1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===--------------------- Instruction.h ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines abstractions used by the Pipeline to model register reads,
/// register writes and instructions.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_MCA_INSTRUCTION_H
#define LLVM_MCA_INSTRUCTION_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCRegister.h" // definition of MCPhysReg.
#include "llvm/Support/MathExtras.h"
#ifndef NDEBUG
#include "llvm/Support/raw_ostream.h"
#endif
#include <memory>
namespace llvm {
namespace mca {
constexpr int UNKNOWN_CYCLES = -512;
/// A representation of an mca::Instruction operand
/// for use in mca::CustomBehaviour.
class MCAOperand {
// This class is mostly copied from MCOperand within
// MCInst.h except that we don't keep track of
// expressions or sub-instructions.
enum MCAOperandType : unsigned char {
kInvalid, ///< Uninitialized, Relocatable immediate, or Sub-instruction.
kRegister, ///< Register operand.
kImmediate, ///< Immediate operand.
kSFPImmediate, ///< Single-floating-point immediate operand.
kDFPImmediate, ///< Double-Floating-point immediate operand.
};
MCAOperandType Kind;
union {
unsigned RegVal;
int64_t ImmVal;
uint32_t SFPImmVal;
uint64_t FPImmVal;
};
// We only store specific operands for specific instructions
// so an instruction's operand 3 may be stored within the list
// of MCAOperand as element 0. This Index attribute keeps track
// of the original index (3 for this example).
unsigned Index;
public:
MCAOperand() : Kind(kInvalid), FPImmVal(), Index() {}
bool isValid() const { return Kind != kInvalid; }
bool isReg() const { return Kind == kRegister; }
bool isImm() const { return Kind == kImmediate; }
bool isSFPImm() const { return Kind == kSFPImmediate; }
bool isDFPImm() const { return Kind == kDFPImmediate; }
/// Returns the register number.
unsigned getReg() const {
assert(isReg() && "This is not a register operand!");
return RegVal;
}
int64_t getImm() const {
assert(isImm() && "This is not an immediate");
return ImmVal;
}
uint32_t getSFPImm() const {
assert(isSFPImm() && "This is not an SFP immediate");
return SFPImmVal;
}
uint64_t getDFPImm() const {
assert(isDFPImm() && "This is not an FP immediate");
return FPImmVal;
}
void setIndex(const unsigned Idx) { Index = Idx; }
unsigned getIndex() const { return Index; }
static MCAOperand createReg(unsigned Reg) {
MCAOperand Op;
Op.Kind = kRegister;
Op.RegVal = Reg;
return Op;
}
static MCAOperand createImm(int64_t Val) {
MCAOperand Op;
Op.Kind = kImmediate;
Op.ImmVal = Val;
return Op;
}
static MCAOperand createSFPImm(uint32_t Val) {
MCAOperand Op;
Op.Kind = kSFPImmediate;
Op.SFPImmVal = Val;
return Op;
}
static MCAOperand createDFPImm(uint64_t Val) {
MCAOperand Op;
Op.Kind = kDFPImmediate;
Op.FPImmVal = Val;
return Op;
}
static MCAOperand createInvalid() {
MCAOperand Op;
Op.Kind = kInvalid;
Op.FPImmVal = 0;
return Op;
}
};
/// A register write descriptor.
struct WriteDescriptor {
// Operand index. The index is negative for implicit writes only.
// For implicit writes, the actual operand index is computed performing
// a bitwise not of the OpIndex.
int OpIndex;
// Write latency. Number of cycles before write-back stage.
unsigned Latency;
// This field is set to a value different than zero only if this
// is an implicit definition.
MCPhysReg RegisterID;
// Instruction itineraries would set this field to the SchedClass ID.
// Otherwise, it defaults to the WriteResourceID from the MCWriteLatencyEntry
// element associated to this write.
// When computing read latencies, this value is matched against the
// "ReadAdvance" information. The hardware backend may implement
// dedicated forwarding paths to quickly propagate write results to dependent
// instructions waiting in the reservation station (effectively bypassing the
// write-back stage).
unsigned SClassOrWriteResourceID;
// True only if this is a write obtained from an optional definition.
// Optional definitions are allowed to reference regID zero (i.e. "no
// register").
bool IsOptionalDef;
bool isImplicitWrite() const { return OpIndex < 0; };
};
/// A register read descriptor.
struct ReadDescriptor {
// A MCOperand index. This is used by the Dispatch logic to identify register
// reads. Implicit reads have negative indices. The actual operand index of an
// implicit read is the bitwise not of field OpIndex.
int OpIndex;
// The actual "UseIdx". This is used to query the ReadAdvance table. Explicit
// uses always come first in the sequence of uses.
unsigned UseIndex;
// This field is only set if this is an implicit read.
MCPhysReg RegisterID;
// Scheduling Class Index. It is used to query the scheduling model for the
// MCSchedClassDesc object.
unsigned SchedClassID;
bool isImplicitRead() const { return OpIndex < 0; };
};
class ReadState;
/// A critical data dependency descriptor.
///
/// Field RegID is set to the invalid register for memory dependencies.
struct CriticalDependency {
unsigned IID;
MCPhysReg RegID;
unsigned Cycles;
};
/// Tracks uses of a register definition (e.g. register write).
///
/// Each implicit/explicit register write is associated with an instance of
/// this class. A WriteState object tracks the dependent users of a
/// register write. It also tracks how many cycles are left before the write
/// back stage.
class WriteState {
const WriteDescriptor *WD;
// On instruction issue, this field is set equal to the write latency.
// Before instruction issue, this field defaults to -512, a special
// value that represents an "unknown" number of cycles.
int CyclesLeft;
// Actual register defined by this write. This field is only used
// to speedup queries on the register file.
// For implicit writes, this field always matches the value of
// field RegisterID from WD.
MCPhysReg RegisterID;
// Physical register file that serves register RegisterID.
unsigned PRFID;
// True if this write implicitly clears the upper portion of RegisterID's
// super-registers.
bool ClearsSuperRegs;
// True if this write is from a dependency breaking zero-idiom instruction.
bool WritesZero;
// True if this write has been eliminated at register renaming stage.
// Example: a register move doesn't consume scheduler/pipleline resources if
// it is eliminated at register renaming stage. It still consumes
// decode bandwidth, and ROB entries.
bool IsEliminated;
// This field is set if this is a partial register write, and it has a false
// dependency on any previous write of the same register (or a portion of it).
// DependentWrite must be able to complete before this write completes, so
// that we don't break the WAW, and the two writes can be merged together.
const WriteState *DependentWrite;
// A partial write that is in a false dependency with this write.
WriteState *PartialWrite;
unsigned DependentWriteCyclesLeft;
// Critical register dependency for this write.
CriticalDependency CRD;
// A list of dependent reads. Users is a set of dependent
// reads. A dependent read is added to the set only if CyclesLeft
// is "unknown". As soon as CyclesLeft is 'known', each user in the set
// gets notified with the actual CyclesLeft.
// The 'second' element of a pair is a "ReadAdvance" number of cycles.
SmallVector<std::pair<ReadState *, int>, 4> Users;
public:
WriteState(const WriteDescriptor &Desc, MCPhysReg RegID,
bool clearsSuperRegs = false, bool writesZero = false)
: WD(&Desc), CyclesLeft(UNKNOWN_CYCLES), RegisterID(RegID), PRFID(0),
ClearsSuperRegs(clearsSuperRegs), WritesZero(writesZero),
IsEliminated(false), DependentWrite(nullptr), PartialWrite(nullptr),
DependentWriteCyclesLeft(0), CRD() {}
WriteState(const WriteState &Other) = default;
WriteState &operator=(const WriteState &Other) = default;
int getCyclesLeft() const { return CyclesLeft; }
unsigned getWriteResourceID() const { return WD->SClassOrWriteResourceID; }
MCPhysReg getRegisterID() const { return RegisterID; }
void setRegisterID(const MCPhysReg RegID) { RegisterID = RegID; }
unsigned getRegisterFileID() const { return PRFID; }
unsigned getLatency() const { return WD->Latency; }
unsigned getDependentWriteCyclesLeft() const {
return DependentWriteCyclesLeft;
}
const WriteState *getDependentWrite() const { return DependentWrite; }
const CriticalDependency &getCriticalRegDep() const { return CRD; }
// This method adds Use to the set of data dependent reads. IID is the
// instruction identifier associated with this write. ReadAdvance is the
// number of cycles to subtract from the latency of this data dependency.
// Use is in a RAW dependency with this write.
void addUser(unsigned IID, ReadState *Use, int ReadAdvance);
// Use is a younger register write that is in a false dependency with this
// write. IID is the instruction identifier associated with this write.
void addUser(unsigned IID, WriteState *Use);
unsigned getNumUsers() const {
unsigned NumUsers = Users.size();
if (PartialWrite)
++NumUsers;
return NumUsers;
}
bool clearsSuperRegisters() const { return ClearsSuperRegs; }
bool isWriteZero() const { return WritesZero; }
bool isEliminated() const { return IsEliminated; }
bool isReady() const {
if (DependentWrite)
return false;
unsigned CyclesLeft = getDependentWriteCyclesLeft();
return !CyclesLeft || CyclesLeft < getLatency();
}
bool isExecuted() const {
return CyclesLeft != UNKNOWN_CYCLES && CyclesLeft <= 0;
}
void setDependentWrite(const WriteState *Other) { DependentWrite = Other; }
void writeStartEvent(unsigned IID, MCPhysReg RegID, unsigned Cycles);
void setWriteZero() { WritesZero = true; }
void setEliminated() {
assert(Users.empty() && "Write is in an inconsistent state.");
CyclesLeft = 0;
IsEliminated = true;
}
void setPRF(unsigned PRF) { PRFID = PRF; }
// On every cycle, update CyclesLeft and notify dependent users.
void cycleEvent();
void onInstructionIssued(unsigned IID);
#ifndef NDEBUG
void dump() const;
#endif
};
/// Tracks register operand latency in cycles.
///
/// A read may be dependent on more than one write. This occurs when some
/// writes only partially update the register associated to this read.
class ReadState {
const ReadDescriptor *RD;
// Physical register identified associated to this read.
MCPhysReg RegisterID;
// Physical register file that serves register RegisterID.
unsigned PRFID;
// Number of writes that contribute to the definition of RegisterID.
// In the absence of partial register updates, the number of DependentWrites
// cannot be more than one.
unsigned DependentWrites;
// Number of cycles left before RegisterID can be read. This value depends on
// the latency of all the dependent writes. It defaults to UNKNOWN_CYCLES.
// It gets set to the value of field TotalCycles only when the 'CyclesLeft' of
// every dependent write is known.
int CyclesLeft;
// This field is updated on every writeStartEvent(). When the number of
// dependent writes (i.e. field DependentWrite) is zero, this value is
// propagated to field CyclesLeft.
unsigned TotalCycles;
// Longest register dependency.
CriticalDependency CRD;
// This field is set to true only if there are no dependent writes, and
// there are no `CyclesLeft' to wait.
bool IsReady;
// True if this is a read from a known zero register.
bool IsZero;
// True if this register read is from a dependency-breaking instruction.
bool IndependentFromDef;
public:
ReadState(const ReadDescriptor &Desc, MCPhysReg RegID)
: RD(&Desc), RegisterID(RegID), PRFID(0), DependentWrites(0),
CyclesLeft(UNKNOWN_CYCLES), TotalCycles(0), CRD(), IsReady(true),
IsZero(false), IndependentFromDef(false) {}
const ReadDescriptor &getDescriptor() const { return *RD; }
unsigned getSchedClass() const { return RD->SchedClassID; }
MCPhysReg getRegisterID() const { return RegisterID; }
unsigned getRegisterFileID() const { return PRFID; }
const CriticalDependency &getCriticalRegDep() const { return CRD; }
bool isPending() const { return !IndependentFromDef && CyclesLeft > 0; }
bool isReady() const { return IsReady; }
bool isImplicitRead() const { return RD->isImplicitRead(); }
bool isIndependentFromDef() const { return IndependentFromDef; }
void setIndependentFromDef() { IndependentFromDef = true; }
void cycleEvent();
void writeStartEvent(unsigned IID, MCPhysReg RegID, unsigned Cycles);
void setDependentWrites(unsigned Writes) {
DependentWrites = Writes;
IsReady = !Writes;
}
bool isReadZero() const { return IsZero; }
void setReadZero() { IsZero = true; }
void setPRF(unsigned ID) { PRFID = ID; }
};
/// A sequence of cycles.
///
/// This class can be used as a building block to construct ranges of cycles.
class CycleSegment {
unsigned Begin; // Inclusive.
unsigned End; // Exclusive.
bool Reserved; // Resources associated to this segment must be reserved.
public:
CycleSegment(unsigned StartCycle, unsigned EndCycle, bool IsReserved = false)
: Begin(StartCycle), End(EndCycle), Reserved(IsReserved) {}
bool contains(unsigned Cycle) const { return Cycle >= Begin && Cycle < End; }
bool startsAfter(const CycleSegment &CS) const { return End <= CS.Begin; }
bool endsBefore(const CycleSegment &CS) const { return Begin >= CS.End; }
bool overlaps(const CycleSegment &CS) const {
return !startsAfter(CS) && !endsBefore(CS);
}
bool isExecuting() const { return Begin == 0 && End != 0; }
bool isExecuted() const { return End == 0; }
bool operator<(const CycleSegment &Other) const {
return Begin < Other.Begin;
}
CycleSegment &operator--() {
if (Begin)
Begin--;
if (End)
End--;
return *this;
}
bool isValid() const { return Begin <= End; }
unsigned size() const { return End - Begin; };
void subtract(unsigned Cycles) {
assert(End >= Cycles);
End -= Cycles;
}
unsigned begin() const { return Begin; }
unsigned end() const { return End; }
void setEnd(unsigned NewEnd) { End = NewEnd; }
bool isReserved() const { return Reserved; }
void setReserved() { Reserved = true; }
};
/// Helper used by class InstrDesc to describe how hardware resources
/// are used.
///
/// This class describes how many resource units of a specific resource kind
/// (and how many cycles) are "used" by an instruction.
struct ResourceUsage {
CycleSegment CS;
unsigned NumUnits;
ResourceUsage(CycleSegment Cycles, unsigned Units = 1)
: CS(Cycles), NumUnits(Units) {}
unsigned size() const { return CS.size(); }
bool isReserved() const { return CS.isReserved(); }
void setReserved() { CS.setReserved(); }
};
/// An instruction descriptor
struct InstrDesc {
SmallVector<WriteDescriptor, 2> Writes; // Implicit writes are at the end.
SmallVector<ReadDescriptor, 4> Reads; // Implicit reads are at the end.
// For every resource used by an instruction of this kind, this vector
// reports the number of "consumed cycles".
SmallVector<std::pair<uint64_t, ResourceUsage>, 4> Resources;
// A bitmask of used hardware buffers.
uint64_t UsedBuffers;
// A bitmask of used processor resource units.
uint64_t UsedProcResUnits;
// A bitmask of implicit uses of processor resource units.
uint64_t ImplicitlyUsedProcResUnits;
// A bitmask of used processor resource groups.
uint64_t UsedProcResGroups;
unsigned MaxLatency;
// Number of MicroOps for this instruction.
unsigned NumMicroOps;
// SchedClassID used to construct this InstrDesc.
// This information is currently used by views to do fast queries on the
// subtarget when computing the reciprocal throughput.
unsigned SchedClassID;
unsigned MayLoad : 1;
unsigned MayStore : 1;
unsigned HasSideEffects : 1;
unsigned BeginGroup : 1;
unsigned EndGroup : 1;
unsigned RetireOOO : 1;
// True if all buffered resources are in-order, and there is at least one
// buffer which is a dispatch hazard (BufferSize = 0).
unsigned MustIssueImmediately : 1;
// A zero latency instruction doesn't consume any scheduler resources.
bool isZeroLatency() const { return !MaxLatency && Resources.empty(); }
InstrDesc() = default;
InstrDesc(const InstrDesc &Other) = delete;
InstrDesc &operator=(const InstrDesc &Other) = delete;
};
/// Base class for instructions consumed by the simulation pipeline.
///
/// This class tracks data dependencies as well as generic properties
/// of the instruction.
class InstructionBase {
const InstrDesc &Desc;
// This field is set for instructions that are candidates for move
// elimination. For more information about move elimination, see the
// definition of RegisterMappingTracker in RegisterFile.h
bool IsOptimizableMove;
// Output dependencies.
// One entry per each implicit and explicit register definition.
SmallVector<WriteState, 2> Defs;
// Input dependencies.
// One entry per each implicit and explicit register use.
SmallVector<ReadState, 4> Uses;
// List of operands which can be used by mca::CustomBehaviour
std::vector<MCAOperand> Operands;
// Instruction opcode which can be used by mca::CustomBehaviour
unsigned Opcode;
// Flags used by the LSUnit.
bool IsALoadBarrier;
bool IsAStoreBarrier;
public:
InstructionBase(const InstrDesc &D, const unsigned Opcode)
: Desc(D), IsOptimizableMove(false), Operands(0), Opcode(Opcode),
IsALoadBarrier(false), IsAStoreBarrier(false) {}
SmallVectorImpl<WriteState> &getDefs() { return Defs; }
ArrayRef<WriteState> getDefs() const { return Defs; }
SmallVectorImpl<ReadState> &getUses() { return Uses; }
ArrayRef<ReadState> getUses() const { return Uses; }
const InstrDesc &getDesc() const { return Desc; }
unsigned getLatency() const { return Desc.MaxLatency; }
unsigned getNumMicroOps() const { return Desc.NumMicroOps; }
unsigned getOpcode() const { return Opcode; }
bool isALoadBarrier() const { return IsALoadBarrier; }
bool isAStoreBarrier() const { return IsAStoreBarrier; }
void setLoadBarrier(bool IsBarrier) { IsALoadBarrier = IsBarrier; }
void setStoreBarrier(bool IsBarrier) { IsAStoreBarrier = IsBarrier; }
/// Return the MCAOperand which corresponds to index Idx within the original
/// MCInst.
const MCAOperand *getOperand(const unsigned Idx) const {
auto It = std::find_if(
Operands.begin(), Operands.end(),
[&Idx](const MCAOperand &Op) { return Op.getIndex() == Idx; });
if (It == Operands.end())
return nullptr;
return &(*It);
}
unsigned getNumOperands() const { return Operands.size(); }
void addOperand(const MCAOperand Op) { Operands.push_back(Op); }
bool hasDependentUsers() const {
return any_of(Defs,
[](const WriteState &Def) { return Def.getNumUsers() > 0; });
}
unsigned getNumUsers() const {
unsigned NumUsers = 0;
for (const WriteState &Def : Defs)
NumUsers += Def.getNumUsers();
return NumUsers;
}
// Returns true if this instruction is a candidate for move elimination.
bool isOptimizableMove() const { return IsOptimizableMove; }
void setOptimizableMove() { IsOptimizableMove = true; }
bool isMemOp() const { return Desc.MayLoad || Desc.MayStore; }
};
/// An instruction propagated through the simulated instruction pipeline.
///
/// This class is used to monitor changes to the internal state of instructions
/// that are sent to the various components of the simulated hardware pipeline.
class Instruction : public InstructionBase {
enum InstrStage {
IS_INVALID, // Instruction in an invalid state.
IS_DISPATCHED, // Instruction dispatched but operands are not ready.
IS_PENDING, // Instruction is not ready, but operand latency is known.
IS_READY, // Instruction dispatched and operands ready.
IS_EXECUTING, // Instruction issued.
IS_EXECUTED, // Instruction executed. Values are written back.
IS_RETIRED // Instruction retired.
};
// The current instruction stage.
enum InstrStage Stage;
// This value defaults to the instruction latency. This instruction is
// considered executed when field CyclesLeft goes to zero.
int CyclesLeft;
// Retire Unit token ID for this instruction.
unsigned RCUTokenID;
// LS token ID for this instruction.
// This field is set to the invalid null token if this is not a memory
// operation.
unsigned LSUTokenID;
// A resource mask which identifies buffered resources consumed by this
// instruction at dispatch stage. In the absence of macro-fusion, this value
// should always match the value of field `UsedBuffers` from the instruction
// descriptor (see field InstrBase::Desc).
uint64_t UsedBuffers;
// Critical register dependency.
CriticalDependency CriticalRegDep;
// Critical memory dependency.
CriticalDependency CriticalMemDep;
// A bitmask of busy processor resource units.
// This field is set to zero only if execution is not delayed during this
// cycle because of unavailable pipeline resources.
uint64_t CriticalResourceMask;
// True if this instruction has been optimized at register renaming stage.
bool IsEliminated;
public:
Instruction(const InstrDesc &D, const unsigned Opcode)
: InstructionBase(D, Opcode), Stage(IS_INVALID),
CyclesLeft(UNKNOWN_CYCLES), RCUTokenID(0), LSUTokenID(0),
UsedBuffers(D.UsedBuffers), CriticalRegDep(), CriticalMemDep(),
CriticalResourceMask(0), IsEliminated(false) {}
unsigned getRCUTokenID() const { return RCUTokenID; }
unsigned getLSUTokenID() const { return LSUTokenID; }
void setLSUTokenID(unsigned LSUTok) { LSUTokenID = LSUTok; }
uint64_t getUsedBuffers() const { return UsedBuffers; }
void setUsedBuffers(uint64_t Mask) { UsedBuffers = Mask; }
void clearUsedBuffers() { UsedBuffers = 0ULL; }
int getCyclesLeft() const { return CyclesLeft; }
// Transition to the dispatch stage, and assign a RCUToken to this
// instruction. The RCUToken is used to track the completion of every
// register write performed by this instruction.
void dispatch(unsigned RCUTokenID);
// Instruction issued. Transition to the IS_EXECUTING state, and update
// all the register definitions.
void execute(unsigned IID);
// Force a transition from the IS_DISPATCHED state to the IS_READY or
// IS_PENDING state. State transitions normally occur either at the beginning
// of a new cycle (see method cycleEvent()), or as a result of another issue
// event. This method is called every time the instruction might have changed
// in state. It internally delegates to method updateDispatched() and
// updateWaiting().
void update();
bool updateDispatched();
bool updatePending();
bool isDispatched() const { return Stage == IS_DISPATCHED; }
bool isPending() const { return Stage == IS_PENDING; }
bool isReady() const { return Stage == IS_READY; }
bool isExecuting() const { return Stage == IS_EXECUTING; }
bool isExecuted() const { return Stage == IS_EXECUTED; }
bool isRetired() const { return Stage == IS_RETIRED; }
bool isEliminated() const { return IsEliminated; }
// Forces a transition from state IS_DISPATCHED to state IS_EXECUTED.
void forceExecuted();
void setEliminated() { IsEliminated = true; }
void retire() {
assert(isExecuted() && "Instruction is in an invalid state!");
Stage = IS_RETIRED;
}
const CriticalDependency &getCriticalRegDep() const { return CriticalRegDep; }
const CriticalDependency &getCriticalMemDep() const { return CriticalMemDep; }
const CriticalDependency &computeCriticalRegDep();
void setCriticalMemDep(const CriticalDependency &MemDep) {
CriticalMemDep = MemDep;
}
uint64_t getCriticalResourceMask() const { return CriticalResourceMask; }
void setCriticalResourceMask(uint64_t ResourceMask) {
CriticalResourceMask = ResourceMask;
}
void cycleEvent();
};
/// An InstRef contains both a SourceMgr index and Instruction pair. The index
/// is used as a unique identifier for the instruction. MCA will make use of
/// this index as a key throughout MCA.
class InstRef {
std::pair<unsigned, Instruction *> Data;
public:
InstRef() : Data(std::make_pair(0, nullptr)) {}
InstRef(unsigned Index, Instruction *I) : Data(std::make_pair(Index, I)) {}
bool operator==(const InstRef &Other) const { return Data == Other.Data; }
bool operator!=(const InstRef &Other) const { return Data != Other.Data; }
bool operator<(const InstRef &Other) const {
return Data.first < Other.Data.first;
}
unsigned getSourceIndex() const { return Data.first; }
Instruction *getInstruction() { return Data.second; }
const Instruction *getInstruction() const { return Data.second; }
/// Returns true if this references a valid instruction.
explicit operator bool() const { return Data.second != nullptr; }
/// Invalidate this reference.
void invalidate() { Data.second = nullptr; }
#ifndef NDEBUG
void print(raw_ostream &OS) const { OS << getSourceIndex(); }
#endif
};
#ifndef NDEBUG
inline raw_ostream &operator<<(raw_ostream &OS, const InstRef &IR) {
IR.print(OS);
return OS;
}
#endif
} // namespace mca
} // namespace llvm
#endif // LLVM_MCA_INSTRUCTION_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|