case Instruction::AtomicCmpXchg:
return get(cast<AtomicCmpXchgInst>(Inst));
case Instruction::AtomicRMW:
return get(cast<AtomicRMWInst>(Inst));
default:
return None;
}
}
MemoryLocation MemoryLocation::getForSource(const MemTransferInst *MTI) {
return getForSource(cast<AnyMemTransferInst>(MTI));
}
MemoryLocation MemoryLocation::getForSource(const AtomicMemTransferInst *MTI) {
return getForSource(cast<AnyMemTransferInst>(MTI));
}
MemoryLocation MemoryLocation::getForSource(const AnyMemTransferInst *MTI) {
assert(MTI->getRawSource() == MTI->getArgOperand(1));
return getForArgument(MTI, 1, nullptr);
}
MemoryLocation MemoryLocation::getForDest(const MemIntrinsic *MI) {
return getForDest(cast<AnyMemIntrinsic>(MI));
}
MemoryLocation MemoryLocation::getForDest(const AtomicMemIntrinsic *MI) {
return getForDest(cast<AnyMemIntrinsic>(MI));
}
MemoryLocation MemoryLocation::getForDest(const AnyMemIntrinsic *MI) {
assert(MI->getRawDest() == MI->getArgOperand(0));
return getForArgument(MI, 0, nullptr);
}
Optional<MemoryLocation>
MemoryLocation::getForDest(const CallBase *CB, const TargetLibraryInfo &TLI) {
if (!CB->onlyAccessesArgMemory())
return None;
if (CB->hasOperandBundles())
// TODO: remove implementation restriction
return None;
Value *UsedV = nullptr;
Optional<unsigned> UsedIdx;
for (unsigned i = 0; i < CB->arg_size(); i++) {
if (!CB->getArgOperand(i)->getType()->isPointerTy())
continue;
if (CB->onlyReadsMemory(i))
continue;
if (!UsedV) {
// First potentially writing parameter
UsedV = CB->getArgOperand(i);
UsedIdx = i;
continue;
}
UsedIdx = None;
if (UsedV != CB->getArgOperand(i))
// Can't describe writing to two distinct locations.
// TODO: This results in an inprecision when two values derived from the
// same object are passed as arguments to the same function.
return None;
}
if (!UsedV)
// We don't currently have a way to represent a "does not write" result
// and thus have to be conservative and return unknown.
return None;
if (UsedIdx)
return getForArgument(CB, *UsedIdx, &TLI);
return MemoryLocation::getBeforeOrAfter(UsedV, CB->getAAMetadata());
}
MemoryLocation MemoryLocation::getForArgument(const CallBase *Call,
unsigned ArgIdx,
const TargetLibraryInfo *TLI) {
AAMDNodes AATags = Call->getAAMetadata();
const Value *Arg = Call->getArgOperand(ArgIdx);
// We may be able to produce an exact size for known intrinsics.
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
const DataLayout &DL = II->getModule()->getDataLayout();
switch (II->getIntrinsicID()) {
default:
break;
case Intrinsic::memset:
case Intrinsic::memcpy:
case Intrinsic::memcpy_inline:
case Intrinsic::memmove:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memory intrinsic");
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
assert(ArgIdx == 1 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::precise(
cast<ConstantInt>(II->getArgOperand(0))->getZExtValue()),
AATags);
case Intrinsic::masked_load:
assert(ArgIdx == 0 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::upperBound(DL.getTypeStoreSize(II->getType())),
AATags);
case Intrinsic::masked_store:
assert(ArgIdx == 1 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::upperBound(
DL.getTypeStoreSize(II->getArgOperand(0)->getType())),
AATags);
case Intrinsic::invariant_end:
// The first argument to an invariant.end is a "descriptor" type (e.g. a
// pointer to a empty struct) which is never actually dereferenced.
if (ArgIdx == 0)
return MemoryLocation(Arg, LocationSize::precise(0), AATags);
assert(ArgIdx == 2 && "Invalid argument index");
return MemoryLocation(
Arg,
LocationSize::precise(
cast<ConstantInt>(II->getArgOperand(1))->getZExtValue()),
AATags);
case Intrinsic::arm_neon_vld1:
assert(ArgIdx == 0 && "Invalid argument index");
// LLVM's vld1 and vst1 intrinsics currently only support a single
// vector register.
return MemoryLocation(
Arg, LocationSize::precise(DL.getTypeStoreSize(II->getType())),
AATags);
case Intrinsic::arm_neon_vst1:
assert(ArgIdx == 0 && "Invalid argument index");
return MemoryLocation(Arg,
LocationSize::precise(DL.getTypeStoreSize(
II->getArgOperand(1)->getType())),
AATags);
}
assert(
!isa<AnyMemTransferInst>(II) &&
"all memory transfer intrinsics should be handled by the switch above");
}
// We can bound the aliasing properties of memset_pattern16 just as we can
// for memcpy/memset. This is particularly important because the
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
// whenever possible.
LibFunc F;
if (TLI && TLI->getLibFunc(*Call, F) && TLI->has(F)) {
switch (F) {
case LibFunc_strcpy:
case LibFunc_strcat:
case LibFunc_strncat:
assert((ArgIdx == 0 || ArgIdx == 1) && "Invalid argument index for str function");
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_memset_chk: {
assert(ArgIdx == 0 && "Invalid argument index for memset_chk");
LocationSize Size = LocationSize::afterPointer();
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
// memset_chk writes at most Len bytes. It may write less, if Len
// exceeds the specified max size and aborts.
Size = LocationSize::upperBound(Len->getZExtValue());
}
return MemoryLocation(Arg, Size, AATags);
}
case LibFunc_strncpy: {
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for strncpy");
LocationSize Size = LocationSize::afterPointer();
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
// strncpy is guaranteed to write Len bytes, but only reads up to Len
// bytes.
Size = ArgIdx == 0 ? LocationSize::precise(Len->getZExtValue())
: LocationSize::upperBound(Len->getZExtValue());
}
return MemoryLocation(Arg, Size, AATags);
}
case LibFunc_memset_pattern16:
case LibFunc_memset_pattern4:
case LibFunc_memset_pattern8:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memset_pattern16");
if (ArgIdx == 1) {
unsigned Size = 16;
if (F == LibFunc_memset_pattern4)
Size = 4;
else if (F == LibFunc_memset_pattern8)
Size = 8;
return MemoryLocation(Arg, LocationSize::precise(Size), AATags);
}
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_bcmp:
case LibFunc_memcmp:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memcmp/bcmp");
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_memchr:
assert((ArgIdx == 0) && "Invalid argument index for memchr");
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
AATags);
return MemoryLocation::getAfter(Arg, AATags);
case LibFunc_memccpy:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memccpy");
// We only know an upper bound on the number of bytes read/written.
if (const ConstantInt *LenCI =
dyn_cast<ConstantInt>(Call->getArgOperand(3)))
return MemoryLocation(
Arg, LocationSize::upperBound(LenCI->getZExtValue()), AATags);
return MemoryLocation::getAfter(Arg, AATags);
default:
break;
};
}
return MemoryLocation::getBeforeOrAfter(Call->getArgOperand(ArgIdx), AATags);
}
|