aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Analysis/BasicAliasAnalysis.cpp
blob: 0a0b53796add83bb82a30a2761f92966a223a78a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PhiValues.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/KnownBits.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <utility>

#define DEBUG_TYPE "basicaa"

using namespace llvm;

/// Enable analysis of recursive PHI nodes.
static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
                                          cl::init(true));

/// SearchLimitReached / SearchTimes shows how often the limit of
/// to decompose GEPs is reached. It will affect the precision
/// of basic alias analysis.
STATISTIC(SearchLimitReached, "Number of times the limit to "
                              "decompose GEPs is reached");
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");

/// Cutoff after which to stop analysing a set of phi nodes potentially involved
/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
/// careful with value equivalence. We use reachability to make sure a value
/// cannot be involved in a cycle.
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;

// The max limit of the search depth in DecomposeGEPExpression() and
// getUnderlyingObject().
static const unsigned MaxLookupSearchDepth = 6;

bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
                               FunctionAnalysisManager::Invalidator &Inv) {
  // We don't care if this analysis itself is preserved, it has no state. But
  // we need to check that the analyses it depends on have been. Note that we
  // may be created without handles to some analyses and in that case don't
  // depend on them.
  if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
      (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
      (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
    return true;

  // Otherwise this analysis result remains valid.
  return false;
}

//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//

/// Returns true if the pointer is one which would have been considered an
/// escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
  if (isa<CallBase>(V))
    return true;

  // The load case works because isNonEscapingLocalObject considers all
  // stores to be escapes (it passes true for the StoreCaptures argument
  // to PointerMayBeCaptured).
  if (isa<LoadInst>(V))
    return true;

  // The inttoptr case works because isNonEscapingLocalObject considers all
  // means of converting or equating a pointer to an int (ptrtoint, ptr store
  // which could be followed by an integer load, ptr<->int compare) as
  // escaping, and objects located at well-known addresses via platform-specific
  // means cannot be considered non-escaping local objects.
  if (isa<IntToPtrInst>(V))
    return true;

  return false;
}

/// Returns the size of the object specified by V or UnknownSize if unknown.
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
                              const TargetLibraryInfo &TLI,
                              bool NullIsValidLoc,
                              bool RoundToAlign = false) {
  uint64_t Size;
  ObjectSizeOpts Opts;
  Opts.RoundToAlign = RoundToAlign;
  Opts.NullIsUnknownSize = NullIsValidLoc;
  if (getObjectSize(V, Size, DL, &TLI, Opts))
    return Size;
  return MemoryLocation::UnknownSize;
}

/// Returns true if we can prove that the object specified by V is smaller than
/// Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
                                const DataLayout &DL,
                                const TargetLibraryInfo &TLI,
                                bool NullIsValidLoc) {
  // Note that the meanings of the "object" are slightly different in the
  // following contexts:
  //    c1: llvm::getObjectSize()
  //    c2: llvm.objectsize() intrinsic
  //    c3: isObjectSmallerThan()
  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
  // refers to the "entire object".
  //
  //  Consider this example:
  //     char *p = (char*)malloc(100)
  //     char *q = p+80;
  //
  //  In the context of c1 and c2, the "object" pointed by q refers to the
  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
  //
  //  However, in the context of c3, the "object" refers to the chunk of memory
  // being allocated. So, the "object" has 100 bytes, and q points to the middle
  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
  // parameter, before the llvm::getObjectSize() is called to get the size of
  // entire object, we should:
  //    - either rewind the pointer q to the base-address of the object in
  //      question (in this case rewind to p), or
  //    - just give up. It is up to caller to make sure the pointer is pointing
  //      to the base address the object.
  //
  // We go for 2nd option for simplicity.
  if (!isIdentifiedObject(V))
    return false;

  // This function needs to use the aligned object size because we allow
  // reads a bit past the end given sufficient alignment.
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
                                      /*RoundToAlign*/ true);

  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
}

/// Return the minimal extent from \p V to the end of the underlying object,
/// assuming the result is used in an aliasing query. E.g., we do use the query
/// location size and the fact that null pointers cannot alias here.
static uint64_t getMinimalExtentFrom(const Value &V,
                                     const LocationSize &LocSize,
                                     const DataLayout &DL,
                                     bool NullIsValidLoc) {
  // If we have dereferenceability information we know a lower bound for the
  // extent as accesses for a lower offset would be valid. We need to exclude
  // the "or null" part if null is a valid pointer. We can ignore frees, as an
  // access after free would be undefined behavior.
  bool CanBeNull, CanBeFreed;
  uint64_t DerefBytes =
    V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
  DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
  // If queried with a precise location size, we assume that location size to be
  // accessed, thus valid.
  if (LocSize.isPrecise())
    DerefBytes = std::max(DerefBytes, LocSize.getValue());
  return DerefBytes;
}

/// Returns true if we can prove that the object specified by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
                         const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
}

//===----------------------------------------------------------------------===//
// CaptureInfo implementations
//===----------------------------------------------------------------------===//

CaptureInfo::~CaptureInfo() = default;

bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
                                                const Instruction *I) {
  return isNonEscapingLocalObject(Object, &IsCapturedCache);
}

bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
                                                 const Instruction *I) {
  if (!isIdentifiedFunctionLocal(Object))
    return false;

  auto Iter = EarliestEscapes.insert({Object, nullptr});
  if (Iter.second) {
    Instruction *EarliestCapture = FindEarliestCapture(
        Object, *const_cast<Function *>(I->getFunction()),
        /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
    if (EarliestCapture) {
      auto Ins = Inst2Obj.insert({EarliestCapture, {}});
      Ins.first->second.push_back(Object);
    }
    Iter.first->second = EarliestCapture;
  }

  // No capturing instruction.
  if (!Iter.first->second)
    return true;

  return I != Iter.first->second &&
         !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
}

void EarliestEscapeInfo::removeInstruction(Instruction *I) {
  auto Iter = Inst2Obj.find(I);
  if (Iter != Inst2Obj.end()) {
    for (const Value *Obj : Iter->second)
      EarliestEscapes.erase(Obj);
    Inst2Obj.erase(I);
  }
}

//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//

namespace {
/// Represents zext(sext(trunc(V))).
struct CastedValue {
  const Value *V;
  unsigned ZExtBits = 0;
  unsigned SExtBits = 0;
  unsigned TruncBits = 0;

  explicit CastedValue(const Value *V) : V(V) {}
  explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
                       unsigned TruncBits)
      : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {}

  unsigned getBitWidth() const {
    return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
           SExtBits;
  }

  CastedValue withValue(const Value *NewV) const {
    return CastedValue(NewV, ZExtBits, SExtBits, TruncBits);
  }

  /// Replace V with zext(NewV)
  CastedValue withZExtOfValue(const Value *NewV) const {
    unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
                        NewV->getType()->getPrimitiveSizeInBits();
    if (ExtendBy <= TruncBits)
      return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);

    // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
    ExtendBy -= TruncBits;
    return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0);
  }

  /// Replace V with sext(NewV)
  CastedValue withSExtOfValue(const Value *NewV) const {
    unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
                        NewV->getType()->getPrimitiveSizeInBits();
    if (ExtendBy <= TruncBits)
      return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);

    // zext(sext(sext(NewV)))
    ExtendBy -= TruncBits;
    return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0);
  }

  APInt evaluateWith(APInt N) const {
    assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
           "Incompatible bit width");
    if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
    if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
    if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
    return N;
  }

  ConstantRange evaluateWith(ConstantRange N) const {
    assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
           "Incompatible bit width");
    if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
    if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
    if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
    return N;
  }

  bool canDistributeOver(bool NUW, bool NSW) const {
    // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
    // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
    // trunc(x op y) == trunc(x) op trunc(y)
    return (!ZExtBits || NUW) && (!SExtBits || NSW);
  }

  bool hasSameCastsAs(const CastedValue &Other) const {
    return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
           TruncBits == Other.TruncBits;
  }
};

/// Represents zext(sext(trunc(V))) * Scale + Offset.
struct LinearExpression {
  CastedValue Val;
  APInt Scale;
  APInt Offset;

  /// True if all operations in this expression are NSW.
  bool IsNSW;

  LinearExpression(const CastedValue &Val, const APInt &Scale,
                   const APInt &Offset, bool IsNSW)
      : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}

  LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
    unsigned BitWidth = Val.getBitWidth();
    Scale = APInt(BitWidth, 1);
    Offset = APInt(BitWidth, 0);
  }

  LinearExpression mul(const APInt &Other, bool MulIsNSW) const {
    // The check for zero offset is necessary, because generally
    // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
    bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
    return LinearExpression(Val, Scale * Other, Offset * Other, NSW);
  }
};
}

/// Analyzes the specified value as a linear expression: "A*V + B", where A and
/// B are constant integers.
static LinearExpression GetLinearExpression(
    const CastedValue &Val,  const DataLayout &DL, unsigned Depth,
    AssumptionCache *AC, DominatorTree *DT) {
  // Limit our recursion depth.
  if (Depth == 6)
    return Val;

  if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
    return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
                            Val.evaluateWith(Const->getValue()), true);

  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
      APInt RHS = Val.evaluateWith(RHSC->getValue());
      // The only non-OBO case we deal with is or, and only limited to the
      // case where it is both nuw and nsw.
      bool NUW = true, NSW = true;
      if (isa<OverflowingBinaryOperator>(BOp)) {
        NUW &= BOp->hasNoUnsignedWrap();
        NSW &= BOp->hasNoSignedWrap();
      }
      if (!Val.canDistributeOver(NUW, NSW))
        return Val;

      // While we can distribute over trunc, we cannot preserve nowrap flags
      // in that case.
      if (Val.TruncBits)
        NUW = NSW = false;

      LinearExpression E(Val);
      switch (BOp->getOpcode()) {
      default:
        // We don't understand this instruction, so we can't decompose it any
        // further.
        return Val;
      case Instruction::Or:
        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
        // analyze it.
        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
                               BOp, DT))
          return Val;

        LLVM_FALLTHROUGH;
      case Instruction::Add: {
        E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
                                Depth + 1, AC, DT);
        E.Offset += RHS;
        E.IsNSW &= NSW;
        break;
      }
      case Instruction::Sub: {
        E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
                                Depth + 1, AC, DT);
        E.Offset -= RHS;
        E.IsNSW &= NSW;
        break;
      }
      case Instruction::Mul:
        E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
                                Depth + 1, AC, DT)
                .mul(RHS, NSW);
        break;
      case Instruction::Shl:
        // We're trying to linearize an expression of the kind:
        //   shl i8 -128, 36
        // where the shift count exceeds the bitwidth of the type.
        // We can't decompose this further (the expression would return
        // a poison value).
        if (RHS.getLimitedValue() > Val.getBitWidth())
          return Val;

        E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
                                Depth + 1, AC, DT);
        E.Offset <<= RHS.getLimitedValue();
        E.Scale <<= RHS.getLimitedValue();
        E.IsNSW &= NSW;
        break;
      }
      return E;
    }
  }

  if (isa<ZExtInst>(Val.V))
    return GetLinearExpression(
        Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
        DL, Depth + 1, AC, DT);

  if (isa<SExtInst>(Val.V))
    return GetLinearExpression(
        Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
        DL, Depth + 1, AC, DT);

  return Val;
}

/// To ensure a pointer offset fits in an integer of size IndexSize
/// (in bits) when that size is smaller than the maximum index size. This is
/// an issue, for example, in particular for 32b pointers with negative indices
/// that rely on two's complement wrap-arounds for precise alias information
/// where the maximum index size is 64b.
static APInt adjustToIndexSize(const APInt &Offset, unsigned IndexSize) {
  assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!");
  unsigned ShiftBits = Offset.getBitWidth() - IndexSize;
  return (Offset << ShiftBits).ashr(ShiftBits);
}

namespace {
// A linear transformation of a Value; this class represents
// ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
struct VariableGEPIndex {
  CastedValue Val;
  APInt Scale;

  // Context instruction to use when querying information about this index.
  const Instruction *CxtI;

  /// True if all operations in this expression are NSW.
  bool IsNSW;

  void dump() const {
    print(dbgs());
    dbgs() << "\n";
  }
  void print(raw_ostream &OS) const {
    OS << "(V=" << Val.V->getName()
       << ", zextbits=" << Val.ZExtBits
       << ", sextbits=" << Val.SExtBits
       << ", truncbits=" << Val.TruncBits
       << ", scale=" << Scale << ")";
  }
};
}

// Represents the internal structure of a GEP, decomposed into a base pointer,
// constant offsets, and variable scaled indices.
struct BasicAAResult::DecomposedGEP {
  // Base pointer of the GEP
  const Value *Base;
  // Total constant offset from base.
  APInt Offset;
  // Scaled variable (non-constant) indices.
  SmallVector<VariableGEPIndex, 4> VarIndices;
  // Are all operations inbounds GEPs or non-indexing operations?
  // (None iff expression doesn't involve any geps)
  Optional<bool> InBounds;

  void dump() const {
    print(dbgs());
    dbgs() << "\n";
  }
  void print(raw_ostream &OS) const {
    OS << "(DecomposedGEP Base=" << Base->getName()
       << ", Offset=" << Offset
       << ", VarIndices=[";
    for (size_t i = 0; i < VarIndices.size(); i++) {
      if (i != 0)
        OS << ", ";
      VarIndices[i].print(OS);
    }
    OS << "])";
  }
};


/// If V is a symbolic pointer expression, decompose it into a base pointer
/// with a constant offset and a number of scaled symbolic offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
BasicAAResult::DecomposedGEP
BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
                                      AssumptionCache *AC, DominatorTree *DT) {
  // Limit recursion depth to limit compile time in crazy cases.
  unsigned MaxLookup = MaxLookupSearchDepth;
  SearchTimes++;
  const Instruction *CxtI = dyn_cast<Instruction>(V);

  unsigned MaxIndexSize = DL.getMaxIndexSizeInBits();
  DecomposedGEP Decomposed;
  Decomposed.Offset = APInt(MaxIndexSize, 0);
  do {
    // See if this is a bitcast or GEP.
    const Operator *Op = dyn_cast<Operator>(V);
    if (!Op) {
      // The only non-operator case we can handle are GlobalAliases.
      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
        if (!GA->isInterposable()) {
          V = GA->getAliasee();
          continue;
        }
      }
      Decomposed.Base = V;
      return Decomposed;
    }

    if (Op->getOpcode() == Instruction::BitCast ||
        Op->getOpcode() == Instruction::AddrSpaceCast) {
      V = Op->getOperand(0);
      continue;
    }

    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    if (!GEPOp) {
      if (const auto *PHI = dyn_cast<PHINode>(V)) {
        // Look through single-arg phi nodes created by LCSSA.
        if (PHI->getNumIncomingValues() == 1) {
          V = PHI->getIncomingValue(0);
          continue;
        }
      } else if (const auto *Call = dyn_cast<CallBase>(V)) {
        // CaptureTracking can know about special capturing properties of some
        // intrinsics like launder.invariant.group, that can't be expressed with
        // the attributes, but have properties like returning aliasing pointer.
        // Because some analysis may assume that nocaptured pointer is not
        // returned from some special intrinsic (because function would have to
        // be marked with returns attribute), it is crucial to use this function
        // because it should be in sync with CaptureTracking. Not using it may
        // cause weird miscompilations where 2 aliasing pointers are assumed to
        // noalias.
        if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
          V = RP;
          continue;
        }
      }

      Decomposed.Base = V;
      return Decomposed;
    }

    // Track whether we've seen at least one in bounds gep, and if so, whether
    // all geps parsed were in bounds.
    if (Decomposed.InBounds == None)
      Decomposed.InBounds = GEPOp->isInBounds();
    else if (!GEPOp->isInBounds())
      Decomposed.InBounds = false;

    assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");

    // Don't attempt to analyze GEPs if index scale is not a compile-time
    // constant.
    if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
      Decomposed.Base = V;
      return Decomposed;
    }

    unsigned AS = GEPOp->getPointerAddressSpace();
    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    gep_type_iterator GTI = gep_type_begin(GEPOp);
    unsigned IndexSize = DL.getIndexSizeInBits(AS);
    // Assume all GEP operands are constants until proven otherwise.
    bool GepHasConstantOffset = true;
    for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
         I != E; ++I, ++GTI) {
      const Value *Index = *I;
      // Compute the (potentially symbolic) offset in bytes for this index.
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        // For a struct, add the member offset.
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
        if (FieldNo == 0)
          continue;

        Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
        continue;
      }

      // For an array/pointer, add the element offset, explicitly scaled.
      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
        if (CIdx->isZero())
          continue;
        Decomposed.Offset +=
            DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
            CIdx->getValue().sextOrTrunc(MaxIndexSize);
        continue;
      }

      GepHasConstantOffset = false;

      // If the integer type is smaller than the index size, it is implicitly
      // sign extended or truncated to index size.
      unsigned Width = Index->getType()->getIntegerBitWidth();
      unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
      unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
      LinearExpression LE = GetLinearExpression(
          CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT);

      // Scale by the type size.
      unsigned TypeSize =
          DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
      LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds());
      Decomposed.Offset += LE.Offset.sextOrSelf(MaxIndexSize);
      APInt Scale = LE.Scale.sextOrSelf(MaxIndexSize);

      // If we already had an occurrence of this index variable, merge this
      // scale into it.  For example, we want to handle:
      //   A[x][x] -> x*16 + x*4 -> x*20
      // This also ensures that 'x' only appears in the index list once.
      for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
        if (Decomposed.VarIndices[i].Val.V == LE.Val.V &&
            Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
          Scale += Decomposed.VarIndices[i].Scale;
          Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
          break;
        }
      }

      // Make sure that we have a scale that makes sense for this target's
      // index size.
      Scale = adjustToIndexSize(Scale, IndexSize);

      if (!!Scale) {
        VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW};
        Decomposed.VarIndices.push_back(Entry);
      }
    }

    // Take care of wrap-arounds
    if (GepHasConstantOffset)
      Decomposed.Offset = adjustToIndexSize(Decomposed.Offset, IndexSize);

    // Analyze the base pointer next.
    V = GEPOp->getOperand(0);
  } while (--MaxLookup);

  // If the chain of expressions is too deep, just return early.
  Decomposed.Base = V;
  SearchLimitReached++;
  return Decomposed;
}

/// Returns whether the given pointer value points to memory that is local to
/// the function, with global constants being considered local to all
/// functions.
bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
                                           AAQueryInfo &AAQI, bool OrLocal) {
  assert(Visited.empty() && "Visited must be cleared after use!");

  unsigned MaxLookup = 8;
  SmallVector<const Value *, 16> Worklist;
  Worklist.push_back(Loc.Ptr);
  do {
    const Value *V = getUnderlyingObject(Worklist.pop_back_val());
    if (!Visited.insert(V).second) {
      Visited.clear();
      return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
    }

    // An alloca instruction defines local memory.
    if (OrLocal && isa<AllocaInst>(V))
      continue;

    // A global constant counts as local memory for our purposes.
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
      // global to be marked constant in some modules and non-constant in
      // others.  GV may even be a declaration, not a definition.
      if (!GV->isConstant()) {
        Visited.clear();
        return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
      }
      continue;
    }

    // If both select values point to local memory, then so does the select.
    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    // If all values incoming to a phi node point to local memory, then so does
    // the phi.
    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
      // Don't bother inspecting phi nodes with many operands.
      if (PN->getNumIncomingValues() > MaxLookup) {
        Visited.clear();
        return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
      }
      append_range(Worklist, PN->incoming_values());
      continue;
    }

    // Otherwise be conservative.
    Visited.clear();
    return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
  } while (!Worklist.empty() && --MaxLookup);

  Visited.clear();
  return Worklist.empty();
}

static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
  return II && II->getIntrinsicID() == IID;
}

/// Returns the behavior when calling the given call site.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
  if (Call->doesNotAccessMemory())
    // Can't do better than this.
    return FMRB_DoesNotAccessMemory;

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the callsite knows it only reads memory, don't return worse
  // than that.
  if (Call->onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;
  else if (Call->onlyWritesMemory())
    Min = FMRB_OnlyWritesMemory;

  if (Call->onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
  else if (Call->onlyAccessesInaccessibleMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
  else if (Call->onlyAccessesInaccessibleMemOrArgMem())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);

  // If the call has operand bundles then aliasing attributes from the function
  // it calls do not directly apply to the call.  This can be made more precise
  // in the future.
  if (!Call->hasOperandBundles())
    if (const Function *F = Call->getCalledFunction())
      Min =
          FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));

  return Min;
}

/// Returns the behavior when calling the given function. For use when the call
/// site is not known.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
  // If the function declares it doesn't access memory, we can't do better.
  if (F->doesNotAccessMemory())
    return FMRB_DoesNotAccessMemory;

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the function declares it only reads memory, go with that.
  if (F->onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;
  else if (F->onlyWritesMemory())
    Min = FMRB_OnlyWritesMemory;

  if (F->onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
  else if (F->onlyAccessesInaccessibleMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
  else if (F->onlyAccessesInaccessibleMemOrArgMem())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);

  return Min;
}

/// Returns true if this is a writeonly (i.e Mod only) parameter.
static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
                             const TargetLibraryInfo &TLI) {
  if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
    return true;

  // We can bound the aliasing properties of memset_pattern16 just as we can
  // for memcpy/memset.  This is particularly important because the
  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
  // whenever possible.
  // FIXME Consider handling this in InferFunctionAttr.cpp together with other
  // attributes.
  LibFunc F;
  if (Call->getCalledFunction() &&
      TLI.getLibFunc(*Call->getCalledFunction(), F) &&
      F == LibFunc_memset_pattern16 && TLI.has(F))
    if (ArgIdx == 0)
      return true;

  // TODO: memset_pattern4, memset_pattern8
  // TODO: _chk variants
  // TODO: strcmp, strcpy

  return false;
}

ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
                                           unsigned ArgIdx) {
  // Checking for known builtin intrinsics and target library functions.
  if (isWriteOnlyParam(Call, ArgIdx, TLI))
    return ModRefInfo::Mod;

  if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
    return ModRefInfo::Ref;

  if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
    return ModRefInfo::NoModRef;

  return AAResultBase::getArgModRefInfo(Call, ArgIdx);
}

#ifndef NDEBUG
static const Function *getParent(const Value *V) {
  if (const Instruction *inst = dyn_cast<Instruction>(V)) {
    if (!inst->getParent())
      return nullptr;
    return inst->getParent()->getParent();
  }

  if (const Argument *arg = dyn_cast<Argument>(V))
    return arg->getParent();

  return nullptr;
}

static bool notDifferentParent(const Value *O1, const Value *O2) {

  const Function *F1 = getParent(O1);
  const Function *F2 = getParent(O2);

  return !F1 || !F2 || F1 == F2;
}
#endif

AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
                                 const MemoryLocation &LocB,
                                 AAQueryInfo &AAQI) {
  assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
         "BasicAliasAnalysis doesn't support interprocedural queries.");
  return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
}

/// Checks to see if the specified callsite can clobber the specified memory
/// object.
///
/// Since we only look at local properties of this function, we really can't
/// say much about this query.  We do, however, use simple "address taken"
/// analysis on local objects.
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
                                        const MemoryLocation &Loc,
                                        AAQueryInfo &AAQI) {
  assert(notDifferentParent(Call, Loc.Ptr) &&
         "AliasAnalysis query involving multiple functions!");

  const Value *Object = getUnderlyingObject(Loc.Ptr);

  // Calls marked 'tail' cannot read or write allocas from the current frame
  // because the current frame might be destroyed by the time they run. However,
  // a tail call may use an alloca with byval. Calling with byval copies the
  // contents of the alloca into argument registers or stack slots, so there is
  // no lifetime issue.
  if (isa<AllocaInst>(Object))
    if (const CallInst *CI = dyn_cast<CallInst>(Call))
      if (CI->isTailCall() &&
          !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
        return ModRefInfo::NoModRef;

  // Stack restore is able to modify unescaped dynamic allocas. Assume it may
  // modify them even though the alloca is not escaped.
  if (auto *AI = dyn_cast<AllocaInst>(Object))
    if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
      return ModRefInfo::Mod;

  // If the pointer is to a locally allocated object that does not escape,
  // then the call can not mod/ref the pointer unless the call takes the pointer
  // as an argument, and itself doesn't capture it.
  if (!isa<Constant>(Object) && Call != Object &&
      AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {

    // Optimistically assume that call doesn't touch Object and check this
    // assumption in the following loop.
    ModRefInfo Result = ModRefInfo::NoModRef;
    bool IsMustAlias = true;

    unsigned OperandNo = 0;
    for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
         CI != CE; ++CI, ++OperandNo) {
      // Only look at the no-capture or byval pointer arguments.  If this
      // pointer were passed to arguments that were neither of these, then it
      // couldn't be no-capture.
      if (!(*CI)->getType()->isPointerTy() ||
          (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() &&
           !Call->isByValArgument(OperandNo)))
        continue;

      // Call doesn't access memory through this operand, so we don't care
      // if it aliases with Object.
      if (Call->doesNotAccessMemory(OperandNo))
        continue;

      // If this is a no-capture pointer argument, see if we can tell that it
      // is impossible to alias the pointer we're checking.
      AliasResult AR = getBestAAResults().alias(
          MemoryLocation::getBeforeOrAfter(*CI),
          MemoryLocation::getBeforeOrAfter(Object), AAQI);
      if (AR != AliasResult::MustAlias)
        IsMustAlias = false;
      // Operand doesn't alias 'Object', continue looking for other aliases
      if (AR == AliasResult::NoAlias)
        continue;
      // Operand aliases 'Object', but call doesn't modify it. Strengthen
      // initial assumption and keep looking in case if there are more aliases.
      if (Call->onlyReadsMemory(OperandNo)) {
        Result = setRef(Result);
        continue;
      }
      // Operand aliases 'Object' but call only writes into it.
      if (Call->onlyWritesMemory(OperandNo)) {
        Result = setMod(Result);
        continue;
      }
      // This operand aliases 'Object' and call reads and writes into it.
      // Setting ModRef will not yield an early return below, MustAlias is not
      // used further.
      Result = ModRefInfo::ModRef;
      break;
    }

    // No operand aliases, reset Must bit. Add below if at least one aliases
    // and all aliases found are MustAlias.
    if (isNoModRef(Result))
      IsMustAlias = false;

    // Early return if we improved mod ref information
    if (!isModAndRefSet(Result)) {
      if (isNoModRef(Result))
        return ModRefInfo::NoModRef;
      return IsMustAlias ? setMust(Result) : clearMust(Result);
    }
  }

  // If the call is malloc/calloc like, we can assume that it doesn't
  // modify any IR visible value.  This is only valid because we assume these
  // routines do not read values visible in the IR.  TODO: Consider special
  // casing realloc and strdup routines which access only their arguments as
  // well.  Or alternatively, replace all of this with inaccessiblememonly once
  // that's implemented fully.
  if (isMallocOrCallocLikeFn(Call, &TLI)) {
    // Be conservative if the accessed pointer may alias the allocation -
    // fallback to the generic handling below.
    if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
                                 AAQI) == AliasResult::NoAlias)
      return ModRefInfo::NoModRef;
  }

  // Ideally, there should be no need to special case for memcpy/memove
  // intrinsics here since general machinery (based on memory attributes) should
  // already handle it just fine. Unfortunately, it doesn't due to deficiency in
  // operand bundles support. At the moment it's not clear if complexity behind
  // enhancing general mechanism worths it.
  // TODO: Consider improving operand bundles support in general mechanism.
  if (auto *Inst = dyn_cast<AnyMemTransferInst>(Call)) {
    AliasResult SrcAA =
        getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
    AliasResult DestAA =
        getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
    // It's also possible for Loc to alias both src and dest, or neither.
    ModRefInfo rv = ModRefInfo::NoModRef;
    if (SrcAA != AliasResult::NoAlias || Call->hasReadingOperandBundles())
      rv = setRef(rv);
    if (DestAA != AliasResult::NoAlias || Call->hasClobberingOperandBundles())
      rv = setMod(rv);
    return rv;
  }

  // Guard intrinsics are marked as arbitrarily writing so that proper control
  // dependencies are maintained but they never mods any particular memory
  // location.
  //
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
  // heap state at the point the guard is issued needs to be consistent in case
  // the guard invokes the "deopt" continuation.
  if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
    return ModRefInfo::Ref;
  // The same applies to deoptimize which is essentially a guard(false).
  if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
    return ModRefInfo::Ref;

  // Like assumes, invariant.start intrinsics were also marked as arbitrarily
  // writing so that proper control dependencies are maintained but they never
  // mod any particular memory location visible to the IR.
  // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
  // intrinsic is now modeled as reading memory. This prevents hoisting the
  // invariant.start intrinsic over stores. Consider:
  // *ptr = 40;
  // *ptr = 50;
  // invariant_start(ptr)
  // int val = *ptr;
  // print(val);
  //
  // This cannot be transformed to:
  //
  // *ptr = 40;
  // invariant_start(ptr)
  // *ptr = 50;
  // int val = *ptr;
  // print(val);
  //
  // The transformation will cause the second store to be ignored (based on
  // rules of invariant.start)  and print 40, while the first program always
  // prints 50.
  if (isIntrinsicCall(Call, Intrinsic::invariant_start))
    return ModRefInfo::Ref;

  // The AAResultBase base class has some smarts, lets use them.
  return AAResultBase::getModRefInfo(Call, Loc, AAQI);
}

ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
                                        const CallBase *Call2,
                                        AAQueryInfo &AAQI) {
  // Guard intrinsics are marked as arbitrarily writing so that proper control
  // dependencies are maintained but they never mods any particular memory
  // location.
  //
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
  // heap state at the point the guard is issued needs to be consistent in case
  // the guard invokes the "deopt" continuation.

  // NB! This function is *not* commutative, so we special case two
  // possibilities for guard intrinsics.

  if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
    return isModSet(createModRefInfo(getModRefBehavior(Call2)))
               ? ModRefInfo::Ref
               : ModRefInfo::NoModRef;

  if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
    return isModSet(createModRefInfo(getModRefBehavior(Call1)))
               ? ModRefInfo::Mod
               : ModRefInfo::NoModRef;

  // The AAResultBase base class has some smarts, lets use them.
  return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
}

/// Return true if we know V to the base address of the corresponding memory
/// object.  This implies that any address less than V must be out of bounds
/// for the underlying object.  Note that just being isIdentifiedObject() is
/// not enough - For example, a negative offset from a noalias argument or call
/// can be inbounds w.r.t the actual underlying object.
static bool isBaseOfObject(const Value *V) {
  // TODO: We can handle other cases here
  // 1) For GC languages, arguments to functions are often required to be
  //    base pointers.
  // 2) Result of allocation routines are often base pointers.  Leverage TLI.
  return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
}

/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer.
///
/// We know that V1 is a GEP, but we don't know anything about V2.
/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
/// V2.
AliasResult BasicAAResult::aliasGEP(
    const GEPOperator *GEP1, LocationSize V1Size,
    const Value *V2, LocationSize V2Size,
    const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
  if (!V1Size.hasValue() && !V2Size.hasValue()) {
    // TODO: This limitation exists for compile-time reasons. Relax it if we
    // can avoid exponential pathological cases.
    if (!isa<GEPOperator>(V2))
      return AliasResult::MayAlias;

    // If both accesses have unknown size, we can only check whether the base
    // objects don't alias.
    AliasResult BaseAlias = getBestAAResults().alias(
        MemoryLocation::getBeforeOrAfter(UnderlyingV1),
        MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
    return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
                                             : AliasResult::MayAlias;
  }

  DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
  DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);

  // Bail if we were not able to decompose anything.
  if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
    return AliasResult::MayAlias;

  // Subtract the GEP2 pointer from the GEP1 pointer to find out their
  // symbolic difference.
  subtractDecomposedGEPs(DecompGEP1, DecompGEP2);

  // If an inbounds GEP would have to start from an out of bounds address
  // for the two to alias, then we can assume noalias.
  if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
      V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
      isBaseOfObject(DecompGEP2.Base))
    return AliasResult::NoAlias;

  if (isa<GEPOperator>(V2)) {
    // Symmetric case to above.
    if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
        V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
        isBaseOfObject(DecompGEP1.Base))
      return AliasResult::NoAlias;
  }

  // For GEPs with identical offsets, we can preserve the size and AAInfo
  // when performing the alias check on the underlying objects.
  if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
    return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size),
                                    MemoryLocation(DecompGEP2.Base, V2Size),
                                    AAQI);

  // Do the base pointers alias?
  AliasResult BaseAlias = getBestAAResults().alias(
      MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
      MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);

  // If we get a No or May, then return it immediately, no amount of analysis
  // will improve this situation.
  if (BaseAlias != AliasResult::MustAlias) {
    assert(BaseAlias == AliasResult::NoAlias ||
           BaseAlias == AliasResult::MayAlias);
    return BaseAlias;
  }

  // If there is a constant difference between the pointers, but the difference
  // is less than the size of the associated memory object, then we know
  // that the objects are partially overlapping.  If the difference is
  // greater, we know they do not overlap.
  if (DecompGEP1.VarIndices.empty()) {
    APInt &Off = DecompGEP1.Offset;

    // Initialize for Off >= 0 (V2 <= GEP1) case.
    const Value *LeftPtr = V2;
    const Value *RightPtr = GEP1;
    LocationSize VLeftSize = V2Size;
    LocationSize VRightSize = V1Size;
    const bool Swapped = Off.isNegative();

    if (Swapped) {
      // Swap if we have the situation where:
      // +                +
      // | BaseOffset     |
      // ---------------->|
      // |-->V1Size       |-------> V2Size
      // GEP1             V2
      std::swap(LeftPtr, RightPtr);
      std::swap(VLeftSize, VRightSize);
      Off = -Off;
    }

    if (!VLeftSize.hasValue())
      return AliasResult::MayAlias;

    const uint64_t LSize = VLeftSize.getValue();
    if (Off.ult(LSize)) {
      // Conservatively drop processing if a phi was visited and/or offset is
      // too big.
      AliasResult AR = AliasResult::PartialAlias;
      if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
          (Off + VRightSize.getValue()).ule(LSize)) {
        // Memory referenced by right pointer is nested. Save the offset in
        // cache. Note that originally offset estimated as GEP1-V2, but
        // AliasResult contains the shift that represents GEP1+Offset=V2.
        AR.setOffset(-Off.getSExtValue());
        AR.swap(Swapped);
      }
      return AR;
    }
    return AliasResult::NoAlias;
  }

  // We need to know both acess sizes for all the following heuristics.
  if (!V1Size.hasValue() || !V2Size.hasValue())
    return AliasResult::MayAlias;

  APInt GCD;
  ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
  for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
    const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
    const APInt &Scale = Index.Scale;
    APInt ScaleForGCD = Scale;
    if (!Index.IsNSW)
      ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
                                        Scale.countTrailingZeros());

    if (i == 0)
      GCD = ScaleForGCD.abs();
    else
      GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());

    ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false,
                                            true, &AC, Index.CxtI);
    KnownBits Known =
        computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT);
    CR = CR.intersectWith(
        ConstantRange::fromKnownBits(Known, /* Signed */ true),
        ConstantRange::Signed);
    CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth());

    assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
           "Bit widths are normalized to MaxIndexSize");
    if (Index.IsNSW)
      OffsetRange = OffsetRange.add(CR.smul_sat(ConstantRange(Scale)));
    else
      OffsetRange = OffsetRange.add(CR.smul_fast(ConstantRange(Scale)));
  }

  // We now have accesses at two offsets from the same base:
  //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
  //  2. 0 with size V2Size
  // Using arithmetic modulo GCD, the accesses are at
  // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
  // into the range [V2Size..GCD), then we know they cannot overlap.
  APInt ModOffset = DecompGEP1.Offset.srem(GCD);
  if (ModOffset.isNegative())
    ModOffset += GCD; // We want mod, not rem.
  if (ModOffset.uge(V2Size.getValue()) &&
      (GCD - ModOffset).uge(V1Size.getValue()))
    return AliasResult::NoAlias;

  // Compute ranges of potentially accessed bytes for both accesses. If the
  // interseciton is empty, there can be no overlap.
  unsigned BW = OffsetRange.getBitWidth();
  ConstantRange Range1 = OffsetRange.add(
      ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
  ConstantRange Range2 =
      ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
  if (Range1.intersectWith(Range2).isEmptySet())
    return AliasResult::NoAlias;

  // Try to determine the range of values for VarIndex such that
  // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
  Optional<APInt> MinAbsVarIndex;
  if (DecompGEP1.VarIndices.size() == 1) {
    // VarIndex = Scale*V.
    const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
    if (Var.Val.TruncBits == 0 &&
        isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) {
      // If V != 0 then abs(VarIndex) >= abs(Scale).
      MinAbsVarIndex = Var.Scale.abs();
    }
  } else if (DecompGEP1.VarIndices.size() == 2) {
    // VarIndex = Scale*V0 + (-Scale)*V1.
    // If V0 != V1 then abs(VarIndex) >= abs(Scale).
    // Check that VisitedPhiBBs is empty, to avoid reasoning about
    // inequality of values across loop iterations.
    const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
    const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
    if (Var0.Scale == -Var1.Scale && Var0.Val.TruncBits == 0 &&
        Var0.Val.hasSameCastsAs(Var1.Val) && VisitedPhiBBs.empty() &&
        isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
                        DT))
      MinAbsVarIndex = Var0.Scale.abs();
  }

  if (MinAbsVarIndex) {
    // The constant offset will have added at least +/-MinAbsVarIndex to it.
    APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
    APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
    // We know that Offset <= OffsetLo || Offset >= OffsetHi
    if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
        OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
      return AliasResult::NoAlias;
  }

  if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT))
    return AliasResult::NoAlias;

  // Statically, we can see that the base objects are the same, but the
  // pointers have dynamic offsets which we can't resolve. And none of our
  // little tricks above worked.
  return AliasResult::MayAlias;
}

static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
  // If the results agree, take it.
  if (A == B)
    return A;
  // A mix of PartialAlias and MustAlias is PartialAlias.
  if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
      (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
    return AliasResult::PartialAlias;
  // Otherwise, we don't know anything.
  return AliasResult::MayAlias;
}

/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
/// against another.
AliasResult
BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
                           const Value *V2, LocationSize V2Size,
                           AAQueryInfo &AAQI) {
  // If the values are Selects with the same condition, we can do a more precise
  // check: just check for aliases between the values on corresponding arms.
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
    if (SI->getCondition() == SI2->getCondition()) {
      AliasResult Alias = getBestAAResults().alias(
          MemoryLocation(SI->getTrueValue(), SISize),
          MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
      if (Alias == AliasResult::MayAlias)
        return AliasResult::MayAlias;
      AliasResult ThisAlias = getBestAAResults().alias(
          MemoryLocation(SI->getFalseValue(), SISize),
          MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
      return MergeAliasResults(ThisAlias, Alias);
    }

  // If both arms of the Select node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  AliasResult Alias = getBestAAResults().alias(
      MemoryLocation(V2, V2Size),
      MemoryLocation(SI->getTrueValue(), SISize), AAQI);
  if (Alias == AliasResult::MayAlias)
    return AliasResult::MayAlias;

  AliasResult ThisAlias = getBestAAResults().alias(
      MemoryLocation(V2, V2Size),
      MemoryLocation(SI->getFalseValue(), SISize), AAQI);
  return MergeAliasResults(ThisAlias, Alias);
}

/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
/// another.
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
                                    const Value *V2, LocationSize V2Size,
                                    AAQueryInfo &AAQI) {
  if (!PN->getNumIncomingValues())
    return AliasResult::NoAlias;
  // If the values are PHIs in the same block, we can do a more precise
  // as well as efficient check: just check for aliases between the values
  // on corresponding edges.
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
    if (PN2->getParent() == PN->getParent()) {
      Optional<AliasResult> Alias;
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        AliasResult ThisAlias = getBestAAResults().alias(
            MemoryLocation(PN->getIncomingValue(i), PNSize),
            MemoryLocation(
                PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
            AAQI);
        if (Alias)
          *Alias = MergeAliasResults(*Alias, ThisAlias);
        else
          Alias = ThisAlias;
        if (*Alias == AliasResult::MayAlias)
          break;
      }
      return *Alias;
    }

  SmallVector<Value *, 4> V1Srcs;
  // If a phi operand recurses back to the phi, we can still determine NoAlias
  // if we don't alias the underlying objects of the other phi operands, as we
  // know that the recursive phi needs to be based on them in some way.
  bool isRecursive = false;
  auto CheckForRecPhi = [&](Value *PV) {
    if (!EnableRecPhiAnalysis)
      return false;
    if (getUnderlyingObject(PV) == PN) {
      isRecursive = true;
      return true;
    }
    return false;
  };

  if (PV) {
    // If we have PhiValues then use it to get the underlying phi values.
    const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
    // If we have more phi values than the search depth then return MayAlias
    // conservatively to avoid compile time explosion. The worst possible case
    // is if both sides are PHI nodes. In which case, this is O(m x n) time
    // where 'm' and 'n' are the number of PHI sources.
    if (PhiValueSet.size() > MaxLookupSearchDepth)
      return AliasResult::MayAlias;
    // Add the values to V1Srcs
    for (Value *PV1 : PhiValueSet) {
      if (CheckForRecPhi(PV1))
        continue;
      V1Srcs.push_back(PV1);
    }
  } else {
    // If we don't have PhiInfo then just look at the operands of the phi itself
    // FIXME: Remove this once we can guarantee that we have PhiInfo always
    SmallPtrSet<Value *, 4> UniqueSrc;
    Value *OnePhi = nullptr;
    for (Value *PV1 : PN->incoming_values()) {
      if (isa<PHINode>(PV1)) {
        if (OnePhi && OnePhi != PV1) {
          // To control potential compile time explosion, we choose to be
          // conserviate when we have more than one Phi input.  It is important
          // that we handle the single phi case as that lets us handle LCSSA
          // phi nodes and (combined with the recursive phi handling) simple
          // pointer induction variable patterns.
          return AliasResult::MayAlias;
        }
        OnePhi = PV1;
      }

      if (CheckForRecPhi(PV1))
        continue;

      if (UniqueSrc.insert(PV1).second)
        V1Srcs.push_back(PV1);
    }

    if (OnePhi && UniqueSrc.size() > 1)
      // Out of an abundance of caution, allow only the trivial lcssa and
      // recursive phi cases.
      return AliasResult::MayAlias;
  }

  // If V1Srcs is empty then that means that the phi has no underlying non-phi
  // value. This should only be possible in blocks unreachable from the entry
  // block, but return MayAlias just in case.
  if (V1Srcs.empty())
    return AliasResult::MayAlias;

  // If this PHI node is recursive, indicate that the pointer may be moved
  // across iterations. We can only prove NoAlias if different underlying
  // objects are involved.
  if (isRecursive)
    PNSize = LocationSize::beforeOrAfterPointer();

  // In the recursive alias queries below, we may compare values from two
  // different loop iterations. Keep track of visited phi blocks, which will
  // be used when determining value equivalence.
  bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
  auto _ = make_scope_exit([&]() {
    if (BlockInserted)
      VisitedPhiBBs.erase(PN->getParent());
  });

  // If we inserted a block into VisitedPhiBBs, alias analysis results that
  // have been cached earlier may no longer be valid. Perform recursive queries
  // with a new AAQueryInfo.
  AAQueryInfo NewAAQI = AAQI.withEmptyCache();
  AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;

  AliasResult Alias = getBestAAResults().alias(
      MemoryLocation(V2, V2Size),
      MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);

  // Early exit if the check of the first PHI source against V2 is MayAlias.
  // Other results are not possible.
  if (Alias == AliasResult::MayAlias)
    return AliasResult::MayAlias;
  // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
  // remain valid to all elements and needs to conservatively return MayAlias.
  if (isRecursive && Alias != AliasResult::NoAlias)
    return AliasResult::MayAlias;

  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
    Value *V = V1Srcs[i];

    AliasResult ThisAlias = getBestAAResults().alias(
        MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
    Alias = MergeAliasResults(ThisAlias, Alias);
    if (Alias == AliasResult::MayAlias)
      break;
  }

  return Alias;
}

/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
/// array references.
AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
                                      const Value *V2, LocationSize V2Size,
                                      AAQueryInfo &AAQI) {
  // If either of the memory references is empty, it doesn't matter what the
  // pointer values are.
  if (V1Size.isZero() || V2Size.isZero())
    return AliasResult::NoAlias;

  // Strip off any casts if they exist.
  V1 = V1->stripPointerCastsForAliasAnalysis();
  V2 = V2->stripPointerCastsForAliasAnalysis();

  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
  // value for undef that aliases nothing in the program.
  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
    return AliasResult::NoAlias;

  // Are we checking for alias of the same value?
  // Because we look 'through' phi nodes, we could look at "Value" pointers from
  // different iterations. We must therefore make sure that this is not the
  // case. The function isValueEqualInPotentialCycles ensures that this cannot
  // happen by looking at the visited phi nodes and making sure they cannot
  // reach the value.
  if (isValueEqualInPotentialCycles(V1, V2))
    return AliasResult::MustAlias;

  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
    return AliasResult::NoAlias; // Scalars cannot alias each other

  // Figure out what objects these things are pointing to if we can.
  const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
  const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);

  // Null values in the default address space don't point to any object, so they
  // don't alias any other pointer.
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
    if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
      return AliasResult::NoAlias;
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
    if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
      return AliasResult::NoAlias;

  if (O1 != O2) {
    // If V1/V2 point to two different objects, we know that we have no alias.
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
      return AliasResult::NoAlias;

    // Constant pointers can't alias with non-const isIdentifiedObject objects.
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
      return AliasResult::NoAlias;

    // Function arguments can't alias with things that are known to be
    // unambigously identified at the function level.
    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
      return AliasResult::NoAlias;

    // If one pointer is the result of a call/invoke or load and the other is a
    // non-escaping local object within the same function, then we know the
    // object couldn't escape to a point where the call could return it.
    //
    // Note that if the pointers are in different functions, there are a
    // variety of complications. A call with a nocapture argument may still
    // temporary store the nocapture argument's value in a temporary memory
    // location if that memory location doesn't escape. Or it may pass a
    // nocapture value to other functions as long as they don't capture it.
    if (isEscapeSource(O1) &&
        AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
      return AliasResult::NoAlias;
    if (isEscapeSource(O2) &&
        AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
      return AliasResult::NoAlias;
  }

  // If the size of one access is larger than the entire object on the other
  // side, then we know such behavior is undefined and can assume no alias.
  bool NullIsValidLocation = NullPointerIsDefined(&F);
  if ((isObjectSmallerThan(
          O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
          TLI, NullIsValidLocation)) ||
      (isObjectSmallerThan(
          O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
          TLI, NullIsValidLocation)))
    return AliasResult::NoAlias;

  // If one the accesses may be before the accessed pointer, canonicalize this
  // by using unknown after-pointer sizes for both accesses. This is
  // equivalent, because regardless of which pointer is lower, one of them
  // will always came after the other, as long as the underlying objects aren't
  // disjoint. We do this so that the rest of BasicAA does not have to deal
  // with accesses before the base pointer, and to improve cache utilization by
  // merging equivalent states.
  if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
    V1Size = LocationSize::afterPointer();
    V2Size = LocationSize::afterPointer();
  }

  // FIXME: If this depth limit is hit, then we may cache sub-optimal results
  // for recursive queries. For this reason, this limit is chosen to be large
  // enough to be very rarely hit, while still being small enough to avoid
  // stack overflows.
  if (AAQI.Depth >= 512)
    return AliasResult::MayAlias;

  // Check the cache before climbing up use-def chains. This also terminates
  // otherwise infinitely recursive queries.
  AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
  const bool Swapped = V1 > V2;
  if (Swapped)
    std::swap(Locs.first, Locs.second);
  const auto &Pair = AAQI.AliasCache.try_emplace(
      Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
  if (!Pair.second) {
    auto &Entry = Pair.first->second;
    if (!Entry.isDefinitive()) {
      // Remember that we used an assumption.
      ++Entry.NumAssumptionUses;
      ++AAQI.NumAssumptionUses;
    }
    // Cache contains sorted {V1,V2} pairs but we should return original order.
    auto Result = Entry.Result;
    Result.swap(Swapped);
    return Result;
  }

  int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
  unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
  AliasResult Result =
      aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);

  auto It = AAQI.AliasCache.find(Locs);
  assert(It != AAQI.AliasCache.end() && "Must be in cache");
  auto &Entry = It->second;

  // Check whether a NoAlias assumption has been used, but disproven.
  bool AssumptionDisproven =
      Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
  if (AssumptionDisproven)
    Result = AliasResult::MayAlias;

  // This is a definitive result now, when considered as a root query.
  AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
  Entry.Result = Result;
  // Cache contains sorted {V1,V2} pairs.
  Entry.Result.swap(Swapped);
  Entry.NumAssumptionUses = -1;

  // If the assumption has been disproven, remove any results that may have
  // been based on this assumption. Do this after the Entry updates above to
  // avoid iterator invalidation.
  if (AssumptionDisproven)
    while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
      AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());

  // The result may still be based on assumptions higher up in the chain.
  // Remember it, so it can be purged from the cache later.
  if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
      Result != AliasResult::MayAlias)
    AAQI.AssumptionBasedResults.push_back(Locs);
  return Result;
}

AliasResult BasicAAResult::aliasCheckRecursive(
    const Value *V1, LocationSize V1Size,
    const Value *V2, LocationSize V2Size,
    AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
    if (Result != AliasResult::MayAlias)
      return Result;
  } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
    AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
    Result.swap();
    if (Result != AliasResult::MayAlias)
      return Result;
  }

  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
    AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
    if (Result != AliasResult::MayAlias)
      return Result;
  } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
    AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
    Result.swap();
    if (Result != AliasResult::MayAlias)
      return Result;
  }

  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
    AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
    if (Result != AliasResult::MayAlias)
      return Result;
  } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
    AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
    Result.swap();
    if (Result != AliasResult::MayAlias)
      return Result;
  }

  // If both pointers are pointing into the same object and one of them
  // accesses the entire object, then the accesses must overlap in some way.
  if (O1 == O2) {
    bool NullIsValidLocation = NullPointerIsDefined(&F);
    if (V1Size.isPrecise() && V2Size.isPrecise() &&
        (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
         isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
      return AliasResult::PartialAlias;
  }

  return AliasResult::MayAlias;
}

/// Check whether two Values can be considered equivalent.
///
/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
/// they can not be part of a cycle in the value graph by looking at all
/// visited phi nodes an making sure that the phis cannot reach the value. We
/// have to do this because we are looking through phi nodes (That is we say
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
                                                  const Value *V2) {
  if (V != V2)
    return false;

  const Instruction *Inst = dyn_cast<Instruction>(V);
  if (!Inst)
    return true;

  if (VisitedPhiBBs.empty())
    return true;

  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
    return false;

  // Make sure that the visited phis cannot reach the Value. This ensures that
  // the Values cannot come from different iterations of a potential cycle the
  // phi nodes could be involved in.
  for (auto *P : VisitedPhiBBs)
    if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
      return false;

  return true;
}

/// Computes the symbolic difference between two de-composed GEPs.
void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
                                           const DecomposedGEP &SrcGEP) {
  DestGEP.Offset -= SrcGEP.Offset;
  for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
    // Find V in Dest.  This is N^2, but pointer indices almost never have more
    // than a few variable indexes.
    bool Found = false;
    for (auto I : enumerate(DestGEP.VarIndices)) {
      VariableGEPIndex &Dest = I.value();
      if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) ||
          !Dest.Val.hasSameCastsAs(Src.Val))
        continue;

      // If we found it, subtract off Scale V's from the entry in Dest.  If it
      // goes to zero, remove the entry.
      if (Dest.Scale != Src.Scale) {
        Dest.Scale -= Src.Scale;
        Dest.IsNSW = false;
      } else {
        DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
      }
      Found = true;
      break;
    }

    // If we didn't consume this entry, add it to the end of the Dest list.
    if (!Found) {
      VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW};
      DestGEP.VarIndices.push_back(Entry);
    }
  }
}

bool BasicAAResult::constantOffsetHeuristic(
    const DecomposedGEP &GEP, LocationSize MaybeV1Size,
    LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) {
  if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
      !MaybeV2Size.hasValue())
    return false;

  const uint64_t V1Size = MaybeV1Size.getValue();
  const uint64_t V2Size = MaybeV2Size.getValue();

  const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];

  if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
      Var0.Scale != -Var1.Scale ||
      Var0.Val.V->getType() != Var1.Val.V->getType())
    return false;

  // We'll strip off the Extensions of Var0 and Var1 and do another round
  // of GetLinearExpression decomposition. In the example above, if Var0
  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.

  LinearExpression E0 =
      GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
  LinearExpression E1 =
      GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
  if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
      !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
    return false;

  // We have a hit - Var0 and Var1 only differ by a constant offset!

  // If we've been sext'ed then zext'd the maximum difference between Var0 and
  // Var1 is possible to calculate, but we're just interested in the absolute
  // minimum difference between the two. The minimum distance may occur due to
  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
  // the minimum distance between %i and %i + 5 is 3.
  APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
  MinDiff = APIntOps::umin(MinDiff, Wrapped);
  APInt MinDiffBytes =
    MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();

  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
  // V2Size can fit in the MinDiffBytes gap.
  return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
         MinDiffBytes.uge(V2Size + GEP.Offset.abs());
}

//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//

AnalysisKey BasicAA::Key;

BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
  return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
}

BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
  initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

char BasicAAWrapperPass::ID = 0;

void BasicAAWrapperPass::anchor() {}

INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
                      "Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
                    "Basic Alias Analysis (stateless AA impl)", true, true)

FunctionPass *llvm::createBasicAAWrapperPass() {
  return new BasicAAWrapperPass();
}

bool BasicAAWrapperPass::runOnFunction(Function &F) {
  auto &ACT = getAnalysis<AssumptionCacheTracker>();
  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
  auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
  auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();

  Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
                                 TLIWP.getTLI(F), ACT.getAssumptionCache(F),
                                 &DTWP.getDomTree(),
                                 PVWP ? &PVWP->getResult() : nullptr));

  return false;
}

void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AssumptionCacheTracker>();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
  AU.addUsedIfAvailable<PhiValuesWrapperPass>();
}

BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
  return BasicAAResult(
      F.getParent()->getDataLayout(), F,
      P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
      P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
}