1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file provides the interface for the sampled PGO profile loader base
/// implementation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
#define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/SampleProfileInference.h"
#include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
namespace llvm {
using namespace sampleprof;
using namespace sampleprofutil;
using ProfileCount = Function::ProfileCount;
#define DEBUG_TYPE "sample-profile-impl"
namespace afdo_detail {
template <typename BlockT> struct IRTraits;
template <> struct IRTraits<BasicBlock> {
using InstructionT = Instruction;
using BasicBlockT = BasicBlock;
using FunctionT = Function;
using BlockFrequencyInfoT = BlockFrequencyInfo;
using LoopT = Loop;
using LoopInfoPtrT = std::unique_ptr<LoopInfo>;
using DominatorTreePtrT = std::unique_ptr<DominatorTree>;
using PostDominatorTreeT = PostDominatorTree;
using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>;
using OptRemarkEmitterT = OptimizationRemarkEmitter;
using OptRemarkAnalysisT = OptimizationRemarkAnalysis;
using PredRangeT = pred_range;
using SuccRangeT = succ_range;
static Function &getFunction(Function &F) { return F; }
static const BasicBlock *getEntryBB(const Function *F) {
return &F->getEntryBlock();
}
static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); }
static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); }
};
} // end namespace afdo_detail
extern cl::opt<bool> SampleProfileUseProfi;
template <typename BT> class SampleProfileLoaderBaseImpl {
public:
SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName)
: Filename(Name), RemappingFilename(RemapName) {}
void dump() { Reader->dump(); }
using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT;
using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT;
using BlockFrequencyInfoT =
typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT;
using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT;
using LoopT = typename afdo_detail::IRTraits<BT>::LoopT;
using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT;
using DominatorTreePtrT =
typename afdo_detail::IRTraits<BT>::DominatorTreePtrT;
using PostDominatorTreePtrT =
typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT;
using PostDominatorTreeT =
typename afdo_detail::IRTraits<BT>::PostDominatorTreeT;
using OptRemarkEmitterT =
typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT;
using OptRemarkAnalysisT =
typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT;
using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT;
using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT;
using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>;
using EquivalenceClassMap =
DenseMap<const BasicBlockT *, const BasicBlockT *>;
using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
using EdgeWeightMap = DenseMap<Edge, uint64_t>;
using BlockEdgeMap =
DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>;
protected:
~SampleProfileLoaderBaseImpl() = default;
friend class SampleCoverageTracker;
Function &getFunction(FunctionT &F) {
return afdo_detail::IRTraits<BT>::getFunction(F);
}
const BasicBlockT *getEntryBB(const FunctionT *F) {
return afdo_detail::IRTraits<BT>::getEntryBB(F);
}
PredRangeT getPredecessors(BasicBlockT *BB) {
return afdo_detail::IRTraits<BT>::getPredecessors(BB);
}
SuccRangeT getSuccessors(BasicBlockT *BB) {
return afdo_detail::IRTraits<BT>::getSuccessors(BB);
}
unsigned getFunctionLoc(FunctionT &Func);
virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst);
ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst);
ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB);
mutable DenseMap<const DILocation *, const FunctionSamples *>
DILocation2SampleMap;
virtual const FunctionSamples *
findFunctionSamples(const InstructionT &I) const;
void printEdgeWeight(raw_ostream &OS, Edge E);
void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const;
void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB);
bool computeBlockWeights(FunctionT &F);
void findEquivalenceClasses(FunctionT &F);
void findEquivalencesFor(BasicBlockT *BB1,
ArrayRef<BasicBlockT *> Descendants,
PostDominatorTreeT *DomTree);
void propagateWeights(FunctionT &F);
void applyProfi(FunctionT &F, BlockEdgeMap &Successors,
BlockWeightMap &SampleBlockWeights,
BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights);
uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
void buildEdges(FunctionT &F);
bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount);
void clearFunctionData(bool ResetDT = true);
void computeDominanceAndLoopInfo(FunctionT &F);
bool
computeAndPropagateWeights(FunctionT &F,
const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
void initWeightPropagation(FunctionT &F,
const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
void
finalizeWeightPropagation(FunctionT &F,
const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
void emitCoverageRemarks(FunctionT &F);
/// Map basic blocks to their computed weights.
///
/// The weight of a basic block is defined to be the maximum
/// of all the instruction weights in that block.
BlockWeightMap BlockWeights;
/// Map edges to their computed weights.
///
/// Edge weights are computed by propagating basic block weights in
/// SampleProfile::propagateWeights.
EdgeWeightMap EdgeWeights;
/// Set of visited blocks during propagation.
SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks;
/// Set of visited edges during propagation.
SmallSet<Edge, 32> VisitedEdges;
/// Equivalence classes for block weights.
///
/// Two blocks BB1 and BB2 are in the same equivalence class if they
/// dominate and post-dominate each other, and they are in the same loop
/// nest. When this happens, the two blocks are guaranteed to execute
/// the same number of times.
EquivalenceClassMap EquivalenceClass;
/// Dominance, post-dominance and loop information.
DominatorTreePtrT DT;
PostDominatorTreePtrT PDT;
LoopInfoPtrT LI;
/// Predecessors for each basic block in the CFG.
BlockEdgeMap Predecessors;
/// Successors for each basic block in the CFG.
BlockEdgeMap Successors;
/// Profile coverage tracker.
SampleCoverageTracker CoverageTracker;
/// Profile reader object.
std::unique_ptr<SampleProfileReader> Reader;
/// Samples collected for the body of this function.
FunctionSamples *Samples = nullptr;
/// Name of the profile file to load.
std::string Filename;
/// Name of the profile remapping file to load.
std::string RemappingFilename;
/// Profile Summary Info computed from sample profile.
ProfileSummaryInfo *PSI = nullptr;
/// Optimization Remark Emitter used to emit diagnostic remarks.
OptRemarkEmitterT *ORE = nullptr;
};
/// Clear all the per-function data used to load samples and propagate weights.
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) {
BlockWeights.clear();
EdgeWeights.clear();
VisitedBlocks.clear();
VisitedEdges.clear();
EquivalenceClass.clear();
if (ResetDT) {
DT = nullptr;
PDT = nullptr;
LI = nullptr;
}
Predecessors.clear();
Successors.clear();
CoverageTracker.clear();
}
#ifndef NDEBUG
/// Print the weight of edge \p E on stream \p OS.
///
/// \param OS Stream to emit the output to.
/// \param E Edge to print.
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) {
OS << "weight[" << E.first->getName() << "->" << E.second->getName()
<< "]: " << EdgeWeights[E] << "\n";
}
/// Print the equivalence class of block \p BB on stream \p OS.
///
/// \param OS Stream to emit the output to.
/// \param BB Block to print.
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence(
raw_ostream &OS, const BasicBlockT *BB) {
const BasicBlockT *Equiv = EquivalenceClass[BB];
OS << "equivalence[" << BB->getName()
<< "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
}
/// Print the weight of block \p BB on stream \p OS.
///
/// \param OS Stream to emit the output to.
/// \param BB Block to print.
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::printBlockWeight(
raw_ostream &OS, const BasicBlockT *BB) const {
const auto &I = BlockWeights.find(BB);
uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
OS << "weight[" << BB->getName() << "]: " << W << "\n";
}
#endif
/// Get the weight for an instruction.
///
/// The "weight" of an instruction \p Inst is the number of samples
/// collected on that instruction at runtime. To retrieve it, we
/// need to compute the line number of \p Inst relative to the start of its
/// function. We use HeaderLineno to compute the offset. We then
/// look up the samples collected for \p Inst using BodySamples.
///
/// \param Inst Instruction to query.
///
/// \returns the weight of \p Inst.
template <typename BT>
ErrorOr<uint64_t>
SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) {
return getInstWeightImpl(Inst);
}
template <typename BT>
ErrorOr<uint64_t>
SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) {
const FunctionSamples *FS = findFunctionSamples(Inst);
if (!FS)
return std::error_code();
const DebugLoc &DLoc = Inst.getDebugLoc();
if (!DLoc)
return std::error_code();
const DILocation *DIL = DLoc;
uint32_t LineOffset = FunctionSamples::getOffset(DIL);
uint32_t Discriminator;
if (EnableFSDiscriminator)
Discriminator = DIL->getDiscriminator();
else
Discriminator = DIL->getBaseDiscriminator();
ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
if (R) {
bool FirstMark =
CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
if (FirstMark) {
ORE->emit([&]() {
OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
Remark << "Applied " << ore::NV("NumSamples", *R);
Remark << " samples from profile (offset: ";
Remark << ore::NV("LineOffset", LineOffset);
if (Discriminator) {
Remark << ".";
Remark << ore::NV("Discriminator", Discriminator);
}
Remark << ")";
return Remark;
});
}
LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":"
<< Inst << " (line offset: " << LineOffset << "."
<< Discriminator << " - weight: " << R.get() << ")\n");
}
return R;
}
/// Compute the weight of a basic block.
///
/// The weight of basic block \p BB is the maximum weight of all the
/// instructions in BB.
///
/// \param BB The basic block to query.
///
/// \returns the weight for \p BB.
template <typename BT>
ErrorOr<uint64_t>
SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) {
uint64_t Max = 0;
bool HasWeight = false;
for (auto &I : *BB) {
const ErrorOr<uint64_t> &R = getInstWeight(I);
if (R) {
Max = std::max(Max, R.get());
HasWeight = true;
}
}
return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
}
/// Compute and store the weights of every basic block.
///
/// This populates the BlockWeights map by computing
/// the weights of every basic block in the CFG.
///
/// \param F The function to query.
template <typename BT>
bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) {
bool Changed = false;
LLVM_DEBUG(dbgs() << "Block weights\n");
for (const auto &BB : F) {
ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
if (Weight) {
BlockWeights[&BB] = Weight.get();
VisitedBlocks.insert(&BB);
Changed = true;
}
LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
}
return Changed;
}
/// Get the FunctionSamples for an instruction.
///
/// The FunctionSamples of an instruction \p Inst is the inlined instance
/// in which that instruction is coming from. We traverse the inline stack
/// of that instruction, and match it with the tree nodes in the profile.
///
/// \param Inst Instruction to query.
///
/// \returns the FunctionSamples pointer to the inlined instance.
template <typename BT>
const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples(
const InstructionT &Inst) const {
const DILocation *DIL = Inst.getDebugLoc();
if (!DIL)
return Samples;
auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
if (it.second) {
it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
}
return it.first->second;
}
/// Find equivalence classes for the given block.
///
/// This finds all the blocks that are guaranteed to execute the same
/// number of times as \p BB1. To do this, it traverses all the
/// descendants of \p BB1 in the dominator or post-dominator tree.
///
/// A block BB2 will be in the same equivalence class as \p BB1 if
/// the following holds:
///
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
/// is a descendant of \p BB1 in the dominator tree, then BB2 should
/// dominate BB1 in the post-dominator tree.
///
/// 2- Both BB2 and \p BB1 must be in the same loop.
///
/// For every block BB2 that meets those two requirements, we set BB2's
/// equivalence class to \p BB1.
///
/// \param BB1 Block to check.
/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
/// \param DomTree Opposite dominator tree. If \p Descendants is filled
/// with blocks from \p BB1's dominator tree, then
/// this is the post-dominator tree, and vice versa.
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor(
BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants,
PostDominatorTreeT *DomTree) {
const BasicBlockT *EC = EquivalenceClass[BB1];
uint64_t Weight = BlockWeights[EC];
for (const auto *BB2 : Descendants) {
bool IsDomParent = DomTree->dominates(BB2, BB1);
bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
EquivalenceClass[BB2] = EC;
// If BB2 is visited, then the entire EC should be marked as visited.
if (VisitedBlocks.count(BB2)) {
VisitedBlocks.insert(EC);
}
// If BB2 is heavier than BB1, make BB2 have the same weight
// as BB1.
//
// Note that we don't worry about the opposite situation here
// (when BB2 is lighter than BB1). We will deal with this
// during the propagation phase. Right now, we just want to
// make sure that BB1 has the largest weight of all the
// members of its equivalence set.
Weight = std::max(Weight, BlockWeights[BB2]);
}
}
const BasicBlockT *EntryBB = getEntryBB(EC->getParent());
if (EC == EntryBB) {
BlockWeights[EC] = Samples->getHeadSamples() + 1;
} else {
BlockWeights[EC] = Weight;
}
}
/// Find equivalence classes.
///
/// Since samples may be missing from blocks, we can fill in the gaps by setting
/// the weights of all the blocks in the same equivalence class to the same
/// weight. To compute the concept of equivalence, we use dominance and loop
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// \param F The function to query.
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) {
SmallVector<BasicBlockT *, 8> DominatedBBs;
LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
// Find equivalence sets based on dominance and post-dominance information.
for (auto &BB : F) {
BasicBlockT *BB1 = &BB;
// Compute BB1's equivalence class once.
if (EquivalenceClass.count(BB1)) {
LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
continue;
}
// By default, blocks are in their own equivalence class.
EquivalenceClass[BB1] = BB1;
// Traverse all the blocks dominated by BB1. We are looking for
// every basic block BB2 such that:
//
// 1- BB1 dominates BB2.
// 2- BB2 post-dominates BB1.
// 3- BB1 and BB2 are in the same loop nest.
//
// If all those conditions hold, it means that BB2 is executed
// as many times as BB1, so they are placed in the same equivalence
// class by making BB2's equivalence class be BB1.
DominatedBBs.clear();
DT->getDescendants(BB1, DominatedBBs);
findEquivalencesFor(BB1, DominatedBBs, &*PDT);
LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
}
// Assign weights to equivalence classes.
//
// All the basic blocks in the same equivalence class will execute
// the same number of times. Since we know that the head block in
// each equivalence class has the largest weight, assign that weight
// to all the blocks in that equivalence class.
LLVM_DEBUG(
dbgs() << "\nAssign the same weight to all blocks in the same class\n");
for (auto &BI : F) {
const BasicBlockT *BB = &BI;
const BasicBlockT *EquivBB = EquivalenceClass[BB];
if (BB != EquivBB)
BlockWeights[BB] = BlockWeights[EquivBB];
LLVM_DEBUG(printBlockWeight(dbgs(), BB));
}
}
/// Visit the given edge to decide if it has a valid weight.
///
/// If \p E has not been visited before, we copy to \p UnknownEdge
/// and increment the count of unknown edges.
///
/// \param E Edge to visit.
/// \param NumUnknownEdges Current number of unknown edges.
/// \param UnknownEdge Set if E has not been visited before.
///
/// \returns E's weight, if known. Otherwise, return 0.
template <typename BT>
uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E,
unsigned *NumUnknownEdges,
Edge *UnknownEdge) {
if (!VisitedEdges.count(E)) {
(*NumUnknownEdges)++;
*UnknownEdge = E;
return 0;
}
return EdgeWeights[E];
}
/// Propagate weights through incoming/outgoing edges.
///
/// If the weight of a basic block is known, and there is only one edge
/// with an unknown weight, we can calculate the weight of that edge.
///
/// Similarly, if all the edges have a known count, we can calculate the
/// count of the basic block, if needed.
///
/// \param F Function to process.
/// \param UpdateBlockCount Whether we should update basic block counts that
/// has already been annotated.
///
/// \returns True if new weights were assigned to edges or blocks.
template <typename BT>
bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges(
FunctionT &F, bool UpdateBlockCount) {
bool Changed = false;
LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
for (const auto &BI : F) {
const BasicBlockT *BB = &BI;
const BasicBlockT *EC = EquivalenceClass[BB];
// Visit all the predecessor and successor edges to determine
// which ones have a weight assigned already. Note that it doesn't
// matter that we only keep track of a single unknown edge. The
// only case we are interested in handling is when only a single
// edge is unknown (see setEdgeOrBlockWeight).
for (unsigned i = 0; i < 2; i++) {
uint64_t TotalWeight = 0;
unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
if (i == 0) {
// First, visit all predecessor edges.
NumTotalEdges = Predecessors[BB].size();
for (auto *Pred : Predecessors[BB]) {
Edge E = std::make_pair(Pred, BB);
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
if (E.first == E.second)
SelfReferentialEdge = E;
}
if (NumTotalEdges == 1) {
SingleEdge = std::make_pair(Predecessors[BB][0], BB);
}
} else {
// On the second round, visit all successor edges.
NumTotalEdges = Successors[BB].size();
for (auto *Succ : Successors[BB]) {
Edge E = std::make_pair(BB, Succ);
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
}
if (NumTotalEdges == 1) {
SingleEdge = std::make_pair(BB, Successors[BB][0]);
}
}
// After visiting all the edges, there are three cases that we
// can handle immediately:
//
// - All the edge weights are known (i.e., NumUnknownEdges == 0).
// In this case, we simply check that the sum of all the edges
// is the same as BB's weight. If not, we change BB's weight
// to match. Additionally, if BB had not been visited before,
// we mark it visited.
//
// - Only one edge is unknown and BB has already been visited.
// In this case, we can compute the weight of the edge by
// subtracting the total block weight from all the known
// edge weights. If the edges weight more than BB, then the
// edge of the last remaining edge is set to zero.
//
// - There exists a self-referential edge and the weight of BB is
// known. In this case, this edge can be based on BB's weight.
// We add up all the other known edges and set the weight on
// the self-referential edge as we did in the previous case.
//
// In any other case, we must continue iterating. Eventually,
// all edges will get a weight, or iteration will stop when
// it reaches SampleProfileMaxPropagateIterations.
if (NumUnknownEdges <= 1) {
uint64_t &BBWeight = BlockWeights[EC];
if (NumUnknownEdges == 0) {
if (!VisitedBlocks.count(EC)) {
// If we already know the weight of all edges, the weight of the
// basic block can be computed. It should be no larger than the sum
// of all edge weights.
if (TotalWeight > BBWeight) {
BBWeight = TotalWeight;
Changed = true;
LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
<< " known. Set weight for block: ";
printBlockWeight(dbgs(), BB););
}
} else if (NumTotalEdges == 1 &&
EdgeWeights[SingleEdge] < BlockWeights[EC]) {
// If there is only one edge for the visited basic block, use the
// block weight to adjust edge weight if edge weight is smaller.
EdgeWeights[SingleEdge] = BlockWeights[EC];
Changed = true;
}
} else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
// If there is a single unknown edge and the block has been
// visited, then we can compute E's weight.
if (BBWeight >= TotalWeight)
EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
else
EdgeWeights[UnknownEdge] = 0;
const BasicBlockT *OtherEC;
if (i == 0)
OtherEC = EquivalenceClass[UnknownEdge.first];
else
OtherEC = EquivalenceClass[UnknownEdge.second];
// Edge weights should never exceed the BB weights it connects.
if (VisitedBlocks.count(OtherEC) &&
EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
VisitedEdges.insert(UnknownEdge);
Changed = true;
LLVM_DEBUG(dbgs() << "Set weight for edge: ";
printEdgeWeight(dbgs(), UnknownEdge));
}
} else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
// If a block Weights 0, all its in/out edges should weight 0.
if (i == 0) {
for (auto *Pred : Predecessors[BB]) {
Edge E = std::make_pair(Pred, BB);
EdgeWeights[E] = 0;
VisitedEdges.insert(E);
}
} else {
for (auto *Succ : Successors[BB]) {
Edge E = std::make_pair(BB, Succ);
EdgeWeights[E] = 0;
VisitedEdges.insert(E);
}
}
} else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
uint64_t &BBWeight = BlockWeights[BB];
// We have a self-referential edge and the weight of BB is known.
if (BBWeight >= TotalWeight)
EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
else
EdgeWeights[SelfReferentialEdge] = 0;
VisitedEdges.insert(SelfReferentialEdge);
Changed = true;
LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
printEdgeWeight(dbgs(), SelfReferentialEdge));
}
if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
BlockWeights[EC] = TotalWeight;
VisitedBlocks.insert(EC);
Changed = true;
}
}
}
return Changed;
}
/// Build in/out edge lists for each basic block in the CFG.
///
/// We are interested in unique edges. If a block B1 has multiple
/// edges to another block B2, we only add a single B1->B2 edge.
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) {
for (auto &BI : F) {
BasicBlockT *B1 = &BI;
// Add predecessors for B1.
SmallPtrSet<BasicBlockT *, 16> Visited;
if (!Predecessors[B1].empty())
llvm_unreachable("Found a stale predecessors list in a basic block.");
for (auto *B2 : getPredecessors(B1))
if (Visited.insert(B2).second)
Predecessors[B1].push_back(B2);
// Add successors for B1.
Visited.clear();
if (!Successors[B1].empty())
llvm_unreachable("Found a stale successors list in a basic block.");
for (auto *B2 : getSuccessors(B1))
if (Visited.insert(B2).second)
Successors[B1].push_back(B2);
}
}
/// Propagate weights into edges
///
/// The following rules are applied to every block BB in the CFG:
///
/// - If BB has a single predecessor/successor, then the weight
/// of that edge is the weight of the block.
///
/// - If all incoming or outgoing edges are known except one, and the
/// weight of the block is already known, the weight of the unknown
/// edge will be the weight of the block minus the sum of all the known
/// edges. If the sum of all the known edges is larger than BB's weight,
/// we set the unknown edge weight to zero.
///
/// - If there is a self-referential edge, and the weight of the block is
/// known, the weight for that edge is set to the weight of the block
/// minus the weight of the other incoming edges to that block (if
/// known).
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) {
// Flow-based profile inference is only usable with BasicBlock instantiation
// of SampleProfileLoaderBaseImpl.
if (SampleProfileUseProfi) {
// Prepare block sample counts for inference.
BlockWeightMap SampleBlockWeights;
for (const auto &BI : F) {
ErrorOr<uint64_t> Weight = getBlockWeight(&BI);
if (Weight)
SampleBlockWeights[&BI] = Weight.get();
}
// Fill in BlockWeights and EdgeWeights using an inference algorithm.
applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights);
} else {
bool Changed = true;
unsigned I = 0;
// If BB weight is larger than its corresponding loop's header BB weight,
// use the BB weight to replace the loop header BB weight.
for (auto &BI : F) {
BasicBlockT *BB = &BI;
LoopT *L = LI->getLoopFor(BB);
if (!L) {
continue;
}
BasicBlockT *Header = L->getHeader();
if (Header && BlockWeights[BB] > BlockWeights[Header]) {
BlockWeights[Header] = BlockWeights[BB];
}
}
// Propagate until we converge or we go past the iteration limit.
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
Changed = propagateThroughEdges(F, false);
}
// The first propagation propagates BB counts from annotated BBs to unknown
// BBs. The 2nd propagation pass resets edges weights, and use all BB
// weights to propagate edge weights.
VisitedEdges.clear();
Changed = true;
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
Changed = propagateThroughEdges(F, false);
}
// The 3rd propagation pass allows adjust annotated BB weights that are
// obviously wrong.
Changed = true;
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
Changed = propagateThroughEdges(F, true);
}
}
}
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::applyProfi(
FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights,
BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) {
auto Infer = SampleProfileInference<BT>(F, Successors, SampleBlockWeights);
Infer.apply(BlockWeights, EdgeWeights);
}
/// Generate branch weight metadata for all branches in \p F.
///
/// Branch weights are computed out of instruction samples using a
/// propagation heuristic. Propagation proceeds in 3 phases:
///
/// 1- Assignment of block weights. All the basic blocks in the function
/// are initial assigned the same weight as their most frequently
/// executed instruction.
///
/// 2- Creation of equivalence classes. Since samples may be missing from
/// blocks, we can fill in the gaps by setting the weights of all the
/// blocks in the same equivalence class to the same weight. To compute
/// the concept of equivalence, we use dominance and loop information.
/// Two blocks B1 and B2 are in the same equivalence class if B1
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// 3- Propagation of block weights into edges. This uses a simple
/// propagation heuristic. The following rules are applied to every
/// block BB in the CFG:
///
/// - If BB has a single predecessor/successor, then the weight
/// of that edge is the weight of the block.
///
/// - If all the edges are known except one, and the weight of the
/// block is already known, the weight of the unknown edge will
/// be the weight of the block minus the sum of all the known
/// edges. If the sum of all the known edges is larger than BB's weight,
/// we set the unknown edge weight to zero.
///
/// - If there is a self-referential edge, and the weight of the block is
/// known, the weight for that edge is set to the weight of the block
/// minus the weight of the other incoming edges to that block (if
/// known).
///
/// Since this propagation is not guaranteed to finalize for every CFG, we
/// only allow it to proceed for a limited number of iterations (controlled
/// by -sample-profile-max-propagate-iterations).
///
/// FIXME: Try to replace this propagation heuristic with a scheme
/// that is guaranteed to finalize. A work-list approach similar to
/// the standard value propagation algorithm used by SSA-CCP might
/// work here.
///
/// \param F The function to query.
///
/// \returns true if \p F was modified. Returns false, otherwise.
template <typename BT>
bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights(
FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
bool Changed = (InlinedGUIDs.size() != 0);
// Compute basic block weights.
Changed |= computeBlockWeights(F);
if (Changed) {
// Initialize propagation.
initWeightPropagation(F, InlinedGUIDs);
// Propagate weights to all edges.
propagateWeights(F);
// Post-process propagated weights.
finalizeWeightPropagation(F, InlinedGUIDs);
}
return Changed;
}
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation(
FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
// Add an entry count to the function using the samples gathered at the
// function entry.
// Sets the GUIDs that are inlined in the profiled binary. This is used
// for ThinLink to make correct liveness analysis, and also make the IR
// match the profiled binary before annotation.
getFunction(F).setEntryCount(
ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
&InlinedGUIDs);
if (!SampleProfileUseProfi) {
// Compute dominance and loop info needed for propagation.
computeDominanceAndLoopInfo(F);
// Find equivalence classes.
findEquivalenceClasses(F);
}
// Before propagation starts, build, for each block, a list of
// unique predecessors and successors. This is necessary to handle
// identical edges in multiway branches. Since we visit all blocks and all
// edges of the CFG, it is cleaner to build these lists once at the start
// of the pass.
buildEdges(F);
}
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation(
FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
// If we utilize a flow-based count inference, then we trust the computed
// counts and set the entry count as computed by the algorithm. This is
// primarily done to sync the counts produced by profi and BFI inference,
// which uses the entry count for mass propagation.
// If profi produces a zero-value for the entry count, we fallback to
// Samples->getHeadSamples() + 1 to avoid functions with zero count.
if (SampleProfileUseProfi) {
const BasicBlockT *EntryBB = getEntryBB(&F);
if (BlockWeights[EntryBB] > 0) {
getFunction(F).setEntryCount(
ProfileCount(BlockWeights[EntryBB], Function::PCT_Real),
&InlinedGUIDs);
}
}
}
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) {
// If coverage checking was requested, compute it now.
const Function &Func = getFunction(F);
if (SampleProfileRecordCoverage) {
unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
if (Coverage < SampleProfileRecordCoverage) {
Func.getContext().diagnose(DiagnosticInfoSampleProfile(
Func.getSubprogram()->getFilename(), getFunctionLoc(F),
Twine(Used) + " of " + Twine(Total) + " available profile records (" +
Twine(Coverage) + "%) were applied",
DS_Warning));
}
}
if (SampleProfileSampleCoverage) {
uint64_t Used = CoverageTracker.getTotalUsedSamples();
uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
if (Coverage < SampleProfileSampleCoverage) {
Func.getContext().diagnose(DiagnosticInfoSampleProfile(
Func.getSubprogram()->getFilename(), getFunctionLoc(F),
Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
Twine(Coverage) + "%) were applied",
DS_Warning));
}
}
}
/// Get the line number for the function header.
///
/// This looks up function \p F in the current compilation unit and
/// retrieves the line number where the function is defined. This is
/// line 0 for all the samples read from the profile file. Every line
/// number is relative to this line.
///
/// \param F Function object to query.
///
/// \returns the line number where \p F is defined. If it returns 0,
/// it means that there is no debug information available for \p F.
template <typename BT>
unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) {
const Function &Func = getFunction(F);
if (DISubprogram *S = Func.getSubprogram())
return S->getLine();
if (NoWarnSampleUnused)
return 0;
// If the start of \p F is missing, emit a diagnostic to inform the user
// about the missed opportunity.
Func.getContext().diagnose(DiagnosticInfoSampleProfile(
"No debug information found in function " + Func.getName() +
": Function profile not used",
DS_Warning));
return 0;
}
template <typename BT>
void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo(
FunctionT &F) {
DT.reset(new DominatorTree);
DT->recalculate(F);
PDT.reset(new PostDominatorTree(F));
LI.reset(new LoopInfo);
LI->analyze(*DT);
}
#undef DEBUG_TYPE
} // namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|