1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- llvm/Function.h - Class to represent a single function ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Function class, which represents a
// single function/procedure in LLVM.
//
// A function basically consists of a list of basic blocks, a list of arguments,
// and a symbol table.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_FUNCTION_H
#define LLVM_IR_FUNCTION_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
namespace llvm {
namespace Intrinsic {
typedef unsigned ID;
}
class AssemblyAnnotationWriter;
class Constant;
struct DenormalMode;
class DISubprogram;
class LLVMContext;
class Module;
template <typename T> class Optional;
class raw_ostream;
class Type;
class User;
class BranchProbabilityInfo;
class BlockFrequencyInfo;
class LLVM_EXTERNAL_VISIBILITY Function : public GlobalObject,
public ilist_node<Function> {
public:
using BasicBlockListType = SymbolTableList<BasicBlock>;
// BasicBlock iterators...
using iterator = BasicBlockListType::iterator;
using const_iterator = BasicBlockListType::const_iterator;
using arg_iterator = Argument *;
using const_arg_iterator = const Argument *;
private:
// Important things that make up a function!
BasicBlockListType BasicBlocks; ///< The basic blocks
mutable Argument *Arguments = nullptr; ///< The formal arguments
size_t NumArgs;
std::unique_ptr<ValueSymbolTable>
SymTab; ///< Symbol table of args/instructions
AttributeList AttributeSets; ///< Parameter attributes
/*
* Value::SubclassData
*
* bit 0 : HasLazyArguments
* bit 1 : HasPrefixData
* bit 2 : HasPrologueData
* bit 3 : HasPersonalityFn
* bits 4-13 : CallingConvention
* bits 14 : HasGC
* bits 15 : [reserved]
*/
/// Bits from GlobalObject::GlobalObjectSubclassData.
enum {
/// Whether this function is materializable.
IsMaterializableBit = 0,
};
friend class SymbolTableListTraits<Function>;
/// hasLazyArguments/CheckLazyArguments - The argument list of a function is
/// built on demand, so that the list isn't allocated until the first client
/// needs it. The hasLazyArguments predicate returns true if the arg list
/// hasn't been set up yet.
public:
bool hasLazyArguments() const {
return getSubclassDataFromValue() & (1<<0);
}
private:
void CheckLazyArguments() const {
if (hasLazyArguments())
BuildLazyArguments();
}
void BuildLazyArguments() const;
void clearArguments();
/// Function ctor - If the (optional) Module argument is specified, the
/// function is automatically inserted into the end of the function list for
/// the module.
///
Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
const Twine &N = "", Module *M = nullptr);
public:
Function(const Function&) = delete;
void operator=(const Function&) = delete;
~Function();
// This is here to help easily convert from FunctionT * (Function * or
// MachineFunction *) in BlockFrequencyInfoImpl to Function * by calling
// FunctionT->getFunction().
const Function &getFunction() const { return *this; }
static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
unsigned AddrSpace, const Twine &N = "",
Module *M = nullptr) {
return new Function(Ty, Linkage, AddrSpace, N, M);
}
// TODO: remove this once all users have been updated to pass an AddrSpace
static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
const Twine &N = "", Module *M = nullptr) {
return new Function(Ty, Linkage, static_cast<unsigned>(-1), N, M);
}
/// Creates a new function and attaches it to a module.
///
/// Places the function in the program address space as specified
/// by the module's data layout.
static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
const Twine &N, Module &M);
/// Creates a function with some attributes recorded in llvm.module.flags
/// applied.
///
/// Use this when synthesizing new functions that need attributes that would
/// have been set by command line options.
static Function *createWithDefaultAttr(FunctionType *Ty, LinkageTypes Linkage,
unsigned AddrSpace,
const Twine &N = "",
Module *M = nullptr);
// Provide fast operand accessors.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Returns the number of non-debug IR instructions in this function.
/// This is equivalent to the sum of the sizes of each basic block contained
/// within this function.
unsigned getInstructionCount() const;
/// Returns the FunctionType for me.
FunctionType *getFunctionType() const {
return cast<FunctionType>(getValueType());
}
/// Returns the type of the ret val.
Type *getReturnType() const { return getFunctionType()->getReturnType(); }
/// getContext - Return a reference to the LLVMContext associated with this
/// function.
LLVMContext &getContext() const;
/// isVarArg - Return true if this function takes a variable number of
/// arguments.
bool isVarArg() const { return getFunctionType()->isVarArg(); }
bool isMaterializable() const {
return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
}
void setIsMaterializable(bool V) {
unsigned Mask = 1 << IsMaterializableBit;
setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
(V ? Mask : 0u));
}
/// getIntrinsicID - This method returns the ID number of the specified
/// function, or Intrinsic::not_intrinsic if the function is not an
/// intrinsic, or if the pointer is null. This value is always defined to be
/// zero to allow easy checking for whether a function is intrinsic or not.
/// The particular intrinsic functions which correspond to this value are
/// defined in llvm/Intrinsics.h.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY { return IntID; }
/// isIntrinsic - Returns true if the function's name starts with "llvm.".
/// It's possible for this function to return true while getIntrinsicID()
/// returns Intrinsic::not_intrinsic!
bool isIntrinsic() const { return HasLLVMReservedName; }
/// isTargetIntrinsic - Returns true if IID is an intrinsic specific to a
/// certain target. If it is a generic intrinsic false is returned.
static bool isTargetIntrinsic(Intrinsic::ID IID);
/// isTargetIntrinsic - Returns true if this function is an intrinsic and the
/// intrinsic is specific to a certain target. If this is not an intrinsic
/// or a generic intrinsic, false is returned.
bool isTargetIntrinsic() const;
/// Returns true if the function is one of the "Constrained Floating-Point
/// Intrinsics". Returns false if not, and returns false when
/// getIntrinsicID() returns Intrinsic::not_intrinsic.
bool isConstrainedFPIntrinsic() const;
static Intrinsic::ID lookupIntrinsicID(StringRef Name);
/// Recalculate the ID for this function if it is an Intrinsic defined
/// in llvm/Intrinsics.h. Sets the intrinsic ID to Intrinsic::not_intrinsic
/// if the name of this function does not match an intrinsic in that header.
/// Note, this method does not need to be called directly, as it is called
/// from Value::setName() whenever the name of this function changes.
void recalculateIntrinsicID();
/// getCallingConv()/setCallingConv(CC) - These method get and set the
/// calling convention of this function. The enum values for the known
/// calling conventions are defined in CallingConv.h.
CallingConv::ID getCallingConv() const {
return static_cast<CallingConv::ID>((getSubclassDataFromValue() >> 4) &
CallingConv::MaxID);
}
void setCallingConv(CallingConv::ID CC) {
auto ID = static_cast<unsigned>(CC);
assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
setValueSubclassData((getSubclassDataFromValue() & 0xc00f) | (ID << 4));
}
enum ProfileCountType { PCT_Real, PCT_Synthetic };
/// Class to represent profile counts.
///
/// This class represents both real and synthetic profile counts.
class ProfileCount {
private:
uint64_t Count = 0;
ProfileCountType PCT = PCT_Real;
public:
ProfileCount(uint64_t Count, ProfileCountType PCT)
: Count(Count), PCT(PCT) {}
uint64_t getCount() const { return Count; }
ProfileCountType getType() const { return PCT; }
bool isSynthetic() const { return PCT == PCT_Synthetic; }
};
/// Set the entry count for this function.
///
/// Entry count is the number of times this function was executed based on
/// pgo data. \p Imports points to a set of GUIDs that needs to
/// be imported by the function for sample PGO, to enable the same inlines as
/// the profiled optimized binary.
void setEntryCount(ProfileCount Count,
const DenseSet<GlobalValue::GUID> *Imports = nullptr);
/// A convenience wrapper for setting entry count
void setEntryCount(uint64_t Count, ProfileCountType Type = PCT_Real,
const DenseSet<GlobalValue::GUID> *Imports = nullptr);
/// Get the entry count for this function.
///
/// Entry count is the number of times the function was executed.
/// When AllowSynthetic is false, only pgo_data will be returned.
Optional<ProfileCount> getEntryCount(bool AllowSynthetic = false) const;
/// Return true if the function is annotated with profile data.
///
/// Presence of entry counts from a profile run implies the function has
/// profile annotations. If IncludeSynthetic is false, only return true
/// when the profile data is real.
bool hasProfileData(bool IncludeSynthetic = false) const {
return getEntryCount(IncludeSynthetic).hasValue();
}
/// Returns the set of GUIDs that needs to be imported to the function for
/// sample PGO, to enable the same inlines as the profiled optimized binary.
DenseSet<GlobalValue::GUID> getImportGUIDs() const;
/// Set the section prefix for this function.
void setSectionPrefix(StringRef Prefix);
/// Get the section prefix for this function.
Optional<StringRef> getSectionPrefix() const;
/// hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm
/// to use during code generation.
bool hasGC() const {
return getSubclassDataFromValue() & (1<<14);
}
const std::string &getGC() const;
void setGC(std::string Str);
void clearGC();
/// Return the attribute list for this Function.
AttributeList getAttributes() const { return AttributeSets; }
/// Set the attribute list for this Function.
void setAttributes(AttributeList Attrs) { AttributeSets = Attrs; }
// TODO: remove non-AtIndex versions of these methods.
/// adds the attribute to the list of attributes.
void addAttributeAtIndex(unsigned i, Attribute Attr);
/// Add function attributes to this function.
void addFnAttr(Attribute::AttrKind Kind);
/// Add function attributes to this function.
void addFnAttr(StringRef Kind, StringRef Val = StringRef());
/// Add function attributes to this function.
void addFnAttr(Attribute Attr);
/// Add function attributes to this function.
void addFnAttrs(const AttrBuilder &Attrs);
/// Add return value attributes to this function.
void addRetAttr(Attribute::AttrKind Kind);
/// Add return value attributes to this function.
void addRetAttr(Attribute Attr);
/// Add return value attributes to this function.
void addRetAttrs(const AttrBuilder &Attrs);
/// adds the attribute to the list of attributes for the given arg.
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
/// adds the attribute to the list of attributes for the given arg.
void addParamAttr(unsigned ArgNo, Attribute Attr);
/// adds the attributes to the list of attributes for the given arg.
void addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs);
/// removes the attribute from the list of attributes.
void removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind);
/// removes the attribute from the list of attributes.
void removeAttributeAtIndex(unsigned i, StringRef Kind);
/// Remove function attributes from this function.
void removeFnAttr(Attribute::AttrKind Kind);
/// Remove function attribute from this function.
void removeFnAttr(StringRef Kind);
void removeFnAttrs(const AttributeMask &Attrs);
/// removes the attribute from the return value list of attributes.
void removeRetAttr(Attribute::AttrKind Kind);
/// removes the attribute from the return value list of attributes.
void removeRetAttr(StringRef Kind);
/// removes the attributes from the return value list of attributes.
void removeRetAttrs(const AttributeMask &Attrs);
/// removes the attribute from the list of attributes.
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
/// removes the attribute from the list of attributes.
void removeParamAttr(unsigned ArgNo, StringRef Kind);
/// removes the attribute from the list of attributes.
void removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs);
/// Return true if the function has the attribute.
bool hasFnAttribute(Attribute::AttrKind Kind) const;
/// Return true if the function has the attribute.
bool hasFnAttribute(StringRef Kind) const;
/// check if an attribute is in the list of attributes for the return value.
bool hasRetAttribute(Attribute::AttrKind Kind) const;
/// check if an attributes is in the list of attributes.
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const;
/// gets the attribute from the list of attributes.
Attribute getAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) const;
/// gets the attribute from the list of attributes.
Attribute getAttributeAtIndex(unsigned i, StringRef Kind) const;
/// Return the attribute for the given attribute kind.
Attribute getFnAttribute(Attribute::AttrKind Kind) const;
/// Return the attribute for the given attribute kind.
Attribute getFnAttribute(StringRef Kind) const;
/// gets the specified attribute from the list of attributes.
Attribute getParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const;
/// removes noundef and other attributes that imply undefined behavior if a
/// `undef` or `poison` value is passed from the list of attributes.
void removeParamUndefImplyingAttrs(unsigned ArgNo);
/// Return the stack alignment for the function.
MaybeAlign getFnStackAlign() const {
return AttributeSets.getFnStackAlignment();
}
/// Returns true if the function has ssp, sspstrong, or sspreq fn attrs.
bool hasStackProtectorFnAttr() const;
/// adds the dereferenceable attribute to the list of attributes for
/// the given arg.
void addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes);
/// adds the dereferenceable_or_null attribute to the list of
/// attributes for the given arg.
void addDereferenceableOrNullParamAttr(unsigned ArgNo, uint64_t Bytes);
/// Extract the alignment for a call or parameter (0=unknown).
/// FIXME: Remove this function once transition to Align is over.
/// Use getParamAlign() instead.
uint64_t getParamAlignment(unsigned ArgNo) const {
if (const auto MA = getParamAlign(ArgNo))
return MA->value();
return 0;
}
MaybeAlign getParamAlign(unsigned ArgNo) const {
return AttributeSets.getParamAlignment(ArgNo);
}
MaybeAlign getParamStackAlign(unsigned ArgNo) const {
return AttributeSets.getParamStackAlignment(ArgNo);
}
/// Extract the byval type for a parameter.
Type *getParamByValType(unsigned ArgNo) const {
return AttributeSets.getParamByValType(ArgNo);
}
/// Extract the sret type for a parameter.
Type *getParamStructRetType(unsigned ArgNo) const {
return AttributeSets.getParamStructRetType(ArgNo);
}
/// Extract the inalloca type for a parameter.
Type *getParamInAllocaType(unsigned ArgNo) const {
return AttributeSets.getParamInAllocaType(ArgNo);
}
/// Extract the byref type for a parameter.
Type *getParamByRefType(unsigned ArgNo) const {
return AttributeSets.getParamByRefType(ArgNo);
}
/// Extract the preallocated type for a parameter.
Type *getParamPreallocatedType(unsigned ArgNo) const {
return AttributeSets.getParamPreallocatedType(ArgNo);
}
/// Extract the number of dereferenceable bytes for a parameter.
/// @param ArgNo Index of an argument, with 0 being the first function arg.
uint64_t getParamDereferenceableBytes(unsigned ArgNo) const {
return AttributeSets.getParamDereferenceableBytes(ArgNo);
}
/// Extract the number of dereferenceable_or_null bytes for a
/// parameter.
/// @param ArgNo AttributeList ArgNo, referring to an argument.
uint64_t getParamDereferenceableOrNullBytes(unsigned ArgNo) const {
return AttributeSets.getParamDereferenceableOrNullBytes(ArgNo);
}
/// A function will have the "coroutine.presplit" attribute if it's
/// a coroutine and has not gone through full CoroSplit pass.
bool isPresplitCoroutine() const {
return hasFnAttribute("coroutine.presplit");
}
/// Determine if the function does not access memory.
bool doesNotAccessMemory() const {
return hasFnAttribute(Attribute::ReadNone);
}
void setDoesNotAccessMemory() {
addFnAttr(Attribute::ReadNone);
}
/// Determine if the function does not access or only reads memory.
bool onlyReadsMemory() const {
return doesNotAccessMemory() || hasFnAttribute(Attribute::ReadOnly);
}
void setOnlyReadsMemory() {
addFnAttr(Attribute::ReadOnly);
}
/// Determine if the function does not access or only writes memory.
bool onlyWritesMemory() const {
return doesNotAccessMemory() || hasFnAttribute(Attribute::WriteOnly);
}
void setOnlyWritesMemory() {
addFnAttr(Attribute::WriteOnly);
}
/// Determine if the call can access memmory only using pointers based
/// on its arguments.
bool onlyAccessesArgMemory() const {
return hasFnAttribute(Attribute::ArgMemOnly);
}
void setOnlyAccessesArgMemory() { addFnAttr(Attribute::ArgMemOnly); }
/// Determine if the function may only access memory that is
/// inaccessible from the IR.
bool onlyAccessesInaccessibleMemory() const {
return hasFnAttribute(Attribute::InaccessibleMemOnly);
}
void setOnlyAccessesInaccessibleMemory() {
addFnAttr(Attribute::InaccessibleMemOnly);
}
/// Determine if the function may only access memory that is
/// either inaccessible from the IR or pointed to by its arguments.
bool onlyAccessesInaccessibleMemOrArgMem() const {
return hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly);
}
void setOnlyAccessesInaccessibleMemOrArgMem() {
addFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
}
/// Determine if the function cannot return.
bool doesNotReturn() const {
return hasFnAttribute(Attribute::NoReturn);
}
void setDoesNotReturn() {
addFnAttr(Attribute::NoReturn);
}
/// Determine if the function should not perform indirect branch tracking.
bool doesNoCfCheck() const { return hasFnAttribute(Attribute::NoCfCheck); }
/// Determine if the function cannot unwind.
bool doesNotThrow() const {
return hasFnAttribute(Attribute::NoUnwind);
}
void setDoesNotThrow() {
addFnAttr(Attribute::NoUnwind);
}
/// Determine if the call cannot be duplicated.
bool cannotDuplicate() const {
return hasFnAttribute(Attribute::NoDuplicate);
}
void setCannotDuplicate() {
addFnAttr(Attribute::NoDuplicate);
}
/// Determine if the call is convergent.
bool isConvergent() const {
return hasFnAttribute(Attribute::Convergent);
}
void setConvergent() {
addFnAttr(Attribute::Convergent);
}
void setNotConvergent() {
removeFnAttr(Attribute::Convergent);
}
/// Determine if the call has sideeffects.
bool isSpeculatable() const {
return hasFnAttribute(Attribute::Speculatable);
}
void setSpeculatable() {
addFnAttr(Attribute::Speculatable);
}
/// Determine if the call might deallocate memory.
bool doesNotFreeMemory() const {
return onlyReadsMemory() || hasFnAttribute(Attribute::NoFree);
}
void setDoesNotFreeMemory() {
addFnAttr(Attribute::NoFree);
}
/// Determine if the call can synchroize with other threads
bool hasNoSync() const {
return hasFnAttribute(Attribute::NoSync);
}
void setNoSync() {
addFnAttr(Attribute::NoSync);
}
/// Determine if the function is known not to recurse, directly or
/// indirectly.
bool doesNotRecurse() const {
return hasFnAttribute(Attribute::NoRecurse);
}
void setDoesNotRecurse() {
addFnAttr(Attribute::NoRecurse);
}
/// Determine if the function is required to make forward progress.
bool mustProgress() const {
return hasFnAttribute(Attribute::MustProgress) ||
hasFnAttribute(Attribute::WillReturn);
}
void setMustProgress() { addFnAttr(Attribute::MustProgress); }
/// Determine if the function will return.
bool willReturn() const { return hasFnAttribute(Attribute::WillReturn); }
void setWillReturn() { addFnAttr(Attribute::WillReturn); }
/// True if the ABI mandates (or the user requested) that this
/// function be in a unwind table.
bool hasUWTable() const {
return hasFnAttribute(Attribute::UWTable);
}
void setHasUWTable() {
addFnAttr(Attribute::UWTable);
}
/// True if this function needs an unwind table.
bool needsUnwindTableEntry() const {
return hasUWTable() || !doesNotThrow() || hasPersonalityFn();
}
/// Determine if the function returns a structure through first
/// or second pointer argument.
bool hasStructRetAttr() const {
return AttributeSets.hasParamAttr(0, Attribute::StructRet) ||
AttributeSets.hasParamAttr(1, Attribute::StructRet);
}
/// Determine if the parameter or return value is marked with NoAlias
/// attribute.
bool returnDoesNotAlias() const {
return AttributeSets.hasRetAttr(Attribute::NoAlias);
}
void setReturnDoesNotAlias() { addRetAttr(Attribute::NoAlias); }
/// Do not optimize this function (-O0).
bool hasOptNone() const { return hasFnAttribute(Attribute::OptimizeNone); }
/// Optimize this function for minimum size (-Oz).
bool hasMinSize() const { return hasFnAttribute(Attribute::MinSize); }
/// Optimize this function for size (-Os) or minimum size (-Oz).
bool hasOptSize() const {
return hasFnAttribute(Attribute::OptimizeForSize) || hasMinSize();
}
/// Returns the denormal handling type for the default rounding mode of the
/// function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const;
/// copyAttributesFrom - copy all additional attributes (those not needed to
/// create a Function) from the Function Src to this one.
void copyAttributesFrom(const Function *Src);
/// deleteBody - This method deletes the body of the function, and converts
/// the linkage to external.
///
void deleteBody() {
dropAllReferences();
setLinkage(ExternalLinkage);
}
/// removeFromParent - This method unlinks 'this' from the containing module,
/// but does not delete it.
///
void removeFromParent();
/// eraseFromParent - This method unlinks 'this' from the containing module
/// and deletes it.
///
void eraseFromParent();
/// Steal arguments from another function.
///
/// Drop this function's arguments and splice in the ones from \c Src.
/// Requires that this has no function body.
void stealArgumentListFrom(Function &Src);
/// Get the underlying elements of the Function... the basic block list is
/// empty for external functions.
///
const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; }
BasicBlockListType &getBasicBlockList() { return BasicBlocks; }
static BasicBlockListType Function::*getSublistAccess(BasicBlock*) {
return &Function::BasicBlocks;
}
const BasicBlock &getEntryBlock() const { return front(); }
BasicBlock &getEntryBlock() { return front(); }
//===--------------------------------------------------------------------===//
// Symbol Table Accessing functions...
/// getSymbolTable() - Return the symbol table if any, otherwise nullptr.
///
inline ValueSymbolTable *getValueSymbolTable() { return SymTab.get(); }
inline const ValueSymbolTable *getValueSymbolTable() const {
return SymTab.get();
}
//===--------------------------------------------------------------------===//
// BasicBlock iterator forwarding functions
//
iterator begin() { return BasicBlocks.begin(); }
const_iterator begin() const { return BasicBlocks.begin(); }
iterator end () { return BasicBlocks.end(); }
const_iterator end () const { return BasicBlocks.end(); }
size_t size() const { return BasicBlocks.size(); }
bool empty() const { return BasicBlocks.empty(); }
const BasicBlock &front() const { return BasicBlocks.front(); }
BasicBlock &front() { return BasicBlocks.front(); }
const BasicBlock &back() const { return BasicBlocks.back(); }
BasicBlock &back() { return BasicBlocks.back(); }
/// @name Function Argument Iteration
/// @{
arg_iterator arg_begin() {
CheckLazyArguments();
return Arguments;
}
const_arg_iterator arg_begin() const {
CheckLazyArguments();
return Arguments;
}
arg_iterator arg_end() {
CheckLazyArguments();
return Arguments + NumArgs;
}
const_arg_iterator arg_end() const {
CheckLazyArguments();
return Arguments + NumArgs;
}
Argument* getArg(unsigned i) const {
assert (i < NumArgs && "getArg() out of range!");
CheckLazyArguments();
return Arguments + i;
}
iterator_range<arg_iterator> args() {
return make_range(arg_begin(), arg_end());
}
iterator_range<const_arg_iterator> args() const {
return make_range(arg_begin(), arg_end());
}
/// @}
size_t arg_size() const { return NumArgs; }
bool arg_empty() const { return arg_size() == 0; }
/// Check whether this function has a personality function.
bool hasPersonalityFn() const {
return getSubclassDataFromValue() & (1<<3);
}
/// Get the personality function associated with this function.
Constant *getPersonalityFn() const;
void setPersonalityFn(Constant *Fn);
/// Check whether this function has prefix data.
bool hasPrefixData() const {
return getSubclassDataFromValue() & (1<<1);
}
/// Get the prefix data associated with this function.
Constant *getPrefixData() const;
void setPrefixData(Constant *PrefixData);
/// Check whether this function has prologue data.
bool hasPrologueData() const {
return getSubclassDataFromValue() & (1<<2);
}
/// Get the prologue data associated with this function.
Constant *getPrologueData() const;
void setPrologueData(Constant *PrologueData);
/// Print the function to an output stream with an optional
/// AssemblyAnnotationWriter.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW = nullptr,
bool ShouldPreserveUseListOrder = false,
bool IsForDebug = false) const;
/// viewCFG - This function is meant for use from the debugger. You can just
/// say 'call F->viewCFG()' and a ghostview window should pop up from the
/// program, displaying the CFG of the current function with the code for each
/// basic block inside. This depends on there being a 'dot' and 'gv' program
/// in your path.
///
void viewCFG() const;
/// Extended form to print edge weights.
void viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI) const;
/// viewCFGOnly - This function is meant for use from the debugger. It works
/// just like viewCFG, but it does not include the contents of basic blocks
/// into the nodes, just the label. If you are only interested in the CFG
/// this can make the graph smaller.
///
void viewCFGOnly() const;
/// Extended form to print edge weights.
void viewCFGOnly(const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == Value::FunctionVal;
}
/// dropAllReferences() - This method causes all the subinstructions to "let
/// go" of all references that they are maintaining. This allows one to
/// 'delete' a whole module at a time, even though there may be circular
/// references... first all references are dropped, and all use counts go to
/// zero. Then everything is deleted for real. Note that no operations are
/// valid on an object that has "dropped all references", except operator
/// delete.
///
/// Since no other object in the module can have references into the body of a
/// function, dropping all references deletes the entire body of the function,
/// including any contained basic blocks.
///
void dropAllReferences();
/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it, or blockaddress expressions.
/// Optionally passes back an offending user for diagnostic purposes,
/// ignores callback uses, assume like pointer annotation calls, references in
/// llvm.used and llvm.compiler.used variables, and operand bundle
/// "clang.arc.attachedcall".
bool hasAddressTaken(const User ** = nullptr,
bool IgnoreCallbackUses = false,
bool IgnoreAssumeLikeCalls = true,
bool IngoreLLVMUsed = false,
bool IgnoreARCAttachedCall = false) const;
/// isDefTriviallyDead - Return true if it is trivially safe to remove
/// this function definition from the module (because it isn't externally
/// visible, does not have its address taken, and has no callers). To make
/// this more accurate, call removeDeadConstantUsers first.
bool isDefTriviallyDead() const;
/// callsFunctionThatReturnsTwice - Return true if the function has a call to
/// setjmp or other function that gcc recognizes as "returning twice".
bool callsFunctionThatReturnsTwice() const;
/// Set the attached subprogram.
///
/// Calls \a setMetadata() with \a LLVMContext::MD_dbg.
void setSubprogram(DISubprogram *SP);
/// Get the attached subprogram.
///
/// Calls \a getMetadata() with \a LLVMContext::MD_dbg and casts the result
/// to \a DISubprogram.
DISubprogram *getSubprogram() const;
/// Returns true if we should emit debug info for profiling.
bool isDebugInfoForProfiling() const;
/// Check if null pointer dereferencing is considered undefined behavior for
/// the function.
/// Return value: false => null pointer dereference is undefined.
/// Return value: true => null pointer dereference is not undefined.
bool nullPointerIsDefined() const;
private:
void allocHungoffUselist();
template<int Idx> void setHungoffOperand(Constant *C);
/// Shadow Value::setValueSubclassData with a private forwarding method so
/// that subclasses cannot accidentally use it.
void setValueSubclassData(unsigned short D) {
Value::setValueSubclassData(D);
}
void setValueSubclassDataBit(unsigned Bit, bool On);
};
/// Check whether null pointer dereferencing is considered undefined behavior
/// for a given function or an address space.
/// Null pointer access in non-zero address space is not considered undefined.
/// Return value: false => null pointer dereference is undefined.
/// Return value: true => null pointer dereference is not undefined.
bool NullPointerIsDefined(const Function *F, unsigned AS = 0);
template <>
struct OperandTraits<Function> : public HungoffOperandTraits<3> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(Function, Value)
} // end namespace llvm
#endif // LLVM_IR_FUNCTION_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|