1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- InstructionCost.h ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines an InstructionCost class that is used when calculating
/// the cost of an instruction, or a group of instructions. In addition to a
/// numeric value representing the cost the class also contains a state that
/// can be used to encode particular properties, such as a cost being invalid.
/// Operations on InstructionCost implement saturation arithmetic, so that
/// accumulating costs on large cost-values don't overflow.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_INSTRUCTIONCOST_H
#define LLVM_SUPPORT_INSTRUCTIONCOST_H
#include "llvm/ADT/Optional.h"
#include "llvm/Support/MathExtras.h"
#include <limits>
namespace llvm {
class raw_ostream;
class InstructionCost {
public:
using CostType = int64_t;
/// CostState describes the state of a cost.
enum CostState {
Valid, /// < The cost value represents a valid cost, even when the
/// cost-value is large.
Invalid /// < Invalid indicates there is no way to represent the cost as a
/// numeric value. This state exists to represent a possible issue,
/// e.g. if the cost-model knows the operation cannot be expanded
/// into a valid code-sequence by the code-generator. While some
/// passes may assert that the calculated cost must be valid, it is
/// up to individual passes how to interpret an Invalid cost. For
/// example, a transformation pass could choose not to perform a
/// transformation if the resulting cost would end up Invalid.
/// Because some passes may assert a cost is Valid, it is not
/// recommended to use Invalid costs to model 'Unknown'.
/// Note that Invalid is semantically different from a (very) high,
/// but valid cost, which intentionally indicates no issue, but
/// rather a strong preference not to select a certain operation.
};
private:
CostType Value = 0;
CostState State = Valid;
void propagateState(const InstructionCost &RHS) {
if (RHS.State == Invalid)
State = Invalid;
}
static CostType getMaxValue() { return std::numeric_limits<CostType>::max(); }
static CostType getMinValue() { return std::numeric_limits<CostType>::min(); }
public:
// A default constructed InstructionCost is a valid zero cost
InstructionCost() = default;
InstructionCost(CostState) = delete;
InstructionCost(CostType Val) : Value(Val), State(Valid) {}
static InstructionCost getMax() { return getMaxValue(); }
static InstructionCost getMin() { return getMinValue(); }
static InstructionCost getInvalid(CostType Val = 0) {
InstructionCost Tmp(Val);
Tmp.setInvalid();
return Tmp;
}
bool isValid() const { return State == Valid; }
void setValid() { State = Valid; }
void setInvalid() { State = Invalid; }
CostState getState() const { return State; }
/// This function is intended to be used as sparingly as possible, since the
/// class provides the full range of operator support required for arithmetic
/// and comparisons.
Optional<CostType> getValue() const {
if (isValid())
return Value;
return None;
}
/// For all of the arithmetic operators provided here any invalid state is
/// perpetuated and cannot be removed. Once a cost becomes invalid it stays
/// invalid, and it also inherits any invalid state from the RHS.
/// Arithmetic work on the actual values is implemented with saturation,
/// to avoid overflow when using more extreme cost values.
InstructionCost &operator+=(const InstructionCost &RHS) {
propagateState(RHS);
// Saturating addition.
InstructionCost::CostType Result;
if (AddOverflow(Value, RHS.Value, Result))
Result = RHS.Value > 0 ? getMaxValue() : getMinValue();
Value = Result;
return *this;
}
InstructionCost &operator+=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this += RHS2;
return *this;
}
InstructionCost &operator-=(const InstructionCost &RHS) {
propagateState(RHS);
// Saturating subtract.
InstructionCost::CostType Result;
if (SubOverflow(Value, RHS.Value, Result))
Result = RHS.Value > 0 ? getMinValue() : getMaxValue();
Value = Result;
return *this;
}
InstructionCost &operator-=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this -= RHS2;
return *this;
}
InstructionCost &operator*=(const InstructionCost &RHS) {
propagateState(RHS);
// Saturating multiply.
InstructionCost::CostType Result;
if (MulOverflow(Value, RHS.Value, Result)) {
if ((Value > 0 && RHS.Value > 0) || (Value < 0 && RHS.Value < 0))
Result = getMaxValue();
else
Result = getMinValue();
}
Value = Result;
return *this;
}
InstructionCost &operator*=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this *= RHS2;
return *this;
}
InstructionCost &operator/=(const InstructionCost &RHS) {
propagateState(RHS);
Value /= RHS.Value;
return *this;
}
InstructionCost &operator/=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this /= RHS2;
return *this;
}
InstructionCost &operator++() {
*this += 1;
return *this;
}
InstructionCost operator++(int) {
InstructionCost Copy = *this;
++*this;
return Copy;
}
InstructionCost &operator--() {
*this -= 1;
return *this;
}
InstructionCost operator--(int) {
InstructionCost Copy = *this;
--*this;
return Copy;
}
/// For the comparison operators we have chosen to use lexicographical
/// ordering where valid costs are always considered to be less than invalid
/// costs. This avoids having to add asserts to the comparison operators that
/// the states are valid and users can test for validity of the cost
/// explicitly.
bool operator<(const InstructionCost &RHS) const {
if (State != RHS.State)
return State < RHS.State;
return Value < RHS.Value;
}
// Implement in terms of operator< to ensure that the two comparisons stay in
// sync
bool operator==(const InstructionCost &RHS) const {
return !(*this < RHS) && !(RHS < *this);
}
bool operator!=(const InstructionCost &RHS) const { return !(*this == RHS); }
bool operator==(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this == RHS2;
}
bool operator!=(const CostType RHS) const { return !(*this == RHS); }
bool operator>(const InstructionCost &RHS) const { return RHS < *this; }
bool operator<=(const InstructionCost &RHS) const { return !(RHS < *this); }
bool operator>=(const InstructionCost &RHS) const { return !(*this < RHS); }
bool operator<(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this < RHS2;
}
bool operator>(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this > RHS2;
}
bool operator<=(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this <= RHS2;
}
bool operator>=(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this >= RHS2;
}
void print(raw_ostream &OS) const;
template <class Function>
auto map(const Function &F) const -> InstructionCost {
if (isValid())
return F(*getValue());
return getInvalid();
}
};
inline InstructionCost operator+(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 += RHS;
return LHS2;
}
inline InstructionCost operator-(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 -= RHS;
return LHS2;
}
inline InstructionCost operator*(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 *= RHS;
return LHS2;
}
inline InstructionCost operator/(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 /= RHS;
return LHS2;
}
inline raw_ostream &operator<<(raw_ostream &OS, const InstructionCost &V) {
V.print(OS);
return OS;
}
} // namespace llvm
#endif
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|