aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Analysis/CFGPrinter.cpp
blob: 04ccdc590845a36bf1497aaad844bb0c5f9b3972 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a `-dot-cfg` analysis pass, which emits the
// `<prefix>.<fnname>.dot` file for each function in the program, with a graph
// of the CFG for that function. The default value for `<prefix>` is `cfg` but
// can be customized as needed.
//
// The other main feature of this file is that it implements the
// Function::viewCFG method, which is useful for debugging passes which operate
// on the CFG.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include <algorithm>

using namespace llvm;

static cl::opt<std::string>
    CFGFuncName("cfg-func-name", cl::Hidden,
                cl::desc("The name of a function (or its substring)"
                         " whose CFG is viewed/printed."));

static cl::opt<std::string> CFGDotFilenamePrefix(
    "cfg-dot-filename-prefix", cl::Hidden,
    cl::desc("The prefix used for the CFG dot file names."));

static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths",
                                          cl::init(false));

static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths",
                                         cl::init(false));

static cl::opt<double> HideColdPaths(
    "cfg-hide-cold-paths", cl::init(0.0),
    cl::desc("Hide blocks with relative frequency below the given value"));

static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true),
                                    cl::Hidden,
                                    cl::desc("Show heat colors in CFG"));

static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false),
                                      cl::Hidden,
                                      cl::desc("Use raw weights for labels. "
                                               "Use percentages as default."));

static cl::opt<bool>
    ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden,
                   cl::desc("Show edges labeled with weights"));

static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI,
                              BranchProbabilityInfo *BPI, uint64_t MaxFreq,
                              bool CFGOnly = false) {
  std::string Filename =
      (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str();
  errs() << "Writing '" << Filename << "'...";

  std::error_code EC;
  raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);

  DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
  CFGInfo.setHeatColors(ShowHeatColors);
  CFGInfo.setEdgeWeights(ShowEdgeWeight);
  CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);

  if (!EC)
    WriteGraph(File, &CFGInfo, CFGOnly);
  else
    errs() << "  error opening file for writing!";
  errs() << "\n";
}

static void viewCFG(Function &F, const BlockFrequencyInfo *BFI,
                    const BranchProbabilityInfo *BPI, uint64_t MaxFreq,
                    bool CFGOnly = false) {
  DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
  CFGInfo.setHeatColors(ShowHeatColors);
  CFGInfo.setEdgeWeights(ShowEdgeWeight);
  CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);

  ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly);
}

namespace {
struct CFGViewerLegacyPass : public FunctionPass {
  static char ID; // Pass identifcation, replacement for typeid
  CFGViewerLegacyPass() : FunctionPass(ID) {
    initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
      return false;
    auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
    viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
    return false;
  }

  void print(raw_ostream &OS, const Module * = nullptr) const override {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    FunctionPass::getAnalysisUsage(AU);
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
    AU.setPreservesAll();
  }
};
} // namespace

char CFGViewerLegacyPass::ID = 0;
INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false,
                true)

PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) {
  if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
    return PreservedAnalyses::all();
  auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
  auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
  viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
  return PreservedAnalyses::all();
}

namespace {
struct CFGOnlyViewerLegacyPass : public FunctionPass {
  static char ID; // Pass identifcation, replacement for typeid
  CFGOnlyViewerLegacyPass() : FunctionPass(ID) {
    initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
      return false;
    auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
    viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
    return false;
  }

  void print(raw_ostream &OS, const Module * = nullptr) const override {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    FunctionPass::getAnalysisUsage(AU);
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
    AU.setPreservesAll();
  }
};
} // namespace

char CFGOnlyViewerLegacyPass::ID = 0;
INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only",
                "View CFG of function (with no function bodies)", false, true)

PreservedAnalyses CFGOnlyViewerPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
    return PreservedAnalyses::all();
  auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
  auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
  viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
  return PreservedAnalyses::all();
}

namespace {
struct CFGPrinterLegacyPass : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  CFGPrinterLegacyPass() : FunctionPass(ID) {
    initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
      return false;
    auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
    writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
    return false;
  }

  void print(raw_ostream &OS, const Module * = nullptr) const override {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    FunctionPass::getAnalysisUsage(AU);
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
    AU.setPreservesAll();
  }
};
} // namespace

char CFGPrinterLegacyPass::ID = 0;
INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg",
                "Print CFG of function to 'dot' file", false, true)

PreservedAnalyses CFGPrinterPass::run(Function &F,
                                      FunctionAnalysisManager &AM) {
  if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
    return PreservedAnalyses::all();
  auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
  auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
  writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
  return PreservedAnalyses::all();
}

namespace {
struct CFGOnlyPrinterLegacyPass : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  CFGOnlyPrinterLegacyPass() : FunctionPass(ID) {
    initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
      return false;
    auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
    writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
    return false;
  }
  void print(raw_ostream &OS, const Module * = nullptr) const override {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    FunctionPass::getAnalysisUsage(AU);
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
    AU.setPreservesAll();
  }
};
} // namespace

char CFGOnlyPrinterLegacyPass::ID = 0;
INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only",
                "Print CFG of function to 'dot' file (with no function bodies)",
                false, true)

PreservedAnalyses CFGOnlyPrinterPass::run(Function &F,
                                          FunctionAnalysisManager &AM) {
  if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
    return PreservedAnalyses::all();
  auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
  auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
  writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
  return PreservedAnalyses::all();
}

/// viewCFG - This function is meant for use from the debugger.  You can just
/// say 'call F->viewCFG()' and a ghostview window should pop up from the
/// program, displaying the CFG of the current function.  This depends on there
/// being a 'dot' and 'gv' program in your path.
///
void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); }

void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI,
                       const BranchProbabilityInfo *BPI) const {
  if (!CFGFuncName.empty() && !getName().contains(CFGFuncName))
    return;
  DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0);
  ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly);
}

/// viewCFGOnly - This function is meant for use from the debugger.  It works
/// just like viewCFG, but it does not include the contents of basic blocks
/// into the nodes, just the label.  If you are only interested in the CFG
/// this can make the graph smaller.
///
void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); }

void Function::viewCFGOnly(const BlockFrequencyInfo *BFI,
                           const BranchProbabilityInfo *BPI) const {
  viewCFG(true, BFI, BPI);
}

FunctionPass *llvm::createCFGPrinterLegacyPassPass() {
  return new CFGPrinterLegacyPass();
}

FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() {
  return new CFGOnlyPrinterLegacyPass();
}

/// Find all blocks on the paths which terminate with a deoptimize or 
/// unreachable (i.e. all blocks which are post-dominated by a deoptimize 
/// or unreachable). These paths are hidden if the corresponding cl::opts
/// are enabled.
void DOTGraphTraits<DOTFuncInfo *>::computeDeoptOrUnreachablePaths(
    const Function *F) {
  auto evaluateBB = [&](const BasicBlock *Node) {
    if (succ_empty(Node)) {
      const Instruction *TI = Node->getTerminator();
      isOnDeoptOrUnreachablePath[Node] =
          (HideUnreachablePaths && isa<UnreachableInst>(TI)) ||
          (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall());
      return;
    }
    isOnDeoptOrUnreachablePath[Node] =
        llvm::all_of(successors(Node), [this](const BasicBlock *BB) {
          return isOnDeoptOrUnreachablePath[BB];
        });
  };
  /// The post order traversal iteration is done to know the status of
  /// isOnDeoptOrUnreachablePath for all the successors on the current BB.
  llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB);
}

bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node,
                                                 const DOTFuncInfo *CFGInfo) {
  if (HideColdPaths.getNumOccurrences() > 0)
    if (auto *BFI = CFGInfo->getBFI()) {
      uint64_t NodeFreq = BFI->getBlockFreq(Node).getFrequency();
      uint64_t EntryFreq = BFI->getEntryFreq();
      // Hide blocks with relative frequency below HideColdPaths threshold.
      if ((double)NodeFreq / EntryFreq < HideColdPaths)
        return true;
    }
  if (HideUnreachablePaths || HideDeoptimizePaths) {
    if (isOnDeoptOrUnreachablePath.find(Node) == 
        isOnDeoptOrUnreachablePath.end())
      computeDeoptOrUnreachablePaths(Node->getParent());
    return isOnDeoptOrUnreachablePath[Node];
  }
  return false;
}