1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- ProfileSummary.h - Profile summary data structure. -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the profile summary data structure.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PROFILESUMMARY_H
#define LLVM_IR_PROFILESUMMARY_H
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>
namespace llvm {
class LLVMContext;
class Metadata;
class raw_ostream;
// The profile summary is one or more (Cutoff, MinCount, NumCounts) triplets.
// The semantics of counts depend on the type of profile. For instrumentation
// profile, counts are block counts and for sample profile, counts are
// per-line samples. Given a target counts percentile, we compute the minimum
// number of counts needed to reach this target and the minimum among these
// counts.
struct ProfileSummaryEntry {
const uint32_t Cutoff; ///< The required percentile of counts.
const uint64_t MinCount; ///< The minimum count for this percentile.
const uint64_t NumCounts; ///< Number of counts >= the minimum count.
ProfileSummaryEntry(uint32_t TheCutoff, uint64_t TheMinCount,
uint64_t TheNumCounts)
: Cutoff(TheCutoff), MinCount(TheMinCount), NumCounts(TheNumCounts) {}
};
using SummaryEntryVector = std::vector<ProfileSummaryEntry>;
class ProfileSummary {
public:
enum Kind { PSK_Instr, PSK_CSInstr, PSK_Sample };
private:
const Kind PSK;
const SummaryEntryVector DetailedSummary;
const uint64_t TotalCount, MaxCount, MaxInternalCount, MaxFunctionCount;
const uint32_t NumCounts, NumFunctions;
/// If 'Partial' is false, it means the profile being used to optimize
/// a target is collected from the same target.
/// If 'Partial' is true, it means the profile is for common/shared
/// code. The common profile is usually merged from profiles collected
/// from running other targets.
bool Partial = false;
/// This approximately represents the ratio of the number of profile counters
/// of the program being built to the number of profile counters in the
/// partial sample profile. When 'Partial' is false, it is undefined. This is
/// currently only available under thin LTO mode.
double PartialProfileRatio = 0.0;
/// Return detailed summary as metadata.
Metadata *getDetailedSummaryMD(LLVMContext &Context);
public:
static const int Scale = 1000000;
ProfileSummary(Kind K, const SummaryEntryVector &DetailedSummary,
uint64_t TotalCount, uint64_t MaxCount,
uint64_t MaxInternalCount, uint64_t MaxFunctionCount,
uint32_t NumCounts, uint32_t NumFunctions,
bool Partial = false, double PartialProfileRatio = 0)
: PSK(K), DetailedSummary(std::move(DetailedSummary)),
TotalCount(TotalCount), MaxCount(MaxCount),
MaxInternalCount(MaxInternalCount), MaxFunctionCount(MaxFunctionCount),
NumCounts(NumCounts), NumFunctions(NumFunctions), Partial(Partial),
PartialProfileRatio(PartialProfileRatio) {}
Kind getKind() const { return PSK; }
/// Return summary information as metadata.
Metadata *getMD(LLVMContext &Context, bool AddPartialField = true,
bool AddPartialProfileRatioField = true);
/// Construct profile summary from metdata.
static ProfileSummary *getFromMD(Metadata *MD);
const SummaryEntryVector &getDetailedSummary() { return DetailedSummary; }
uint32_t getNumFunctions() const { return NumFunctions; }
uint64_t getMaxFunctionCount() const { return MaxFunctionCount; }
uint32_t getNumCounts() const { return NumCounts; }
uint64_t getTotalCount() const { return TotalCount; }
uint64_t getMaxCount() const { return MaxCount; }
uint64_t getMaxInternalCount() const { return MaxInternalCount; }
void setPartialProfile(bool PP) { Partial = PP; }
bool isPartialProfile() const { return Partial; }
double getPartialProfileRatio() const { return PartialProfileRatio; }
void setPartialProfileRatio(double R) {
assert(isPartialProfile() && "Unexpected when not partial profile");
PartialProfileRatio = R;
}
void printSummary(raw_ostream &OS) const;
void printDetailedSummary(raw_ostream &OS) const;
};
} // end namespace llvm
#endif // LLVM_IR_PROFILESUMMARY_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|