1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
/// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
/// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
/// allocator.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ALLOCATOR_H
#define LLVM_SUPPORT_ALLOCATOR_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/AllocatorBase.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>
namespace llvm {
namespace detail {
// We call out to an external function to actually print the message as the
// printing code uses Allocator.h in its implementation.
void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
size_t TotalMemory);
} // end namespace detail
/// Allocate memory in an ever growing pool, as if by bump-pointer.
///
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
/// memory rather than relying on a boundless contiguous heap. However, it has
/// bump-pointer semantics in that it is a monotonically growing pool of memory
/// where every allocation is found by merely allocating the next N bytes in
/// the slab, or the next N bytes in the next slab.
///
/// Note that this also has a threshold for forcing allocations above a certain
/// size into their own slab.
///
/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
/// object, which wraps malloc, to allocate memory, but it can be changed to
/// use a custom allocator.
///
/// The GrowthDelay specifies after how many allocated slabs the allocator
/// increases the size of the slabs.
template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
class BumpPtrAllocatorImpl
: public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
SizeThreshold, GrowthDelay>>,
private AllocatorT {
public:
static_assert(SizeThreshold <= SlabSize,
"The SizeThreshold must be at most the SlabSize to ensure "
"that objects larger than a slab go into their own memory "
"allocation.");
static_assert(GrowthDelay > 0,
"GrowthDelay must be at least 1 which already increases the"
"slab size after each allocated slab.");
BumpPtrAllocatorImpl() = default;
template <typename T>
BumpPtrAllocatorImpl(T &&Allocator)
: AllocatorT(std::forward<T &&>(Allocator)) {}
// Manually implement a move constructor as we must clear the old allocator's
// slabs as a matter of correctness.
BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
: AllocatorT(static_cast<AllocatorT &&>(Old)), CurPtr(Old.CurPtr),
End(Old.End), Slabs(std::move(Old.Slabs)),
CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
Old.CurPtr = Old.End = nullptr;
Old.BytesAllocated = 0;
Old.Slabs.clear();
Old.CustomSizedSlabs.clear();
}
~BumpPtrAllocatorImpl() {
DeallocateSlabs(Slabs.begin(), Slabs.end());
DeallocateCustomSizedSlabs();
}
BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
DeallocateSlabs(Slabs.begin(), Slabs.end());
DeallocateCustomSizedSlabs();
CurPtr = RHS.CurPtr;
End = RHS.End;
BytesAllocated = RHS.BytesAllocated;
RedZoneSize = RHS.RedZoneSize;
Slabs = std::move(RHS.Slabs);
CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
AllocatorT::operator=(static_cast<AllocatorT &&>(RHS));
RHS.CurPtr = RHS.End = nullptr;
RHS.BytesAllocated = 0;
RHS.Slabs.clear();
RHS.CustomSizedSlabs.clear();
return *this;
}
/// Deallocate all but the current slab and reset the current pointer
/// to the beginning of it, freeing all memory allocated so far.
void Reset() {
// Deallocate all but the first slab, and deallocate all custom-sized slabs.
DeallocateCustomSizedSlabs();
CustomSizedSlabs.clear();
if (Slabs.empty())
return;
// Reset the state.
BytesAllocated = 0;
CurPtr = (char *)Slabs.front();
End = CurPtr + SlabSize;
__asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
Slabs.erase(std::next(Slabs.begin()), Slabs.end());
}
/// Allocate space at the specified alignment.
// This method is *not* marked noalias, because
// SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and
// that loop is not based on the Allocate() return value.
LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) {
// Keep track of how many bytes we've allocated.
BytesAllocated += Size;
size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
size_t SizeToAllocate = Size;
#if LLVM_ADDRESS_SANITIZER_BUILD
// Add trailing bytes as a "red zone" under ASan.
SizeToAllocate += RedZoneSize;
#endif
// Check if we have enough space.
if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) {
char *AlignedPtr = CurPtr + Adjustment;
CurPtr = AlignedPtr + SizeToAllocate;
// Update the allocation point of this memory block in MemorySanitizer.
// Without this, MemorySanitizer messages for values originated from here
// will point to the allocation of the entire slab.
__msan_allocated_memory(AlignedPtr, Size);
// Similarly, tell ASan about this space.
__asan_unpoison_memory_region(AlignedPtr, Size);
return AlignedPtr;
}
// If Size is really big, allocate a separate slab for it.
size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
if (PaddedSize > SizeThreshold) {
void *NewSlab =
AllocatorT::Allocate(PaddedSize, alignof(std::max_align_t));
// We own the new slab and don't want anyone reading anyting other than
// pieces returned from this method. So poison the whole slab.
__asan_poison_memory_region(NewSlab, PaddedSize);
CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
char *AlignedPtr = (char*)AlignedAddr;
__msan_allocated_memory(AlignedPtr, Size);
__asan_unpoison_memory_region(AlignedPtr, Size);
return AlignedPtr;
}
// Otherwise, start a new slab and try again.
StartNewSlab();
uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
"Unable to allocate memory!");
char *AlignedPtr = (char*)AlignedAddr;
CurPtr = AlignedPtr + SizeToAllocate;
__msan_allocated_memory(AlignedPtr, Size);
__asan_unpoison_memory_region(AlignedPtr, Size);
return AlignedPtr;
}
inline LLVM_ATTRIBUTE_RETURNS_NONNULL void *
Allocate(size_t Size, size_t Alignment) {
assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
return Allocate(Size, Align(Alignment));
}
// Pull in base class overloads.
using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
// Bump pointer allocators are expected to never free their storage; and
// clients expect pointers to remain valid for non-dereferencing uses even
// after deallocation.
void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
__asan_poison_memory_region(Ptr, Size);
}
// Pull in base class overloads.
using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
/// \return An index uniquely and reproducibly identifying
/// an input pointer \p Ptr in the given allocator.
/// The returned value is negative iff the object is inside a custom-size
/// slab.
/// Returns an empty optional if the pointer is not found in the allocator.
llvm::Optional<int64_t> identifyObject(const void *Ptr) {
const char *P = static_cast<const char *>(Ptr);
int64_t InSlabIdx = 0;
for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
const char *S = static_cast<const char *>(Slabs[Idx]);
if (P >= S && P < S + computeSlabSize(Idx))
return InSlabIdx + static_cast<int64_t>(P - S);
InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
}
// Use negative index to denote custom sized slabs.
int64_t InCustomSizedSlabIdx = -1;
for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
size_t Size = CustomSizedSlabs[Idx].second;
if (P >= S && P < S + Size)
return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
}
return None;
}
/// A wrapper around identifyObject that additionally asserts that
/// the object is indeed within the allocator.
/// \return An index uniquely and reproducibly identifying
/// an input pointer \p Ptr in the given allocator.
int64_t identifyKnownObject(const void *Ptr) {
Optional<int64_t> Out = identifyObject(Ptr);
assert(Out && "Wrong allocator used");
return *Out;
}
/// A wrapper around identifyKnownObject. Accepts type information
/// about the object and produces a smaller identifier by relying on
/// the alignment information. Note that sub-classes may have different
/// alignment, so the most base class should be passed as template parameter
/// in order to obtain correct results. For that reason automatic template
/// parameter deduction is disabled.
/// \return An index uniquely and reproducibly identifying
/// an input pointer \p Ptr in the given allocator. This identifier is
/// different from the ones produced by identifyObject and
/// identifyAlignedObject.
template <typename T>
int64_t identifyKnownAlignedObject(const void *Ptr) {
int64_t Out = identifyKnownObject(Ptr);
assert(Out % alignof(T) == 0 && "Wrong alignment information");
return Out / alignof(T);
}
size_t getTotalMemory() const {
size_t TotalMemory = 0;
for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
for (const auto &PtrAndSize : CustomSizedSlabs)
TotalMemory += PtrAndSize.second;
return TotalMemory;
}
size_t getBytesAllocated() const { return BytesAllocated; }
void setRedZoneSize(size_t NewSize) {
RedZoneSize = NewSize;
}
void PrintStats() const {
detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
getTotalMemory());
}
private:
/// The current pointer into the current slab.
///
/// This points to the next free byte in the slab.
char *CurPtr = nullptr;
/// The end of the current slab.
char *End = nullptr;
/// The slabs allocated so far.
SmallVector<void *, 4> Slabs;
/// Custom-sized slabs allocated for too-large allocation requests.
SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
/// How many bytes we've allocated.
///
/// Used so that we can compute how much space was wasted.
size_t BytesAllocated = 0;
/// The number of bytes to put between allocations when running under
/// a sanitizer.
size_t RedZoneSize = 1;
static size_t computeSlabSize(unsigned SlabIdx) {
// Scale the actual allocated slab size based on the number of slabs
// allocated. Every GrowthDelay slabs allocated, we double
// the allocated size to reduce allocation frequency, but saturate at
// multiplying the slab size by 2^30.
return SlabSize *
((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
}
/// Allocate a new slab and move the bump pointers over into the new
/// slab, modifying CurPtr and End.
void StartNewSlab() {
size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
void *NewSlab =
AllocatorT::Allocate(AllocatedSlabSize, alignof(std::max_align_t));
// We own the new slab and don't want anyone reading anything other than
// pieces returned from this method. So poison the whole slab.
__asan_poison_memory_region(NewSlab, AllocatedSlabSize);
Slabs.push_back(NewSlab);
CurPtr = (char *)(NewSlab);
End = ((char *)NewSlab) + AllocatedSlabSize;
}
/// Deallocate a sequence of slabs.
void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
SmallVectorImpl<void *>::iterator E) {
for (; I != E; ++I) {
size_t AllocatedSlabSize =
computeSlabSize(std::distance(Slabs.begin(), I));
AllocatorT::Deallocate(*I, AllocatedSlabSize, alignof(std::max_align_t));
}
}
/// Deallocate all memory for custom sized slabs.
void DeallocateCustomSizedSlabs() {
for (auto &PtrAndSize : CustomSizedSlabs) {
void *Ptr = PtrAndSize.first;
size_t Size = PtrAndSize.second;
AllocatorT::Deallocate(Ptr, Size, alignof(std::max_align_t));
}
}
template <typename T> friend class SpecificBumpPtrAllocator;
};
/// The standard BumpPtrAllocator which just uses the default template
/// parameters.
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
/// A BumpPtrAllocator that allows only elements of a specific type to be
/// allocated.
///
/// This allows calling the destructor in DestroyAll() and when the allocator is
/// destroyed.
template <typename T> class SpecificBumpPtrAllocator {
BumpPtrAllocator Allocator;
public:
SpecificBumpPtrAllocator() {
// Because SpecificBumpPtrAllocator walks the memory to call destructors,
// it can't have red zones between allocations.
Allocator.setRedZoneSize(0);
}
SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
: Allocator(std::move(Old.Allocator)) {}
~SpecificBumpPtrAllocator() { DestroyAll(); }
SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
Allocator = std::move(RHS.Allocator);
return *this;
}
/// Call the destructor of each allocated object and deallocate all but the
/// current slab and reset the current pointer to the beginning of it, freeing
/// all memory allocated so far.
void DestroyAll() {
auto DestroyElements = [](char *Begin, char *End) {
assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
reinterpret_cast<T *>(Ptr)->~T();
};
for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
++I) {
size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
std::distance(Allocator.Slabs.begin(), I));
char *Begin = (char *)alignAddr(*I, Align::Of<T>());
char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
: (char *)*I + AllocatedSlabSize;
DestroyElements(Begin, End);
}
for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
void *Ptr = PtrAndSize.first;
size_t Size = PtrAndSize.second;
DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
(char *)Ptr + Size);
}
Allocator.Reset();
}
/// Allocate space for an array of objects without constructing them.
T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
};
} // end namespace llvm
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
size_t GrowthDelay>
void *
operator new(size_t Size,
llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
GrowthDelay> &Allocator) {
return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
alignof(std::max_align_t)));
}
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
size_t GrowthDelay>
void operator delete(void *,
llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
SizeThreshold, GrowthDelay> &) {
}
#endif // LLVM_SUPPORT_ALLOCATOR_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|