aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/include/llvm/Transforms/Utils/SampleProfileInference.h
blob: 0d9e1ca126a910a27be7967aea96470fee4b755a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- Transforms/Utils/SampleProfileInference.h ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file provides the interface for the profile inference algorithm, profi.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILEINFERENCE_H
#define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILEINFERENCE_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"

#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"

namespace llvm {

class BasicBlock;
class Function;
class MachineBasicBlock;
class MachineFunction;

namespace afdo_detail {

template <class BlockT> struct TypeMap {};
template <> struct TypeMap<BasicBlock> {
  using BasicBlockT = BasicBlock;
  using FunctionT = Function;
};
template <> struct TypeMap<MachineBasicBlock> {
  using BasicBlockT = MachineBasicBlock;
  using FunctionT = MachineFunction;
};

} // end namespace afdo_detail

struct FlowJump;

/// A wrapper of a binary basic block.
struct FlowBlock {
  uint64_t Index;
  uint64_t Weight{0};
  bool UnknownWeight{false};
  uint64_t Flow{0};
  bool HasSelfEdge{false};
  std::vector<FlowJump *> SuccJumps;
  std::vector<FlowJump *> PredJumps;

  /// Check if it is the entry block in the function.
  bool isEntry() const { return PredJumps.empty(); }

  /// Check if it is an exit block in the function.
  bool isExit() const { return SuccJumps.empty(); }
};

/// A wrapper of a jump between two basic blocks.
struct FlowJump {
  uint64_t Source;
  uint64_t Target;
  uint64_t Flow{0};
  bool IsUnlikely{false};
};

/// A wrapper of binary function with basic blocks and jumps.
struct FlowFunction {
  std::vector<FlowBlock> Blocks;
  std::vector<FlowJump> Jumps;
  /// The index of the entry block.
  uint64_t Entry;
};

void applyFlowInference(FlowFunction &Func);

/// Sample profile inference pass.
template <typename BT> class SampleProfileInference {
public:
  using BasicBlockT = typename afdo_detail::TypeMap<BT>::BasicBlockT;
  using FunctionT = typename afdo_detail::TypeMap<BT>::FunctionT;
  using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
  using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>;
  using EdgeWeightMap = DenseMap<Edge, uint64_t>;
  using BlockEdgeMap =
      DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>;

  SampleProfileInference(FunctionT &F, BlockEdgeMap &Successors,
                         BlockWeightMap &SampleBlockWeights)
      : F(F), Successors(Successors), SampleBlockWeights(SampleBlockWeights) {}

  /// Apply the profile inference algorithm for a given function
  void apply(BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights);

private:
  /// Try to infer branch probabilities mimicking implementation of
  /// BranchProbabilityInfo. Unlikely taken branches are marked so that the
  /// inference algorithm can avoid sending flow along corresponding edges.
  void findUnlikelyJumps(const std::vector<const BasicBlockT *> &BasicBlocks,
                         BlockEdgeMap &Successors, FlowFunction &Func);

  /// Determine whether the block is an exit in the CFG.
  bool isExit(const BasicBlockT *BB);

  /// Function.
  const FunctionT &F;

  /// Successors for each basic block in the CFG.
  BlockEdgeMap &Successors;

  /// Map basic blocks to their sampled weights.
  BlockWeightMap &SampleBlockWeights;
};

template <typename BT>
void SampleProfileInference<BT>::apply(BlockWeightMap &BlockWeights,
                                       EdgeWeightMap &EdgeWeights) {
  // Find all forwards reachable blocks which the inference algorithm will be
  // applied on.
  df_iterator_default_set<const BasicBlockT *> Reachable;
  for (auto *BB : depth_first_ext(&F, Reachable))
    (void)BB /* Mark all reachable blocks */;

  // Find all backwards reachable blocks which the inference algorithm will be
  // applied on.
  df_iterator_default_set<const BasicBlockT *> InverseReachable;
  for (const auto &BB : F) {
    // An exit block is a block without any successors.
    if (isExit(&BB)) {
      for (auto *RBB : inverse_depth_first_ext(&BB, InverseReachable))
        (void)RBB;
    }
  }

  // Keep a stable order for reachable blocks
  DenseMap<const BasicBlockT *, uint64_t> BlockIndex;
  std::vector<const BasicBlockT *> BasicBlocks;
  BlockIndex.reserve(Reachable.size());
  BasicBlocks.reserve(Reachable.size());
  for (const auto &BB : F) {
    if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
      BlockIndex[&BB] = BasicBlocks.size();
      BasicBlocks.push_back(&BB);
    }
  }

  BlockWeights.clear();
  EdgeWeights.clear();
  bool HasSamples = false;
  for (const auto *BB : BasicBlocks) {
    auto It = SampleBlockWeights.find(BB);
    if (It != SampleBlockWeights.end() && It->second > 0) {
      HasSamples = true;
      BlockWeights[BB] = It->second;
    }
  }
  // Quit early for functions with a single block or ones w/o samples
  if (BasicBlocks.size() <= 1 || !HasSamples) {
    return;
  }

  // Create necessary objects
  FlowFunction Func;
  Func.Blocks.reserve(BasicBlocks.size());
  // Create FlowBlocks
  for (const auto *BB : BasicBlocks) {
    FlowBlock Block;
    if (SampleBlockWeights.find(BB) != SampleBlockWeights.end()) {
      Block.UnknownWeight = false;
      Block.Weight = SampleBlockWeights[BB];
    } else {
      Block.UnknownWeight = true;
      Block.Weight = 0;
    }
    Block.Index = Func.Blocks.size();
    Func.Blocks.push_back(Block);
  }
  // Create FlowEdges
  for (const auto *BB : BasicBlocks) {
    for (auto *Succ : Successors[BB]) {
      if (!BlockIndex.count(Succ))
        continue;
      FlowJump Jump;
      Jump.Source = BlockIndex[BB];
      Jump.Target = BlockIndex[Succ];
      Func.Jumps.push_back(Jump);
      if (BB == Succ) {
        Func.Blocks[BlockIndex[BB]].HasSelfEdge = true;
      }
    }
  }
  for (auto &Jump : Func.Jumps) {
    Func.Blocks[Jump.Source].SuccJumps.push_back(&Jump);
    Func.Blocks[Jump.Target].PredJumps.push_back(&Jump);
  }

  // Try to infer probabilities of jumps based on the content of basic block
  findUnlikelyJumps(BasicBlocks, Successors, Func);

  // Find the entry block
  for (size_t I = 0; I < Func.Blocks.size(); I++) {
    if (Func.Blocks[I].isEntry()) {
      Func.Entry = I;
      break;
    }
  }

  // Create and apply the inference network model.
  applyFlowInference(Func);

  // Extract the resulting weights from the control flow
  // All weights are increased by one to avoid propagation errors introduced by
  // zero weights.
  for (const auto *BB : BasicBlocks) {
    BlockWeights[BB] = Func.Blocks[BlockIndex[BB]].Flow;
  }
  for (auto &Jump : Func.Jumps) {
    Edge E = std::make_pair(BasicBlocks[Jump.Source], BasicBlocks[Jump.Target]);
    EdgeWeights[E] = Jump.Flow;
  }

#ifndef NDEBUG
  // Unreachable blocks and edges should not have a weight.
  for (auto &I : BlockWeights) {
    assert(Reachable.contains(I.first));
    assert(InverseReachable.contains(I.first));
  }
  for (auto &I : EdgeWeights) {
    assert(Reachable.contains(I.first.first) &&
           Reachable.contains(I.first.second));
    assert(InverseReachable.contains(I.first.first) &&
           InverseReachable.contains(I.first.second));
  }
#endif
}

template <typename BT>
inline void SampleProfileInference<BT>::findUnlikelyJumps(
    const std::vector<const BasicBlockT *> &BasicBlocks,
    BlockEdgeMap &Successors, FlowFunction &Func) {}

template <>
inline void SampleProfileInference<BasicBlock>::findUnlikelyJumps(
    const std::vector<const BasicBlockT *> &BasicBlocks,
    BlockEdgeMap &Successors, FlowFunction &Func) {
  for (auto &Jump : Func.Jumps) {
    const auto *BB = BasicBlocks[Jump.Source];
    const auto *Succ = BasicBlocks[Jump.Target];
    const Instruction *TI = BB->getTerminator();
    // Check if a block ends with InvokeInst and mark non-taken branch unlikely.
    // In that case block Succ should be a landing pad
    if (Successors[BB].size() == 2 && Successors[BB].back() == Succ) {
      if (isa<InvokeInst>(TI)) {
        Jump.IsUnlikely = true;
      }
    }
    const Instruction *SuccTI = Succ->getTerminator();
    // Check if the target block contains UnreachableInst and mark it unlikely
    if (SuccTI->getNumSuccessors() == 0) {
      if (isa<UnreachableInst>(SuccTI)) {
        Jump.IsUnlikely = true;
      }
    }
  }
}

template <typename BT>
inline bool SampleProfileInference<BT>::isExit(const BasicBlockT *BB) {
  return BB->succ_empty();
}

template <>
inline bool SampleProfileInference<BasicBlock>::isExit(const BasicBlock *BB) {
  return succ_empty(BB);
}

} // end namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILEINFERENCE_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif