aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Analysis/BranchProbabilityInfo.cpp
blob: ffb80134749a159c7d855e93d5f2030ffa171d46 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "branch-prob"

static cl::opt<bool> PrintBranchProb(
    "print-bpi", cl::init(false), cl::Hidden,
    cl::desc("Print the branch probability info."));

cl::opt<std::string> PrintBranchProbFuncName(
    "print-bpi-func-name", cl::Hidden,
    cl::desc("The option to specify the name of the function "
             "whose branch probability info is printed."));

INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
                      "Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
                    "Branch Probability Analysis", false, true)

BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
    : FunctionPass(ID) {
  initializeBranchProbabilityInfoWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

char BranchProbabilityInfoWrapperPass::ID = 0;

// Weights are for internal use only. They are used by heuristics to help to
// estimate edges' probability. Example:
//
// Using "Loop Branch Heuristics" we predict weights of edges for the
// block BB2.
//         ...
//          |
//          V
//         BB1<-+
//          |   |
//          |   | (Weight = 124)
//          V   |
//         BB2--+
//          |
//          | (Weight = 4)
//          V
//         BB3
//
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;

/// Unreachable-terminating branch taken probability.
///
/// This is the probability for a branch being taken to a block that terminates
/// (eventually) in unreachable. These are predicted as unlikely as possible.
/// All reachable probability will proportionally share the remaining part.
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);

/// Heuristics and lookup tables for non-loop branches:
/// Pointer Heuristics (PH)
static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
static const BranchProbability
    PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
static const BranchProbability
    PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);

using ProbabilityList = SmallVector<BranchProbability>;
using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;

/// Pointer comparisons:
static const ProbabilityTable PointerTable{
    {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
    {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
};

/// Zero Heuristics (ZH)
static const uint32_t ZH_TAKEN_WEIGHT = 20;
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
static const BranchProbability
    ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
static const BranchProbability
    ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);

/// Integer compares with 0:
static const ProbabilityTable ICmpWithZeroTable{
    {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
    {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
    {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
    {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
};

/// Integer compares with -1:
static const ProbabilityTable ICmpWithMinusOneTable{
    {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
    {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
    // InstCombine canonicalizes X >= 0 into X > -1
    {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
};

/// Integer compares with 1:
static const ProbabilityTable ICmpWithOneTable{
    // InstCombine canonicalizes X <= 0 into X < 1
    {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
};

/// strcmp and similar functions return zero, negative, or positive, if the
/// first string is equal, less, or greater than the second. We consider it
/// likely that the strings are not equal, so a comparison with zero is
/// probably false, but also a comparison with any other number is also
/// probably false given that what exactly is returned for nonzero values is
/// not specified. Any kind of comparison other than equality we know
/// nothing about.
static const ProbabilityTable ICmpWithLibCallTable{
    {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
    {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
};

// Floating-Point Heuristics (FPH)
static const uint32_t FPH_TAKEN_WEIGHT = 20;
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;

/// This is the probability for an ordered floating point comparison.
static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
/// This is the probability for an unordered floating point comparison, it means
/// one or two of the operands are NaN. Usually it is used to test for an
/// exceptional case, so the result is unlikely.
static const uint32_t FPH_UNO_WEIGHT = 1;

static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
                                              FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
static const BranchProbability
    FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
static const BranchProbability
    FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
static const BranchProbability
    FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);

/// Floating-Point compares:
static const ProbabilityTable FCmpTable{
    {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
    {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
};

/// Set of dedicated "absolute" execution weights for a block. These weights are
/// meaningful relative to each other and their derivatives only.
enum class BlockExecWeight : std::uint32_t {
  /// Special weight used for cases with exact zero probability.
  ZERO = 0x0,
  /// Minimal possible non zero weight.
  LOWEST_NON_ZERO = 0x1,
  /// Weight to an 'unreachable' block.
  UNREACHABLE = ZERO,
  /// Weight to a block containing non returning call.
  NORETURN = LOWEST_NON_ZERO,
  /// Weight to 'unwind' block of an invoke instruction.
  UNWIND = LOWEST_NON_ZERO,
  /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
  /// with attribute 'cold'.
  COLD = 0xffff,
  /// Default weight is used in cases when there is no dedicated execution
  /// weight set. It is not propagated through the domination line either.
  DEFAULT = 0xfffff
};

BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
  // Record SCC numbers of blocks in the CFG to identify irreducible loops.
  // FIXME: We could only calculate this if the CFG is known to be irreducible
  // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
  int SccNum = 0;
  for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
       ++It, ++SccNum) {
    // Ignore single-block SCCs since they either aren't loops or LoopInfo will
    // catch them.
    const std::vector<const BasicBlock *> &Scc = *It;
    if (Scc.size() == 1)
      continue;

    LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
    for (const auto *BB : Scc) {
      LLVM_DEBUG(dbgs() << " " << BB->getName());
      SccNums[BB] = SccNum;
      calculateSccBlockType(BB, SccNum);
    }
    LLVM_DEBUG(dbgs() << "\n");
  }
}

int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
  auto SccIt = SccNums.find(BB);
  if (SccIt == SccNums.end())
    return -1;
  return SccIt->second;
}

void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
    int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {

  for (auto MapIt : SccBlocks[SccNum]) {
    const auto *BB = MapIt.first;
    if (isSCCHeader(BB, SccNum))
      for (const auto *Pred : predecessors(BB))
        if (getSCCNum(Pred) != SccNum)
          Enters.push_back(const_cast<BasicBlock *>(BB));
  }
}

void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
    int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
  for (auto MapIt : SccBlocks[SccNum]) {
    const auto *BB = MapIt.first;
    if (isSCCExitingBlock(BB, SccNum))
      for (const auto *Succ : successors(BB))
        if (getSCCNum(Succ) != SccNum)
          Exits.push_back(const_cast<BasicBlock *>(Succ));
  }
}

uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
                                                         int SccNum) const {
  assert(getSCCNum(BB) == SccNum);

  assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
  const auto &SccBlockTypes = SccBlocks[SccNum];

  auto It = SccBlockTypes.find(BB);
  if (It != SccBlockTypes.end()) {
    return It->second;
  }
  return Inner;
}

void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
                                                           int SccNum) {
  assert(getSCCNum(BB) == SccNum);
  uint32_t BlockType = Inner;

  if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
        // Consider any block that is an entry point to the SCC as
        // a header.
        return getSCCNum(Pred) != SccNum;
      }))
    BlockType |= Header;

  if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
        return getSCCNum(Succ) != SccNum;
      }))
    BlockType |= Exiting;

  // Lazily compute the set of headers for a given SCC and cache the results
  // in the SccHeaderMap.
  if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
    SccBlocks.resize(SccNum + 1);
  auto &SccBlockTypes = SccBlocks[SccNum];

  if (BlockType != Inner) {
    bool IsInserted;
    std::tie(std::ignore, IsInserted) =
        SccBlockTypes.insert(std::make_pair(BB, BlockType));
    assert(IsInserted && "Duplicated block in SCC");
  }
}

BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
                                            const LoopInfo &LI,
                                            const SccInfo &SccI)
    : BB(BB) {
  LD.first = LI.getLoopFor(BB);
  if (!LD.first) {
    LD.second = SccI.getSCCNum(BB);
  }
}

bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
  const auto &SrcBlock = Edge.first;
  const auto &DstBlock = Edge.second;
  return (DstBlock.getLoop() &&
          !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
         // Assume that SCCs can't be nested.
         (DstBlock.getSccNum() != -1 &&
          SrcBlock.getSccNum() != DstBlock.getSccNum());
}

bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
  return isLoopEnteringEdge({Edge.second, Edge.first});
}

bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
    const LoopEdge &Edge) const {
  return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
}

bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
  const auto &SrcBlock = Edge.first;
  const auto &DstBlock = Edge.second;
  return SrcBlock.belongsToSameLoop(DstBlock) &&
         ((DstBlock.getLoop() &&
           DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
          (DstBlock.getSccNum() != -1 &&
           SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
}

void BranchProbabilityInfo::getLoopEnterBlocks(
    const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
  if (LB.getLoop()) {
    auto *Header = LB.getLoop()->getHeader();
    Enters.append(pred_begin(Header), pred_end(Header));
  } else {
    assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
    SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
  }
}

void BranchProbabilityInfo::getLoopExitBlocks(
    const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
  if (LB.getLoop()) {
    LB.getLoop()->getExitBlocks(Exits);
  } else {
    assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
    SccI->getSccExitBlocks(LB.getSccNum(), Exits);
  }
}

// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing. Examine metadata against unreachable
// heuristic. The probability of the edge coming to unreachable block is
// set to min of metadata and unreachable heuristic.
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
  const Instruction *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
  if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
        isa<InvokeInst>(TI)))
    return false;

  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
  if (!WeightsNode)
    return false;

  // Check that the number of successors is manageable.
  assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");

  // Ensure there are weights for all of the successors. Note that the first
  // operand to the metadata node is a name, not a weight.
  if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
    return false;

  // Build up the final weights that will be used in a temporary buffer.
  // Compute the sum of all weights to later decide whether they need to
  // be scaled to fit in 32 bits.
  uint64_t WeightSum = 0;
  SmallVector<uint32_t, 2> Weights;
  SmallVector<unsigned, 2> UnreachableIdxs;
  SmallVector<unsigned, 2> ReachableIdxs;
  Weights.reserve(TI->getNumSuccessors());
  for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
    ConstantInt *Weight =
        mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
    if (!Weight)
      return false;
    assert(Weight->getValue().getActiveBits() <= 32 &&
           "Too many bits for uint32_t");
    Weights.push_back(Weight->getZExtValue());
    WeightSum += Weights.back();
    const LoopBlock SrcLoopBB = getLoopBlock(BB);
    const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
    auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
    if (EstimatedWeight &&
        EstimatedWeight.getValue() <=
            static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
      UnreachableIdxs.push_back(I - 1);
    else
      ReachableIdxs.push_back(I - 1);
  }
  assert(Weights.size() == TI->getNumSuccessors() && "Checked above");

  // If the sum of weights does not fit in 32 bits, scale every weight down
  // accordingly.
  uint64_t ScalingFactor =
      (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;

  if (ScalingFactor > 1) {
    WeightSum = 0;
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
      Weights[I] /= ScalingFactor;
      WeightSum += Weights[I];
    }
  }
  assert(WeightSum <= UINT32_MAX &&
         "Expected weights to scale down to 32 bits");

  if (WeightSum == 0 || ReachableIdxs.size() == 0) {
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
      Weights[I] = 1;
    WeightSum = TI->getNumSuccessors();
  }

  // Set the probability.
  SmallVector<BranchProbability, 2> BP;
  for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
    BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });

  // Examine the metadata against unreachable heuristic.
  // If the unreachable heuristic is more strong then we use it for this edge.
  if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
    setEdgeProbability(BB, BP);
    return true;
  }

  auto UnreachableProb = UR_TAKEN_PROB;
  for (auto I : UnreachableIdxs)
    if (UnreachableProb < BP[I]) {
      BP[I] = UnreachableProb;
    }

  // Sum of all edge probabilities must be 1.0. If we modified the probability
  // of some edges then we must distribute the introduced difference over the
  // reachable blocks.
  //
  // Proportional distribution: the relation between probabilities of the
  // reachable edges is kept unchanged. That is for any reachable edges i and j:
  //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
  //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
  // Where K is independent of i,j.
  //   newBP[i] == oldBP[i] * K
  // We need to find K.
  // Make sum of all reachables of the left and right parts:
  //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
  // Sum of newBP must be equal to 1.0:
  //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
  //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
  // Where sum_of_unreachable(newBP) is what has been just changed.
  // Finally:
  //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
  //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
  BranchProbability NewUnreachableSum = BranchProbability::getZero();
  for (auto I : UnreachableIdxs)
    NewUnreachableSum += BP[I];

  BranchProbability NewReachableSum =
      BranchProbability::getOne() - NewUnreachableSum;

  BranchProbability OldReachableSum = BranchProbability::getZero();
  for (auto I : ReachableIdxs)
    OldReachableSum += BP[I];

  if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
    if (OldReachableSum.isZero()) {
      // If all oldBP[i] are zeroes then the proportional distribution results
      // in all zero probabilities and the error stays big. In this case we
      // evenly spread NewReachableSum over the reachable edges.
      BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
      for (auto I : ReachableIdxs)
        BP[I] = PerEdge;
    } else {
      for (auto I : ReachableIdxs) {
        // We use uint64_t to avoid double rounding error of the following
        // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
        // The formula is taken from the private constructor
        // BranchProbability(uint32_t Numerator, uint32_t Denominator)
        uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
                       BP[I].getNumerator();
        uint32_t Div = static_cast<uint32_t>(
            divideNearest(Mul, OldReachableSum.getNumerator()));
        BP[I] = BranchProbability::getRaw(Div);
      }
    }
  }

  setEdgeProbability(BB, BP);

  return true;
}

// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);

  if (!LHS->getType()->isPointerTy())
    return false;

  assert(CI->getOperand(1)->getType()->isPointerTy());

  auto Search = PointerTable.find(CI->getPredicate());
  if (Search == PointerTable.end())
    return false;
  setEdgeProbability(BB, Search->second);
  return true;
}

// Compute the unlikely successors to the block BB in the loop L, specifically
// those that are unlikely because this is a loop, and add them to the
// UnlikelyBlocks set.
static void
computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
                          SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
  // Sometimes in a loop we have a branch whose condition is made false by
  // taking it. This is typically something like
  //  int n = 0;
  //  while (...) {
  //    if (++n >= MAX) {
  //      n = 0;
  //    }
  //  }
  // In this sort of situation taking the branch means that at the very least it
  // won't be taken again in the next iteration of the loop, so we should
  // consider it less likely than a typical branch.
  //
  // We detect this by looking back through the graph of PHI nodes that sets the
  // value that the condition depends on, and seeing if we can reach a successor
  // block which can be determined to make the condition false.
  //
  // FIXME: We currently consider unlikely blocks to be half as likely as other
  // blocks, but if we consider the example above the likelyhood is actually
  // 1/MAX. We could therefore be more precise in how unlikely we consider
  // blocks to be, but it would require more careful examination of the form
  // of the comparison expression.
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return;

  // Check if the branch is based on an instruction compared with a constant
  CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
  if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
      !isa<Constant>(CI->getOperand(1)))
    return;

  // Either the instruction must be a PHI, or a chain of operations involving
  // constants that ends in a PHI which we can then collapse into a single value
  // if the PHI value is known.
  Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
  PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
  Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
  // Collect the instructions until we hit a PHI
  SmallVector<BinaryOperator *, 1> InstChain;
  while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
         isa<Constant>(CmpLHS->getOperand(1))) {
    // Stop if the chain extends outside of the loop
    if (!L->contains(CmpLHS))
      return;
    InstChain.push_back(cast<BinaryOperator>(CmpLHS));
    CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
    if (CmpLHS)
      CmpPHI = dyn_cast<PHINode>(CmpLHS);
  }
  if (!CmpPHI || !L->contains(CmpPHI))
    return;

  // Trace the phi node to find all values that come from successors of BB
  SmallPtrSet<PHINode*, 8> VisitedInsts;
  SmallVector<PHINode*, 8> WorkList;
  WorkList.push_back(CmpPHI);
  VisitedInsts.insert(CmpPHI);
  while (!WorkList.empty()) {
    PHINode *P = WorkList.pop_back_val();
    for (BasicBlock *B : P->blocks()) {
      // Skip blocks that aren't part of the loop
      if (!L->contains(B))
        continue;
      Value *V = P->getIncomingValueForBlock(B);
      // If the source is a PHI add it to the work list if we haven't
      // already visited it.
      if (PHINode *PN = dyn_cast<PHINode>(V)) {
        if (VisitedInsts.insert(PN).second)
          WorkList.push_back(PN);
        continue;
      }
      // If this incoming value is a constant and B is a successor of BB, then
      // we can constant-evaluate the compare to see if it makes the branch be
      // taken or not.
      Constant *CmpLHSConst = dyn_cast<Constant>(V);
      if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
        continue;
      // First collapse InstChain
      for (Instruction *I : llvm::reverse(InstChain)) {
        CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
                                        cast<Constant>(I->getOperand(1)), true);
        if (!CmpLHSConst)
          break;
      }
      if (!CmpLHSConst)
        continue;
      // Now constant-evaluate the compare
      Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
                                                  CmpLHSConst, CmpConst, true);
      // If the result means we don't branch to the block then that block is
      // unlikely.
      if (Result &&
          ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
           (Result->isOneValue() && B == BI->getSuccessor(1))))
        UnlikelyBlocks.insert(B);
    }
  }
}

Optional<uint32_t>
BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
  auto WeightIt = EstimatedBlockWeight.find(BB);
  if (WeightIt == EstimatedBlockWeight.end())
    return None;
  return WeightIt->second;
}

Optional<uint32_t>
BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
  auto WeightIt = EstimatedLoopWeight.find(L);
  if (WeightIt == EstimatedLoopWeight.end())
    return None;
  return WeightIt->second;
}

Optional<uint32_t>
BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
  // For edges entering a loop take weight of a loop rather than an individual
  // block in the loop.
  return isLoopEnteringEdge(Edge)
             ? getEstimatedLoopWeight(Edge.second.getLoopData())
             : getEstimatedBlockWeight(Edge.second.getBlock());
}

template <class IterT>
Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
    const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
  SmallVector<uint32_t, 4> Weights;
  Optional<uint32_t> MaxWeight;
  for (const BasicBlock *DstBB : Successors) {
    const LoopBlock DstLoopBB = getLoopBlock(DstBB);
    auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});

    if (!Weight)
      return None;

    if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
      MaxWeight = Weight;
  }

  return MaxWeight;
}

// Updates \p LoopBB's weight and returns true. If \p LoopBB has already
// an associated weight it is unchanged and false is returned.
//
// Please note by the algorithm the weight is not expected to change once set
// thus 'false' status is used to track visited blocks.
bool BranchProbabilityInfo::updateEstimatedBlockWeight(
    LoopBlock &LoopBB, uint32_t BBWeight,
    SmallVectorImpl<BasicBlock *> &BlockWorkList,
    SmallVectorImpl<LoopBlock> &LoopWorkList) {
  BasicBlock *BB = LoopBB.getBlock();

  // In general, weight is assigned to a block when it has final value and
  // can't/shouldn't be changed.  However, there are cases when a block
  // inherently has several (possibly "contradicting") weights. For example,
  // "unwind" block may also contain "cold" call. In that case the first
  // set weight is favored and all consequent weights are ignored.
  if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
    return false;

  for (BasicBlock *PredBlock : predecessors(BB)) {
    LoopBlock PredLoop = getLoopBlock(PredBlock);
    // Add affected block/loop to a working list.
    if (isLoopExitingEdge({PredLoop, LoopBB})) {
      if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
        LoopWorkList.push_back(PredLoop);
    } else if (!EstimatedBlockWeight.count(PredBlock))
      BlockWorkList.push_back(PredBlock);
  }
  return true;
}

// Starting from \p BB traverse through dominator blocks and assign \p BBWeight
// to all such blocks that are post dominated by \BB. In other words to all
// blocks that the one is executed if and only if another one is executed.
// Importantly, we skip loops here for two reasons. First weights of blocks in
// a loop should be scaled by trip count (yet possibly unknown). Second there is
// no any value in doing that because that doesn't give any additional
// information regarding distribution of probabilities inside the loop.
// Exception is loop 'enter' and 'exit' edges that are handled in a special way
// at calcEstimatedHeuristics.
//
// In addition, \p WorkList is populated with basic blocks if at leas one
// successor has updated estimated weight.
void BranchProbabilityInfo::propagateEstimatedBlockWeight(
    const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
    uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
    SmallVectorImpl<LoopBlock> &LoopWorkList) {
  const BasicBlock *BB = LoopBB.getBlock();
  const auto *DTStartNode = DT->getNode(BB);
  const auto *PDTStartNode = PDT->getNode(BB);

  // TODO: Consider propagating weight down the domination line as well.
  for (const auto *DTNode = DTStartNode; DTNode != nullptr;
       DTNode = DTNode->getIDom()) {
    auto *DomBB = DTNode->getBlock();
    // Consider blocks which lie on one 'line'.
    if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
      // If BB doesn't post dominate DomBB it will not post dominate dominators
      // of DomBB as well.
      break;

    LoopBlock DomLoopBB = getLoopBlock(DomBB);
    const LoopEdge Edge{DomLoopBB, LoopBB};
    // Don't propagate weight to blocks belonging to different loops.
    if (!isLoopEnteringExitingEdge(Edge)) {
      if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
                                      LoopWorkList))
        // If DomBB has weight set then all it's predecessors are already
        // processed (since we propagate weight up to the top of IR each time).
        break;
    } else if (isLoopExitingEdge(Edge)) {
      LoopWorkList.push_back(DomLoopBB);
    }
  }
}

Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
    const BasicBlock *BB) {
  // Returns true if \p BB has call marked with "NoReturn" attribute.
  auto hasNoReturn = [&](const BasicBlock *BB) {
    for (const auto &I : reverse(*BB))
      if (const CallInst *CI = dyn_cast<CallInst>(&I))
        if (CI->hasFnAttr(Attribute::NoReturn))
          return true;

    return false;
  };

  // Important note regarding the order of checks. They are ordered by weight
  // from lowest to highest. Doing that allows to avoid "unstable" results
  // when several conditions heuristics can be applied simultaneously.
  if (isa<UnreachableInst>(BB->getTerminator()) ||
      // If this block is terminated by a call to
      // @llvm.experimental.deoptimize then treat it like an unreachable
      // since it is expected to practically never execute.
      // TODO: Should we actually treat as never returning call?
      BB->getTerminatingDeoptimizeCall())
    return hasNoReturn(BB)
               ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
               : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);

  // Check if the block is 'unwind' handler of  some invoke instruction.
  for (const auto *Pred : predecessors(BB))
    if (Pred)
      if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
        if (II->getUnwindDest() == BB)
          return static_cast<uint32_t>(BlockExecWeight::UNWIND);

  // Check if the block contains 'cold' call.
  for (const auto &I : *BB)
    if (const CallInst *CI = dyn_cast<CallInst>(&I))
      if (CI->hasFnAttr(Attribute::Cold))
        return static_cast<uint32_t>(BlockExecWeight::COLD);

  return None;
}

// Does RPO traversal over all blocks in \p F and assigns weights to
// 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
// best to propagate the weight to up/down the IR.
void BranchProbabilityInfo::computeEestimateBlockWeight(
    const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
  SmallVector<BasicBlock *, 8> BlockWorkList;
  SmallVector<LoopBlock, 8> LoopWorkList;

  // By doing RPO we make sure that all predecessors already have weights
  // calculated before visiting theirs successors.
  ReversePostOrderTraversal<const Function *> RPOT(&F);
  for (const auto *BB : RPOT)
    if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
      // If we were able to find estimated weight for the block set it to this
      // block and propagate up the IR.
      propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
                                    BBWeight.getValue(), BlockWorkList,
                                    LoopWorkList);

  // BlockWorklist/LoopWorkList contains blocks/loops with at least one
  // successor/exit having estimated weight. Try to propagate weight to such
  // blocks/loops from successors/exits.
  // Process loops and blocks. Order is not important.
  do {
    while (!LoopWorkList.empty()) {
      const LoopBlock LoopBB = LoopWorkList.pop_back_val();

      if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
        continue;

      SmallVector<BasicBlock *, 4> Exits;
      getLoopExitBlocks(LoopBB, Exits);
      auto LoopWeight = getMaxEstimatedEdgeWeight(
          LoopBB, make_range(Exits.begin(), Exits.end()));

      if (LoopWeight) {
        // If we never exit the loop then we can enter it once at maximum.
        if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
          LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);

        EstimatedLoopWeight.insert(
            {LoopBB.getLoopData(), LoopWeight.getValue()});
        // Add all blocks entering the loop into working list.
        getLoopEnterBlocks(LoopBB, BlockWorkList);
      }
    }

    while (!BlockWorkList.empty()) {
      // We can reach here only if BlockWorkList is not empty.
      const BasicBlock *BB = BlockWorkList.pop_back_val();
      if (EstimatedBlockWeight.count(BB))
        continue;

      // We take maximum over all weights of successors. In other words we take
      // weight of "hot" path. In theory we can probably find a better function
      // which gives higher accuracy results (comparing to "maximum") but I
      // can't
      // think of any right now. And I doubt it will make any difference in
      // practice.
      const LoopBlock LoopBB = getLoopBlock(BB);
      auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));

      if (MaxWeight)
        propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
                                      BlockWorkList, LoopWorkList);
    }
  } while (!BlockWorkList.empty() || !LoopWorkList.empty());
}

// Calculate edge probabilities based on block's estimated weight.
// Note that gathered weights were not scaled for loops. Thus edges entering
// and exiting loops requires special processing.
bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
  assert(BB->getTerminator()->getNumSuccessors() > 1 &&
         "expected more than one successor!");

  const LoopBlock LoopBB = getLoopBlock(BB);

  SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
  uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
  if (LoopBB.getLoop())
    computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);

  // Changed to 'true' if at least one successor has estimated weight.
  bool FoundEstimatedWeight = false;
  SmallVector<uint32_t, 4> SuccWeights;
  uint64_t TotalWeight = 0;
  // Go over all successors of BB and put their weights into SuccWeights.
  for (const BasicBlock *SuccBB : successors(BB)) {
    Optional<uint32_t> Weight;
    const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
    const LoopEdge Edge{LoopBB, SuccLoopBB};

    Weight = getEstimatedEdgeWeight(Edge);

    if (isLoopExitingEdge(Edge) &&
        // Avoid adjustment of ZERO weight since it should remain unchanged.
        Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
      // Scale down loop exiting weight by trip count.
      Weight = std::max(
          static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
          Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
              TC);
    }
    bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
    if (IsUnlikelyEdge &&
        // Avoid adjustment of ZERO weight since it should remain unchanged.
        Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
      // 'Unlikely' blocks have twice lower weight.
      Weight = std::max(
          static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
          Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
              2);
    }

    if (Weight)
      FoundEstimatedWeight = true;

    auto WeightVal =
        Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
    TotalWeight += WeightVal;
    SuccWeights.push_back(WeightVal);
  }

  // If non of blocks have estimated weight bail out.
  // If TotalWeight is 0 that means weight of each successor is 0 as well and
  // equally likely. Bail out early to not deal with devision by zero.
  if (!FoundEstimatedWeight || TotalWeight == 0)
    return false;

  assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
  const unsigned SuccCount = SuccWeights.size();

  // If the sum of weights does not fit in 32 bits, scale every weight down
  // accordingly.
  if (TotalWeight > UINT32_MAX) {
    uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
    TotalWeight = 0;
    for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
      SuccWeights[Idx] /= ScalingFactor;
      if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
        SuccWeights[Idx] =
            static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
      TotalWeight += SuccWeights[Idx];
    }
    assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
  }

  // Finally set probabilities to edges according to estimated block weights.
  SmallVector<BranchProbability, 4> EdgeProbabilities(
      SuccCount, BranchProbability::getUnknown());

  for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
    EdgeProbabilities[Idx] =
        BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
  }
  setEdgeProbability(BB, EdgeProbabilities);
  return true;
}

bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
                                               const TargetLibraryInfo *TLI) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI)
    return false;

  auto GetConstantInt = [](Value *V) {
    if (auto *I = dyn_cast<BitCastInst>(V))
      return dyn_cast<ConstantInt>(I->getOperand(0));
    return dyn_cast<ConstantInt>(V);
  };

  Value *RHS = CI->getOperand(1);
  ConstantInt *CV = GetConstantInt(RHS);
  if (!CV)
    return false;

  // If the LHS is the result of AND'ing a value with a single bit bitmask,
  // we don't have information about probabilities.
  if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
    if (LHS->getOpcode() == Instruction::And)
      if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
        if (AndRHS->getValue().isPowerOf2())
          return false;

  // Check if the LHS is the return value of a library function
  LibFunc Func = NumLibFuncs;
  if (TLI)
    if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
      if (Function *CalledFn = Call->getCalledFunction())
        TLI->getLibFunc(*CalledFn, Func);

  ProbabilityTable::const_iterator Search;
  if (Func == LibFunc_strcasecmp ||
      Func == LibFunc_strcmp ||
      Func == LibFunc_strncasecmp ||
      Func == LibFunc_strncmp ||
      Func == LibFunc_memcmp ||
      Func == LibFunc_bcmp) {
    Search = ICmpWithLibCallTable.find(CI->getPredicate());
    if (Search == ICmpWithLibCallTable.end())
      return false;
  } else if (CV->isZero()) {
    Search = ICmpWithZeroTable.find(CI->getPredicate());
    if (Search == ICmpWithZeroTable.end())
      return false;
  } else if (CV->isOne()) {
    Search = ICmpWithOneTable.find(CI->getPredicate());
    if (Search == ICmpWithOneTable.end())
      return false;
  } else if (CV->isMinusOne()) {
    Search = ICmpWithMinusOneTable.find(CI->getPredicate());
    if (Search == ICmpWithMinusOneTable.end())
      return false;
  } else {
    return false;
  }

  setEdgeProbability(BB, Search->second);
  return true;
}

bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
  if (!FCmp)
    return false;

  ProbabilityList ProbList;
  if (FCmp->isEquality()) {
    ProbList = !FCmp->isTrueWhenEqual() ?
      // f1 == f2 -> Unlikely
      ProbabilityList({FPTakenProb, FPUntakenProb}) :
      // f1 != f2 -> Likely
      ProbabilityList({FPUntakenProb, FPTakenProb});
  } else {
    auto Search = FCmpTable.find(FCmp->getPredicate());
    if (Search == FCmpTable.end())
      return false;
    ProbList = Search->second;
  }

  setEdgeProbability(BB, ProbList);
  return true;
}

void BranchProbabilityInfo::releaseMemory() {
  Probs.clear();
  Handles.clear();
}

bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
                                       FunctionAnalysisManager::Invalidator &) {
  // Check whether the analysis, all analyses on functions, or the function's
  // CFG have been preserved.
  auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
           PAC.preservedSet<CFGAnalyses>());
}

void BranchProbabilityInfo::print(raw_ostream &OS) const {
  OS << "---- Branch Probabilities ----\n";
  // We print the probabilities from the last function the analysis ran over,
  // or the function it is currently running over.
  assert(LastF && "Cannot print prior to running over a function");
  for (const auto &BI : *LastF) {
    for (const BasicBlock *Succ : successors(&BI))
      printEdgeProbability(OS << "  ", &BI, Succ);
  }
}

bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
  // Hot probability is at least 4/5 = 80%
  // FIXME: Compare against a static "hot" BranchProbability.
  return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
}

/// Get the raw edge probability for the edge. If can't find it, return a
/// default probability 1/N where N is the number of successors. Here an edge is
/// specified using PredBlock and an
/// index to the successors.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          unsigned IndexInSuccessors) const {
  auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
  assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
             (Probs.end() == I) &&
         "Probability for I-th successor must always be defined along with the "
         "probability for the first successor");

  if (I != Probs.end())
    return I->second;

  return {1, static_cast<uint32_t>(succ_size(Src))};
}

BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          const_succ_iterator Dst) const {
  return getEdgeProbability(Src, Dst.getSuccessorIndex());
}

/// Get the raw edge probability calculated for the block pair. This returns the
/// sum of all raw edge probabilities from Src to Dst.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          const BasicBlock *Dst) const {
  if (!Probs.count(std::make_pair(Src, 0)))
    return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));

  auto Prob = BranchProbability::getZero();
  for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
    if (*I == Dst)
      Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;

  return Prob;
}

/// Set the edge probability for all edges at once.
void BranchProbabilityInfo::setEdgeProbability(
    const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
  assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
  eraseBlock(Src); // Erase stale data if any.
  if (Probs.size() == 0)
    return; // Nothing to set.

  Handles.insert(BasicBlockCallbackVH(Src, this));
  uint64_t TotalNumerator = 0;
  for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
    this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
    LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
                      << " successor probability to " << Probs[SuccIdx]
                      << "\n");
    TotalNumerator += Probs[SuccIdx].getNumerator();
  }

  // Because of rounding errors the total probability cannot be checked to be
  // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
  // Instead, every single probability in Probs must be as accurate as possible.
  // This results in error 1/denominator at most, thus the total absolute error
  // should be within Probs.size / BranchProbability::getDenominator.
  assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
  assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
  (void)TotalNumerator;
}

void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
                                                  BasicBlock *Dst) {
  eraseBlock(Dst); // Erase stale data if any.
  unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
  assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
  if (NumSuccessors == 0)
    return; // Nothing to set.
  if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
    return; // No probability is set for edges from Src. Keep the same for Dst.

  Handles.insert(BasicBlockCallbackVH(Dst, this));
  for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
    auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
    this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
    LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
                      << " successor probability to " << Prob << "\n");
  }
}

raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
                                            const BasicBlock *Src,
                                            const BasicBlock *Dst) const {
  const BranchProbability Prob = getEdgeProbability(Src, Dst);
  OS << "edge " << Src->getName() << " -> " << Dst->getName()
     << " probability is " << Prob
     << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");

  return OS;
}

void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
  LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");

  // Note that we cannot use successors of BB because the terminator of BB may
  // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
  // Instead we remove prob data for the block by iterating successors by their
  // indices from 0 till the last which exists. There could not be prob data for
  // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
  // set for all successors from 0 to M at once by the method
  // setEdgeProbability().
  Handles.erase(BasicBlockCallbackVH(BB, this));
  for (unsigned I = 0;; ++I) {
    auto MapI = Probs.find(std::make_pair(BB, I));
    if (MapI == Probs.end()) {
      assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
             "Must be no more successors");
      return;
    }
    Probs.erase(MapI);
  }
}

void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
                                      const TargetLibraryInfo *TLI,
                                      DominatorTree *DT,
                                      PostDominatorTree *PDT) {
  LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
                    << " ----\n\n");
  LastF = &F; // Store the last function we ran on for printing.
  LI = &LoopI;

  SccI = std::make_unique<SccInfo>(F);

  assert(EstimatedBlockWeight.empty());
  assert(EstimatedLoopWeight.empty());

  std::unique_ptr<DominatorTree> DTPtr;
  std::unique_ptr<PostDominatorTree> PDTPtr;

  if (!DT) {
    DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
    DT = DTPtr.get();
  }

  if (!PDT) {
    PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
    PDT = PDTPtr.get();
  }

  computeEestimateBlockWeight(F, DT, PDT);

  // Walk the basic blocks in post-order so that we can build up state about
  // the successors of a block iteratively.
  for (auto BB : post_order(&F.getEntryBlock())) {
    LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
                      << "\n");
    // If there is no at least two successors, no sense to set probability.
    if (BB->getTerminator()->getNumSuccessors() < 2)
      continue;
    if (calcMetadataWeights(BB))
      continue;
    if (calcEstimatedHeuristics(BB))
      continue;
    if (calcPointerHeuristics(BB))
      continue;
    if (calcZeroHeuristics(BB, TLI))
      continue;
    if (calcFloatingPointHeuristics(BB))
      continue;
  }

  EstimatedLoopWeight.clear();
  EstimatedBlockWeight.clear();
  SccI.reset();

  if (PrintBranchProb &&
      (PrintBranchProbFuncName.empty() ||
       F.getName().equals(PrintBranchProbFuncName))) {
    print(dbgs());
  }
}

void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  // We require DT so it's available when LI is available. The LI updating code
  // asserts that DT is also present so if we don't make sure that we have DT
  // here, that assert will trigger.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<PostDominatorTreeWrapperPass>();
  AU.setPreservesAll();
}

bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
  const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  const TargetLibraryInfo &TLI =
      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  PostDominatorTree &PDT =
      getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
  BPI.calculate(F, LI, &TLI, &DT, &PDT);
  return false;
}

void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }

void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
                                             const Module *) const {
  BPI.print(OS);
}

AnalysisKey BranchProbabilityAnalysis::Key;
BranchProbabilityInfo
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
  BranchProbabilityInfo BPI;
  BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
                &AM.getResult<TargetLibraryAnalysis>(F),
                &AM.getResult<DominatorTreeAnalysis>(F),
                &AM.getResult<PostDominatorTreeAnalysis>(F));
  return BPI;
}

PreservedAnalyses
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
  OS << "Printing analysis results of BPI for function "
     << "'" << F.getName() << "':"
     << "\n";
  AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}