aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Analysis/IRSimilarityIdentifier.cpp
blob: 01681c47418a998719fb7b6bda527b015b8641b9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
//===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// Implementation file for the IRSimilarityIdentifier for identifying
// similarities in IR including the IRInstructionMapper.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/IRSimilarityIdentifier.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/SuffixTree.h"

using namespace llvm;
using namespace IRSimilarity;

namespace llvm {
cl::opt<bool>
    DisableBranches("no-ir-sim-branch-matching", cl::init(false),
                    cl::ReallyHidden,
                    cl::desc("disable similarity matching, and outlining, "
                             "across branches for debugging purposes."));

cl::opt<bool>
    DisableIndirectCalls("no-ir-sim-indirect-calls", cl::init(false),
                         cl::ReallyHidden,
                         cl::desc("disable outlining indirect calls."));

cl::opt<bool>
    MatchCallsByName("ir-sim-calls-by-name", cl::init(false), cl::ReallyHidden,
                     cl::desc("only allow matching call instructions if the "
                              "name and type signature match."));

cl::opt<bool>
    DisableIntrinsics("no-ir-sim-intrinsics", cl::init(false), cl::ReallyHidden,
                      cl::desc("Don't match or outline intrinsics"));
} // namespace llvm

IRInstructionData::IRInstructionData(Instruction &I, bool Legality,
                                     IRInstructionDataList &IDList)
    : Inst(&I), Legal(Legality), IDL(&IDList) {
  initializeInstruction();
}

void IRInstructionData::initializeInstruction() {
  // We check for whether we have a comparison instruction.  If it is, we
  // find the "less than" version of the predicate for consistency for
  // comparison instructions throught the program.
  if (CmpInst *C = dyn_cast<CmpInst>(Inst)) {
    CmpInst::Predicate Predicate = predicateForConsistency(C);
    if (Predicate != C->getPredicate())
      RevisedPredicate = Predicate;
  }

  // Here we collect the operands and their types for determining whether
  // the structure of the operand use matches between two different candidates.
  for (Use &OI : Inst->operands()) {
    if (isa<CmpInst>(Inst) && RevisedPredicate.hasValue()) {
      // If we have a CmpInst where the predicate is reversed, it means the
      // operands must be reversed as well.
      OperVals.insert(OperVals.begin(), OI.get());
      continue;
    }

    OperVals.push_back(OI.get());
  }

  // We capture the incoming BasicBlocks as values as well as the incoming
  // Values in order to check for structural similarity.
  if (PHINode *PN = dyn_cast<PHINode>(Inst))
    for (BasicBlock *BB : PN->blocks())
      OperVals.push_back(BB);
}

IRInstructionData::IRInstructionData(IRInstructionDataList &IDList)
    : IDL(&IDList) {}

void IRInstructionData::setBranchSuccessors(
    DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) {
  assert(isa<BranchInst>(Inst) && "Instruction must be branch");

  BranchInst *BI = cast<BranchInst>(Inst);
  DenseMap<BasicBlock *, unsigned>::iterator BBNumIt;

  BBNumIt = BasicBlockToInteger.find(BI->getParent());
  assert(BBNumIt != BasicBlockToInteger.end() &&
         "Could not find location for BasicBlock!");

  int CurrentBlockNumber = static_cast<int>(BBNumIt->second);

  for (BasicBlock *Successor : BI->successors()) {
    BBNumIt = BasicBlockToInteger.find(Successor);
    assert(BBNumIt != BasicBlockToInteger.end() &&
           "Could not find number for BasicBlock!");
    int OtherBlockNumber = static_cast<int>(BBNumIt->second);

    int Relative = OtherBlockNumber - CurrentBlockNumber;
    RelativeBlockLocations.push_back(Relative);
  }
}

void IRInstructionData::setCalleeName(bool MatchByName) {
  CallInst *CI = dyn_cast<CallInst>(Inst);
  assert(CI && "Instruction must be call");

  CalleeName = "";
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // To hash intrinsics, we use the opcode, and types like the other
    // instructions, but also, the Intrinsic ID, and the Name of the
    // intrinsic.
    Intrinsic::ID IntrinsicID = II->getIntrinsicID();
    FunctionType *FT = II->getFunctionType();
    // If there is an overloaded name, we have to use the complex version
    // of getName to get the entire string.
    if (Intrinsic::isOverloaded(IntrinsicID))
      CalleeName =
          Intrinsic::getName(IntrinsicID, FT->params(), II->getModule(), FT);
    // If there is not an overloaded name, we only need to use this version.
    else
      CalleeName = Intrinsic::getName(IntrinsicID).str();

    return;
  }

  if (!CI->isIndirectCall() && MatchByName)
    CalleeName = CI->getCalledFunction()->getName().str();
}

void IRInstructionData::setPHIPredecessors(
    DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) {
  assert(isa<PHINode>(Inst) && "Instruction must be phi node");

  PHINode *PN = cast<PHINode>(Inst);
  DenseMap<BasicBlock *, unsigned>::iterator BBNumIt;

  BBNumIt = BasicBlockToInteger.find(PN->getParent());
  assert(BBNumIt != BasicBlockToInteger.end() &&
         "Could not find location for BasicBlock!");

  int CurrentBlockNumber = static_cast<int>(BBNumIt->second);

  // Convert the incoming blocks of the PHINode to an integer value, based on
  // the relative distances between the current block and the incoming block.
  for (unsigned Idx = 0; Idx < PN->getNumIncomingValues(); Idx++) {
    BasicBlock *Incoming = PN->getIncomingBlock(Idx);
    BBNumIt = BasicBlockToInteger.find(Incoming);
    assert(BBNumIt != BasicBlockToInteger.end() &&
           "Could not find number for BasicBlock!");
    int OtherBlockNumber = static_cast<int>(BBNumIt->second);

    int Relative = OtherBlockNumber - CurrentBlockNumber;
    RelativeBlockLocations.push_back(Relative);
    RelativeBlockLocations.push_back(Relative);
  }
}

CmpInst::Predicate IRInstructionData::predicateForConsistency(CmpInst *CI) {
  switch (CI->getPredicate()) {
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT:
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE:
  case CmpInst::ICMP_SGT:
  case CmpInst::ICMP_UGT:
  case CmpInst::ICMP_SGE:
  case CmpInst::ICMP_UGE:
    return CI->getSwappedPredicate();
  default:
    return CI->getPredicate();
  }
}

CmpInst::Predicate IRInstructionData::getPredicate() const {
  assert(isa<CmpInst>(Inst) &&
         "Can only get a predicate from a compare instruction");

  if (RevisedPredicate.hasValue())
    return RevisedPredicate.getValue();
  
  return cast<CmpInst>(Inst)->getPredicate();
}

StringRef IRInstructionData::getCalleeName() const {
  assert(isa<CallInst>(Inst) &&
         "Can only get a name from a call instruction");

  assert(CalleeName.hasValue() && "CalleeName has not been set");

  return *CalleeName;
}

bool IRSimilarity::isClose(const IRInstructionData &A,
                           const IRInstructionData &B) {

  if (!A.Legal || !B.Legal)
    return false;

  // Check if we are performing the same sort of operation on the same types
  // but not on the same values.
  if (!A.Inst->isSameOperationAs(B.Inst)) {
    // If there is a predicate, this means that either there is a swapped
    // predicate, or that the types are different, we want to make sure that
    // the predicates are equivalent via swapping.
    if (isa<CmpInst>(A.Inst) && isa<CmpInst>(B.Inst)) {

      if (A.getPredicate() != B.getPredicate())
        return false;

      // If the predicates are the same via swap, make sure that the types are
      // still the same.
      auto ZippedTypes = zip(A.OperVals, B.OperVals);

      return all_of(
          ZippedTypes, [](std::tuple<llvm::Value *, llvm::Value *> R) {
            return std::get<0>(R)->getType() == std::get<1>(R)->getType();
          });
    }

    return false;
  }

  // Since any GEP Instruction operands after the first operand cannot be
  // defined by a register, we must make sure that the operands after the first
  // are the same in the two instructions
  if (auto *GEP = dyn_cast<GetElementPtrInst>(A.Inst)) {
    auto *OtherGEP = cast<GetElementPtrInst>(B.Inst);

    // If the instructions do not have the same inbounds restrictions, we do
    // not consider them the same.
    if (GEP->isInBounds() != OtherGEP->isInBounds())
      return false;

    auto ZippedOperands = zip(GEP->indices(), OtherGEP->indices());

    // We increment here since we do not care about the first instruction,
    // we only care about the following operands since they must be the
    // exact same to be considered similar.
    return all_of(drop_begin(ZippedOperands),
                  [](std::tuple<llvm::Use &, llvm::Use &> R) {
                    return std::get<0>(R) == std::get<1>(R);
                  });
  }

  // If the instructions are functions calls, we make sure that the function
  // name is the same.  We already know that the types are since is
  // isSameOperationAs is true.
  if (isa<CallInst>(A.Inst) && isa<CallInst>(B.Inst)) {
    if (A.getCalleeName().str() != B.getCalleeName().str())
      return false;
  }

  if (isa<BranchInst>(A.Inst) && isa<BranchInst>(B.Inst) &&
      A.RelativeBlockLocations.size() != B.RelativeBlockLocations.size())
    return false;

  return true;
}

// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
void IRInstructionMapper::convertToUnsignedVec(
    BasicBlock &BB, std::vector<IRInstructionData *> &InstrList,
    std::vector<unsigned> &IntegerMapping) {
  BasicBlock::iterator It = BB.begin();

  std::vector<unsigned> IntegerMappingForBB;
  std::vector<IRInstructionData *> InstrListForBB;

  for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) {
    switch (InstClassifier.visit(*It)) {
    case InstrType::Legal:
      mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
      break;
    case InstrType::Illegal:
      mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
      break;
    case InstrType::Invisible:
      AddedIllegalLastTime = false;
      break;
    }
  }

  if (HaveLegalRange) {
    if (AddedIllegalLastTime)
      mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true);
    for (IRInstructionData *ID : InstrListForBB)
      this->IDL->push_back(*ID);
    llvm::append_range(InstrList, InstrListForBB);
    llvm::append_range(IntegerMapping, IntegerMappingForBB);
  }
}

// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
unsigned IRInstructionMapper::mapToLegalUnsigned(
    BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
    std::vector<IRInstructionData *> &InstrListForBB) {
  // We added something legal, so we should unset the AddedLegalLastTime
  // flag.
  AddedIllegalLastTime = false;

  // If we have at least two adjacent legal instructions (which may have
  // invisible instructions in between), remember that.
  if (CanCombineWithPrevInstr)
    HaveLegalRange = true;
  CanCombineWithPrevInstr = true;

  // Get the integer for this instruction or give it the current
  // LegalInstrNumber.
  IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL);
  InstrListForBB.push_back(ID);

  if (isa<BranchInst>(*It))
    ID->setBranchSuccessors(BasicBlockToInteger);

  if (isa<CallInst>(*It))
    ID->setCalleeName(EnableMatchCallsByName);

  if (isa<PHINode>(*It))
    ID->setPHIPredecessors(BasicBlockToInteger);

  // Add to the instruction list
  bool WasInserted;
  DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator
      ResultIt;
  std::tie(ResultIt, WasInserted) =
      InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber));
  unsigned INumber = ResultIt->second;

  // There was an insertion.
  if (WasInserted)
    LegalInstrNumber++;

  IntegerMappingForBB.push_back(INumber);

  // Make sure we don't overflow or use any integers reserved by the DenseMap.
  assert(LegalInstrNumber < IllegalInstrNumber &&
         "Instruction mapping overflow!");

  assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
         "Tried to assign DenseMap tombstone or empty key to instruction.");
  assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
         "Tried to assign DenseMap tombstone or empty key to instruction.");

  return INumber;
}

IRInstructionData *
IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality,
                                               IRInstructionDataList &IDL) {
  return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL);
}

IRInstructionData *
IRInstructionMapper::allocateIRInstructionData(IRInstructionDataList &IDL) {
  return new (InstDataAllocator->Allocate()) IRInstructionData(IDL);
}

IRInstructionDataList *
IRInstructionMapper::allocateIRInstructionDataList() {
  return new (IDLAllocator->Allocate()) IRInstructionDataList();
}

// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
unsigned IRInstructionMapper::mapToIllegalUnsigned(
    BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
    std::vector<IRInstructionData *> &InstrListForBB, bool End) {
  // Can't combine an illegal instruction. Set the flag.
  CanCombineWithPrevInstr = false;

  // Only add one illegal number per range of legal numbers.
  if (AddedIllegalLastTime)
    return IllegalInstrNumber;

  IRInstructionData *ID = nullptr;
  if (!End)
    ID = allocateIRInstructionData(*It, false, *IDL);
  else
    ID = allocateIRInstructionData(*IDL);
  InstrListForBB.push_back(ID);

  // Remember that we added an illegal number last time.
  AddedIllegalLastTime = true;
  unsigned INumber = IllegalInstrNumber;
  IntegerMappingForBB.push_back(IllegalInstrNumber--);

  assert(LegalInstrNumber < IllegalInstrNumber &&
         "Instruction mapping overflow!");

  assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
         "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");

  assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
         "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");

  return INumber;
}

IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
                                             IRInstructionData *FirstInstIt,
                                             IRInstructionData *LastInstIt)
    : StartIdx(StartIdx), Len(Len) {

  assert(FirstInstIt != nullptr && "Instruction is nullptr!");
  assert(LastInstIt != nullptr && "Instruction is nullptr!");
  assert(StartIdx + Len > StartIdx &&
         "Overflow for IRSimilarityCandidate range?");
  assert(Len - 1 == static_cast<unsigned>(std::distance(
                        iterator(FirstInstIt), iterator(LastInstIt))) &&
         "Length of the first and last IRInstructionData do not match the "
         "given length");

  // We iterate over the given instructions, and map each unique value
  // to a unique number in the IRSimilarityCandidate ValueToNumber and
  // NumberToValue maps.  A constant get its own value globally, the individual
  // uses of the constants are not considered to be unique.
  //
  // IR:                    Mapping Added:
  // %add1 = add i32 %a, c1    %add1 -> 3, %a -> 1, c1 -> 2
  // %add2 = add i32 %a, %1    %add2 -> 4
  // %add3 = add i32 c2, c1    %add3 -> 6, c2 -> 5
  //
  // when replace with global values, starting from 1, would be
  //
  // 3 = add i32 1, 2
  // 4 = add i32 1, 3
  // 6 = add i32 5, 2
  unsigned LocalValNumber = 1;
  IRInstructionDataList::iterator ID = iterator(*FirstInstIt);
  for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) {
    // Map the operand values to an unsigned integer if it does not already
    // have an unsigned integer assigned to it.
    for (Value *Arg : ID->OperVals)
      if (ValueToNumber.find(Arg) == ValueToNumber.end()) {
        ValueToNumber.try_emplace(Arg, LocalValNumber);
        NumberToValue.try_emplace(LocalValNumber, Arg);
        LocalValNumber++;
      }

    // Mapping the instructions to an unsigned integer if it is not already
    // exist in the mapping.
    if (ValueToNumber.find(ID->Inst) == ValueToNumber.end()) {
      ValueToNumber.try_emplace(ID->Inst, LocalValNumber);
      NumberToValue.try_emplace(LocalValNumber, ID->Inst);
      LocalValNumber++;
    }
  }

  // Setting the first and last instruction data pointers for the candidate.  If
  // we got through the entire for loop without hitting an assert, we know
  // that both of these instructions are not nullptrs.
  FirstInst = FirstInstIt;
  LastInst = LastInstIt;
}

bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A,
                                      const IRSimilarityCandidate &B) {
  if (A.getLength() != B.getLength())
    return false;

  auto InstrDataForBoth =
      zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end()));

  return all_of(InstrDataForBoth,
                [](std::tuple<IRInstructionData &, IRInstructionData &> R) {
                  IRInstructionData &A = std::get<0>(R);
                  IRInstructionData &B = std::get<1>(R);
                  if (!A.Legal || !B.Legal)
                    return false;
                  return isClose(A, B);
                });
}

/// Determine if one or more of the assigned global value numbers for the
/// operands in \p TargetValueNumbers is in the current mapping set for operand
/// numbers in \p SourceOperands.  The set of possible corresponding global
/// value numbers are replaced with the most recent version of compatible
/// values.
///
/// \param [in] SourceValueToNumberMapping - The mapping of a Value to global
/// value number for the source IRInstructionCandidate.
/// \param [in, out] CurrentSrcTgtNumberMapping - The current mapping of source
/// IRSimilarityCandidate global value numbers to a set of possible numbers in
/// the target.
/// \param [in] SourceOperands - The operands in the original
/// IRSimilarityCandidate in the current instruction.
/// \param [in] TargetValueNumbers - The global value numbers of the operands in
/// the corresponding Instruction in the other IRSimilarityCandidate.
/// \returns true if there exists a possible mapping between the source
/// Instruction operands and the target Instruction operands, and false if not.
static bool checkNumberingAndReplaceCommutative(
  const DenseMap<Value *, unsigned> &SourceValueToNumberMapping,
  DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
  ArrayRef<Value *> &SourceOperands,
  DenseSet<unsigned> &TargetValueNumbers){

  DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;

  unsigned ArgVal;
  bool WasInserted;

  // Iterate over the operands in the source IRSimilarityCandidate to determine
  // whether there exists an operand in the other IRSimilarityCandidate that
  // creates a valid mapping of Value to Value between the
  // IRSimilarityCaniddates.
  for (Value *V : SourceOperands) {
    ArgVal = SourceValueToNumberMapping.find(V)->second;

    std::tie(ValueMappingIt, WasInserted) = CurrentSrcTgtNumberMapping.insert(
        std::make_pair(ArgVal, TargetValueNumbers));

    // Instead of finding a current mapping, we inserted a set.  This means a
    // mapping did not exist for the source Instruction operand, it has no
    // current constraints we need to check.
    if (WasInserted)
      continue;

    // If a mapping already exists for the source operand to the values in the
    // other IRSimilarityCandidate we need to iterate over the items in other
    // IRSimilarityCandidate's Instruction to determine whether there is a valid
    // mapping of Value to Value.
    DenseSet<unsigned> NewSet;
    for (unsigned &Curr : ValueMappingIt->second)
      // If we can find the value in the mapping, we add it to the new set.
      if (TargetValueNumbers.contains(Curr))
        NewSet.insert(Curr);

    // If we could not find a Value, return 0.
    if (NewSet.empty())
      return false;
    
    // Otherwise replace the old mapping with the newly constructed one.
    if (NewSet.size() != ValueMappingIt->second.size())
      ValueMappingIt->second.swap(NewSet);

    // We have reached no conclusions about the mapping, and cannot remove
    // any items from the other operands, so we move to check the next operand.
    if (ValueMappingIt->second.size() != 1)
      continue;


    unsigned ValToRemove = *ValueMappingIt->second.begin();
    // When there is only one item left in the mapping for and operand, remove
    // the value from the other operands.  If it results in there being no
    // mapping, return false, it means the mapping is wrong
    for (Value *InnerV : SourceOperands) {
      if (V == InnerV)
        continue;

      unsigned InnerVal = SourceValueToNumberMapping.find(InnerV)->second;
      ValueMappingIt = CurrentSrcTgtNumberMapping.find(InnerVal);
      if (ValueMappingIt == CurrentSrcTgtNumberMapping.end())
        continue;

      ValueMappingIt->second.erase(ValToRemove);
      if (ValueMappingIt->second.empty())
        return false;
    }
  }

  return true;
}

/// Determine if operand number \p TargetArgVal is in the current mapping set
/// for operand number \p SourceArgVal.
///
/// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global
/// value numbers from source IRSimilarityCandidate to target
/// IRSimilarityCandidate.
/// \param [in] SourceArgVal The global value number for an operand in the
/// in the original candidate.
/// \param [in] TargetArgVal The global value number for the corresponding
/// operand in the other candidate.
/// \returns True if there exists a mapping and false if not.
bool checkNumberingAndReplace(
    DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
    unsigned SourceArgVal, unsigned TargetArgVal) {
  // We are given two unsigned integers representing the global values of
  // the operands in different IRSimilarityCandidates and a current mapping
  // between the two.
  //
  // Source Operand GVN: 1
  // Target Operand GVN: 2
  // CurrentMapping: {1: {1, 2}}
  //
  // Since we have mapping, and the target operand is contained in the set, we
  // update it to:
  // CurrentMapping: {1: {2}}
  // and can return true. But, if the mapping was
  // CurrentMapping: {1: {3}}
  // we would return false.

  bool WasInserted;
  DenseMap<unsigned, DenseSet<unsigned>>::iterator Val;

  std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert(
      std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal})));

  // If we created a new mapping, then we are done.
  if (WasInserted)
    return true;

  // If there is more than one option in the mapping set, and the target value
  // is included in the mapping set replace that set with one that only includes
  // the target value, as it is the only valid mapping via the non commutative
  // instruction.

  DenseSet<unsigned> &TargetSet = Val->second;
  if (TargetSet.size() > 1 && TargetSet.contains(TargetArgVal)) {
    TargetSet.clear();
    TargetSet.insert(TargetArgVal);
    return true;
  }

  // Return true if we can find the value in the set.
  return TargetSet.contains(TargetArgVal);
}

bool IRSimilarityCandidate::compareNonCommutativeOperandMapping(
    OperandMapping A, OperandMapping B) {
  // Iterators to keep track of where we are in the operands for each
  // Instruction.
  ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
  ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
  unsigned OperandLength = A.OperVals.size();

  // For each operand, get the value numbering and ensure it is consistent.
  for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) {
    unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second;
    unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second;

    // Attempt to add a set with only the target value.  If there is no mapping
    // we can create it here.
    //
    // For an instruction like a subtraction:
    // IRSimilarityCandidateA:  IRSimilarityCandidateB:
    // %resultA = sub %a, %b    %resultB = sub %d, %e
    //
    // We map %a -> %d and %b -> %e.
    //
    // And check to see whether their mapping is consistent in
    // checkNumberingAndReplace.

    if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB))
      return false;

    if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA))
      return false;
  }
  return true;
}

bool IRSimilarityCandidate::compareCommutativeOperandMapping(
    OperandMapping A, OperandMapping B) {
  DenseSet<unsigned> ValueNumbersA;      
  DenseSet<unsigned> ValueNumbersB;

  ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
  ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
  unsigned OperandLength = A.OperVals.size();

  // Find the value number sets for the operands.
  for (unsigned Idx = 0; Idx < OperandLength;
       Idx++, VItA++, VItB++) {
    ValueNumbersA.insert(A.IRSC.ValueToNumber.find(*VItA)->second);
    ValueNumbersB.insert(B.IRSC.ValueToNumber.find(*VItB)->second);
  }

  // Iterate over the operands in the first IRSimilarityCandidate and make sure
  // there exists a possible mapping with the operands in the second
  // IRSimilarityCandidate.
  if (!checkNumberingAndReplaceCommutative(A.IRSC.ValueToNumber,
                                           A.ValueNumberMapping, A.OperVals,
                                           ValueNumbersB))
    return false;

  // Iterate over the operands in the second IRSimilarityCandidate and make sure
  // there exists a possible mapping with the operands in the first
  // IRSimilarityCandidate.
  if (!checkNumberingAndReplaceCommutative(B.IRSC.ValueToNumber,
                                           B.ValueNumberMapping, B.OperVals,
                                           ValueNumbersA))
    return false;

  return true;
}

bool IRSimilarityCandidate::checkRelativeLocations(RelativeLocMapping A,
                                                   RelativeLocMapping B) {
  // Get the basic blocks the label refers to.
  BasicBlock *ABB = static_cast<BasicBlock *>(A.OperVal);
  BasicBlock *BBB = static_cast<BasicBlock *>(B.OperVal);

  // Get the basic blocks contained in each region.
  DenseSet<BasicBlock *> BasicBlockA;
  DenseSet<BasicBlock *> BasicBlockB;
  A.IRSC.getBasicBlocks(BasicBlockA);
  B.IRSC.getBasicBlocks(BasicBlockB);
  
  // Determine if the block is contained in the region.
  bool AContained = BasicBlockA.contains(ABB);
  bool BContained = BasicBlockB.contains(BBB);

  // Both blocks need to be contained in the region, or both need to be outside
  // the reigon.
  if (AContained != BContained)
    return false;
  
  // If both are contained, then we need to make sure that the relative
  // distance to the target blocks are the same.
  if (AContained)
    return A.RelativeLocation == B.RelativeLocation;
  return true;
}

bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A,
                                             const IRSimilarityCandidate &B) {
  DenseMap<unsigned, DenseSet<unsigned>> MappingA;
  DenseMap<unsigned, DenseSet<unsigned>> MappingB;
  return IRSimilarityCandidate::compareStructure(A, B, MappingA, MappingB);
}

typedef detail::zippy<detail::zip_shortest, SmallVector<int, 4> &,
                      SmallVector<int, 4> &, ArrayRef<Value *> &,
                      ArrayRef<Value *> &>
    ZippedRelativeLocationsT;

bool IRSimilarityCandidate::compareStructure(
    const IRSimilarityCandidate &A, const IRSimilarityCandidate &B,
    DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
    DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) {
  if (A.getLength() != B.getLength())
    return false;

  if (A.ValueToNumber.size() != B.ValueToNumber.size())
    return false;

  iterator ItA = A.begin();
  iterator ItB = B.begin();

  // These ValueNumber Mapping sets create a create a mapping between the values
  // in one candidate to values in the other candidate.  If we create a set with
  // one element, and that same element maps to the original element in the
  // candidate we have a good mapping.
  DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;


  // Iterate over the instructions contained in each candidate
  unsigned SectionLength = A.getStartIdx() + A.getLength();
  for (unsigned Loc = A.getStartIdx(); Loc < SectionLength;
       ItA++, ItB++, Loc++) {
    // Make sure the instructions are similar to one another.
    if (!isClose(*ItA, *ItB))
      return false;

    Instruction *IA = ItA->Inst;
    Instruction *IB = ItB->Inst;

    if (!ItA->Legal || !ItB->Legal)
      return false;

    // Get the operand sets for the instructions.
    ArrayRef<Value *> OperValsA = ItA->OperVals;
    ArrayRef<Value *> OperValsB = ItB->OperVals;

    unsigned InstValA = A.ValueToNumber.find(IA)->second;
    unsigned InstValB = B.ValueToNumber.find(IB)->second;

    bool WasInserted;
    // Ensure that the mappings for the instructions exists.
    std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
        std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
    if (!WasInserted && !ValueMappingIt->second.contains(InstValB))
      return false;

    std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingB.insert(
        std::make_pair(InstValB, DenseSet<unsigned>({InstValA})));
    if (!WasInserted && !ValueMappingIt->second.contains(InstValA))
      return false;

    // We have different paths for commutative instructions and non-commutative
    // instructions since commutative instructions could allow multiple mappings
    // to certain values.
    if (IA->isCommutative() && !isa<FPMathOperator>(IA)) {
      if (!compareCommutativeOperandMapping(
              {A, OperValsA, ValueNumberMappingA},
              {B, OperValsB, ValueNumberMappingB}))
        return false;
      continue;
    }

    // Handle the non-commutative cases.
    if (!compareNonCommutativeOperandMapping(
            {A, OperValsA, ValueNumberMappingA},
            {B, OperValsB, ValueNumberMappingB}))
      return false;

    // Here we check that between two corresponding instructions,
    // when referring to a basic block in the same region, the
    // relative locations are the same. And, that the instructions refer to
    // basic blocks outside the region in the same corresponding locations.

    // We are able to make the assumption about blocks outside of the region
    // since the target block labels are considered values and will follow the
    // same number matching that we defined for the other instructions in the
    // region.  So, at this point, in each location we target a specific block
    // outside the region, we are targeting a corresponding block in each
    // analagous location in the region we are comparing to.
    if (!(isa<BranchInst>(IA) && isa<BranchInst>(IB)) &&
        !(isa<PHINode>(IA) && isa<PHINode>(IB)))
      continue;

    SmallVector<int, 4> &RelBlockLocsA = ItA->RelativeBlockLocations;
    SmallVector<int, 4> &RelBlockLocsB = ItB->RelativeBlockLocations;
    if (RelBlockLocsA.size() != RelBlockLocsB.size() &&
        OperValsA.size() != OperValsB.size())
      return false;

    ZippedRelativeLocationsT ZippedRelativeLocations =
        zip(RelBlockLocsA, RelBlockLocsB, OperValsA, OperValsB);
    if (any_of(ZippedRelativeLocations,
               [&A, &B](std::tuple<int, int, Value *, Value *> R) {
                 return !checkRelativeLocations(
                     {A, std::get<0>(R), std::get<2>(R)},
                     {B, std::get<1>(R), std::get<3>(R)});
               }))
      return false;
  }
  return true;
}

bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A,
                                    const IRSimilarityCandidate &B) {
  auto DoesOverlap = [](const IRSimilarityCandidate &X,
                        const IRSimilarityCandidate &Y) {
    // Check:
    // XXXXXX        X starts before Y ends
    //      YYYYYYY  Y starts after X starts
    return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx;
  };

  return DoesOverlap(A, B) || DoesOverlap(B, A);
}

void IRSimilarityIdentifier::populateMapper(
    Module &M, std::vector<IRInstructionData *> &InstrList,
    std::vector<unsigned> &IntegerMapping) {

  std::vector<IRInstructionData *> InstrListForModule;
  std::vector<unsigned> IntegerMappingForModule;
  // Iterate over the functions in the module to map each Instruction in each
  // BasicBlock to an unsigned integer.
  Mapper.initializeForBBs(M);

  for (Function &F : M) {

    if (F.empty())
      continue;

    for (BasicBlock &BB : F) {

      // BB has potential to have similarity since it has a size greater than 2
      // and can therefore match other regions greater than 2. Map it to a list
      // of unsigned integers.
      Mapper.convertToUnsignedVec(BB, InstrListForModule,
                                  IntegerMappingForModule);
    }

    BasicBlock::iterator It = F.begin()->end();
    Mapper.mapToIllegalUnsigned(It, IntegerMappingForModule, InstrListForModule,
                                true);
    if (InstrListForModule.size() > 0)
      Mapper.IDL->push_back(*InstrListForModule.back());
  }

  // Insert the InstrListForModule at the end of the overall InstrList so that
  // we can have a long InstrList for the entire set of Modules being analyzed.
  llvm::append_range(InstrList, InstrListForModule);
  // Do the same as above, but for IntegerMapping.
  llvm::append_range(IntegerMapping, IntegerMappingForModule);
}

void IRSimilarityIdentifier::populateMapper(
    ArrayRef<std::unique_ptr<Module>> &Modules,
    std::vector<IRInstructionData *> &InstrList,
    std::vector<unsigned> &IntegerMapping) {

  // Iterate over, and map the instructions in each module.
  for (const std::unique_ptr<Module> &M : Modules)
    populateMapper(*M, InstrList, IntegerMapping);
}

/// From a repeated subsequence, find all the different instances of the
/// subsequence from the \p InstrList, and create an IRSimilarityCandidate from
/// the IRInstructionData in subsequence.
///
/// \param [in] Mapper - The instruction mapper for basic correctness checks.
/// \param [in] InstrList - The vector that holds the instruction data.
/// \param [in] IntegerMapping - The vector that holds the mapped integers.
/// \param [out] CandsForRepSubstring - The vector to store the generated
/// IRSimilarityCandidates.
static void createCandidatesFromSuffixTree(
    const IRInstructionMapper& Mapper, std::vector<IRInstructionData *> &InstrList,
    std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS,
    std::vector<IRSimilarityCandidate> &CandsForRepSubstring) {

  unsigned StringLen = RS.Length;
  if (StringLen < 2)
    return;

  // Create an IRSimilarityCandidate for instance of this subsequence \p RS.
  for (const unsigned &StartIdx : RS.StartIndices) {
    unsigned EndIdx = StartIdx + StringLen - 1;

    // Check that this subsequence does not contain an illegal instruction.
    bool ContainsIllegal = false;
    for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) {
      unsigned Key = IntegerMapping[CurrIdx];
      if (Key > Mapper.IllegalInstrNumber) {
        ContainsIllegal = true;
        break;
      }
    }

    // If we have an illegal instruction, we should not create an
    // IRSimilarityCandidate for this region.
    if (ContainsIllegal)
      continue;

    // We are getting iterators to the instructions in this region of code
    // by advancing the start and end indices from the start of the
    // InstrList.
    std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin();
    std::advance(StartIt, StartIdx);
    std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin();
    std::advance(EndIt, EndIdx);

    CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt);
  }
}

void IRSimilarityCandidate::createCanonicalRelationFrom(
    IRSimilarityCandidate &SourceCand,
    DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping,
    DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping) {
  assert(SourceCand.CanonNumToNumber.size() != 0 &&
         "Base canonical relationship is empty!");
  assert(SourceCand.NumberToCanonNum.size() != 0 &&
         "Base canonical relationship is empty!");

  assert(CanonNumToNumber.size() == 0 && "Canonical Relationship is non-empty");
  assert(NumberToCanonNum.size() == 0 && "Canonical Relationship is non-empty");

  DenseSet<unsigned> UsedGVNs;
  // Iterate over the mappings provided from this candidate to SourceCand.  We
  // are then able to map the GVN in this candidate to the same canonical number
  // given to the corresponding GVN in SourceCand.
  for (std::pair<unsigned, DenseSet<unsigned>> &GVNMapping : ToSourceMapping) {
    unsigned SourceGVN = GVNMapping.first;

    assert(GVNMapping.second.size() != 0 && "Possible GVNs is 0!");

    unsigned ResultGVN;
    // We need special handling if we have more than one potential value.  This
    // means that there are at least two GVNs that could correspond to this GVN.
    // This could lead to potential swapping later on, so we make a decision
    // here to ensure a one-to-one mapping.
    if (GVNMapping.second.size() > 1) {
      bool Found = false;
      for (unsigned Val : GVNMapping.second) {
        // We make sure the target value number hasn't already been reserved.
        if (UsedGVNs.contains(Val))
          continue;

        // We make sure that the opposite mapping is still consistent.
        DenseMap<unsigned, DenseSet<unsigned>>::iterator It =
            FromSourceMapping.find(Val);

        if (!It->second.contains(SourceGVN))
          continue;

        // We pick the first item that satisfies these conditions.
        Found = true;
        ResultGVN = Val;
        break;
      }

      assert(Found && "Could not find matching value for source GVN");
      (void)Found;

    } else
      ResultGVN = *GVNMapping.second.begin();

    // Whatever GVN is found, we mark it as used.
    UsedGVNs.insert(ResultGVN);

    unsigned CanonNum = *SourceCand.getCanonicalNum(ResultGVN);
    CanonNumToNumber.insert(std::make_pair(CanonNum, SourceGVN));
    NumberToCanonNum.insert(std::make_pair(SourceGVN, CanonNum));
  }
}

void IRSimilarityCandidate::createCanonicalMappingFor(
    IRSimilarityCandidate &CurrCand) {
  assert(CurrCand.CanonNumToNumber.size() == 0 &&
         "Canonical Relationship is non-empty");
  assert(CurrCand.NumberToCanonNum.size() == 0 &&
         "Canonical Relationship is non-empty");

  unsigned CanonNum = 0;
  // Iterate over the value numbers found, the order does not matter in this
  // case.
  for (std::pair<unsigned, Value *> &NumToVal : CurrCand.NumberToValue) {
    CurrCand.NumberToCanonNum.insert(std::make_pair(NumToVal.first, CanonNum));
    CurrCand.CanonNumToNumber.insert(std::make_pair(CanonNum, NumToVal.first));
    CanonNum++;
  }
}

/// From the list of IRSimilarityCandidates, perform a comparison between each
/// IRSimilarityCandidate to determine if there are overlapping
/// IRInstructionData, or if they do not have the same structure.
///
/// \param [in] CandsForRepSubstring - The vector containing the
/// IRSimilarityCandidates.
/// \param [out] StructuralGroups - the mapping of unsigned integers to vector
/// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the
/// vector are structurally similar to one another.
static void findCandidateStructures(
    std::vector<IRSimilarityCandidate> &CandsForRepSubstring,
    DenseMap<unsigned, SimilarityGroup> &StructuralGroups) {
  std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt,
      InnerCandEndIt;

  // IRSimilarityCandidates each have a structure for operand use.  It is
  // possible that two instances of the same subsequences have different
  // structure. Each type of structure found is assigned a number.  This
  // DenseMap maps an IRSimilarityCandidate to which type of similarity
  // discovered it fits within.
  DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;

  // Find the compatibility from each candidate to the others to determine
  // which candidates overlap and which have the same structure by mapping
  // each structure to a different group.
  bool SameStructure;
  bool Inserted;
  unsigned CurrentGroupNum = 0;
  unsigned OuterGroupNum;
  DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt;
  DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner;
  DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair;

  // Iterate over the candidates to determine its structural and overlapping
  // compatibility with other instructions
  DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA;
  DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB;
  for (CandIt = CandsForRepSubstring.begin(),
      CandEndIt = CandsForRepSubstring.end();
       CandIt != CandEndIt; CandIt++) {

    // Determine if it has an assigned structural group already.
    CandToGroupIt = CandToGroup.find(&*CandIt);
    if (CandToGroupIt == CandToGroup.end()) {
      // If not, we assign it one, and add it to our mapping.
      std::tie(CandToGroupIt, Inserted) =
          CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++));
    }

    // Get the structural group number from the iterator.
    OuterGroupNum = CandToGroupIt->second;

    // Check if we already have a list of IRSimilarityCandidates for the current
    // structural group.  Create one if one does not exist.
    CurrentGroupPair = StructuralGroups.find(OuterGroupNum);
    if (CurrentGroupPair == StructuralGroups.end()) {
      IRSimilarityCandidate::createCanonicalMappingFor(*CandIt);
      std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert(
          std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt})));
    }

    // Iterate over the IRSimilarityCandidates following the current
    // IRSimilarityCandidate in the list to determine whether the two
    // IRSimilarityCandidates are compatible.  This is so we do not repeat pairs
    // of IRSimilarityCandidates.
    for (InnerCandIt = std::next(CandIt),
        InnerCandEndIt = CandsForRepSubstring.end();
         InnerCandIt != InnerCandEndIt; InnerCandIt++) {

      // We check if the inner item has a group already, if it does, we skip it.
      CandToGroupItInner = CandToGroup.find(&*InnerCandIt);
      if (CandToGroupItInner != CandToGroup.end())
        continue;

      // Otherwise we determine if they have the same structure and add it to
      // vector if they match.
      ValueNumberMappingA.clear();
      ValueNumberMappingB.clear();
      SameStructure = IRSimilarityCandidate::compareStructure(
          *CandIt, *InnerCandIt, ValueNumberMappingA, ValueNumberMappingB);
      if (!SameStructure)
        continue;

      InnerCandIt->createCanonicalRelationFrom(*CandIt, ValueNumberMappingA,
                                               ValueNumberMappingB);
      CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
      CurrentGroupPair->second.push_back(*InnerCandIt);
    }
  }
}

void IRSimilarityIdentifier::findCandidates(
    std::vector<IRInstructionData *> &InstrList,
    std::vector<unsigned> &IntegerMapping) {
  SuffixTree ST(IntegerMapping);

  std::vector<IRSimilarityCandidate> CandsForRepSubstring;
  std::vector<SimilarityGroup> NewCandidateGroups;

  DenseMap<unsigned, SimilarityGroup> StructuralGroups;

  // Iterate over the subsequences found by the Suffix Tree to create
  // IRSimilarityCandidates for each repeated subsequence and determine which
  // instances are structurally similar to one another.
  for (SuffixTree::RepeatedSubstring &RS : ST) {
    createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, RS,
                                   CandsForRepSubstring);

    if (CandsForRepSubstring.size() < 2)
      continue;

    findCandidateStructures(CandsForRepSubstring, StructuralGroups);
    for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups)
      // We only add the group if it contains more than one
      // IRSimilarityCandidate.  If there is only one, that means there is no
      // other repeated subsequence with the same structure.
      if (Group.second.size() > 1)
        SimilarityCandidates->push_back(Group.second);

    CandsForRepSubstring.clear();
    StructuralGroups.clear();
    NewCandidateGroups.clear();
  }
}

SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(
    ArrayRef<std::unique_ptr<Module>> Modules) {
  resetSimilarityCandidates();

  std::vector<IRInstructionData *> InstrList;
  std::vector<unsigned> IntegerMapping;
  Mapper.InstClassifier.EnableBranches = this->EnableBranches;
  Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls;
  Mapper.EnableMatchCallsByName = EnableMatchingCallsByName;
  Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics;

  populateMapper(Modules, InstrList, IntegerMapping);
  findCandidates(InstrList, IntegerMapping);

  return SimilarityCandidates.getValue();
}

SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) {
  resetSimilarityCandidates();
  Mapper.InstClassifier.EnableBranches = this->EnableBranches;
  Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls;
  Mapper.EnableMatchCallsByName = EnableMatchingCallsByName;
  Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics;

  std::vector<IRInstructionData *> InstrList;
  std::vector<unsigned> IntegerMapping;

  populateMapper(M, InstrList, IntegerMapping);
  findCandidates(InstrList, IntegerMapping);

  return SimilarityCandidates.getValue();
}

INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier",
                "ir-similarity-identifier", false, true)

IRSimilarityIdentifierWrapperPass::IRSimilarityIdentifierWrapperPass()
    : ModulePass(ID) {
  initializeIRSimilarityIdentifierWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) {
  IRSI.reset(new IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls,
                                        MatchCallsByName, !DisableIntrinsics));
  return false;
}

bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) {
  IRSI.reset();
  return false;
}

bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) {
  IRSI->findSimilarity(M);
  return false;
}

AnalysisKey IRSimilarityAnalysis::Key;
IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M,
                                                 ModuleAnalysisManager &) {
  auto IRSI = IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls,
                                     MatchCallsByName, !DisableIntrinsics);
  IRSI.findSimilarity(M);
  return IRSI;
}

PreservedAnalyses
IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
  IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M);
  Optional<SimilarityGroupList> &SimilarityCandidatesOpt = IRSI.getSimilarity();

  for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) {
    OS << CandVec.size() << " candidates of length "
       << CandVec.begin()->getLength() << ".  Found in: \n";
    for (IRSimilarityCandidate &Cand : CandVec) {
      OS << "  Function: " << Cand.front()->Inst->getFunction()->getName().str()
         << ", Basic Block: ";
      if (Cand.front()->Inst->getParent()->getName().str() == "")
        OS << "(unnamed)";
      else
        OS << Cand.front()->Inst->getParent()->getName().str();
      OS << "\n    Start Instruction: ";
      Cand.frontInstruction()->print(OS);
      OS << "\n      End Instruction: ";
      Cand.backInstruction()->print(OS);
      OS << "\n";
    }
  }

  return PreservedAnalyses::all();
}

char IRSimilarityIdentifierWrapperPass::ID = 0;