1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live range for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation ranges can have holes,
// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
// individual segment is represented as an instance of LiveRange::Segment,
// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <functional>
#include <memory>
#include <set>
#include <tuple>
#include <utility>
namespace llvm {
class CoalescerPair;
class LiveIntervals;
class MachineRegisterInfo;
class raw_ostream;
/// VNInfo - Value Number Information.
/// This class holds information about a machine level values, including
/// definition and use points.
///
class VNInfo {
public:
using Allocator = BumpPtrAllocator;
/// The ID number of this value.
unsigned id;
/// The index of the defining instruction.
SlotIndex def;
/// VNInfo constructor.
VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
/// VNInfo constructor, copies values from orig, except for the value number.
VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
/// Copy from the parameter into this VNInfo.
void copyFrom(VNInfo &src) {
def = src.def;
}
/// Returns true if this value is defined by a PHI instruction (or was,
/// PHI instructions may have been eliminated).
/// PHI-defs begin at a block boundary, all other defs begin at register or
/// EC slots.
bool isPHIDef() const { return def.isBlock(); }
/// Returns true if this value is unused.
bool isUnused() const { return !def.isValid(); }
/// Mark this value as unused.
void markUnused() { def = SlotIndex(); }
};
/// Result of a LiveRange query. This class hides the implementation details
/// of live ranges, and it should be used as the primary interface for
/// examining live ranges around instructions.
class LiveQueryResult {
VNInfo *const EarlyVal;
VNInfo *const LateVal;
const SlotIndex EndPoint;
const bool Kill;
public:
LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
bool Kill)
: EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
{}
/// Return the value that is live-in to the instruction. This is the value
/// that will be read by the instruction's use operands. Return NULL if no
/// value is live-in.
VNInfo *valueIn() const {
return EarlyVal;
}
/// Return true if the live-in value is killed by this instruction. This
/// means that either the live range ends at the instruction, or it changes
/// value.
bool isKill() const {
return Kill;
}
/// Return true if this instruction has a dead def.
bool isDeadDef() const {
return EndPoint.isDead();
}
/// Return the value leaving the instruction, if any. This can be a
/// live-through value, or a live def. A dead def returns NULL.
VNInfo *valueOut() const {
return isDeadDef() ? nullptr : LateVal;
}
/// Returns the value alive at the end of the instruction, if any. This can
/// be a live-through value, a live def or a dead def.
VNInfo *valueOutOrDead() const {
return LateVal;
}
/// Return the value defined by this instruction, if any. This includes
/// dead defs, it is the value created by the instruction's def operands.
VNInfo *valueDefined() const {
return EarlyVal == LateVal ? nullptr : LateVal;
}
/// Return the end point of the last live range segment to interact with
/// the instruction, if any.
///
/// The end point is an invalid SlotIndex only if the live range doesn't
/// intersect the instruction at all.
///
/// The end point may be at or past the end of the instruction's basic
/// block. That means the value was live out of the block.
SlotIndex endPoint() const {
return EndPoint;
}
};
/// This class represents the liveness of a register, stack slot, etc.
/// It manages an ordered list of Segment objects.
/// The Segments are organized in a static single assignment form: At places
/// where a new value is defined or different values reach a CFG join a new
/// segment with a new value number is used.
class LiveRange {
public:
/// This represents a simple continuous liveness interval for a value.
/// The start point is inclusive, the end point exclusive. These intervals
/// are rendered as [start,end).
struct Segment {
SlotIndex start; // Start point of the interval (inclusive)
SlotIndex end; // End point of the interval (exclusive)
VNInfo *valno = nullptr; // identifier for the value contained in this
// segment.
Segment() = default;
Segment(SlotIndex S, SlotIndex E, VNInfo *V)
: start(S), end(E), valno(V) {
assert(S < E && "Cannot create empty or backwards segment");
}
/// Return true if the index is covered by this segment.
bool contains(SlotIndex I) const {
return start <= I && I < end;
}
/// Return true if the given interval, [S, E), is covered by this segment.
bool containsInterval(SlotIndex S, SlotIndex E) const {
assert((S < E) && "Backwards interval?");
return (start <= S && S < end) && (start < E && E <= end);
}
bool operator<(const Segment &Other) const {
return std::tie(start, end) < std::tie(Other.start, Other.end);
}
bool operator==(const Segment &Other) const {
return start == Other.start && end == Other.end;
}
bool operator!=(const Segment &Other) const {
return !(*this == Other);
}
void dump() const;
};
using Segments = SmallVector<Segment, 2>;
using VNInfoList = SmallVector<VNInfo *, 2>;
Segments segments; // the liveness segments
VNInfoList valnos; // value#'s
// The segment set is used temporarily to accelerate initial computation
// of live ranges of physical registers in computeRegUnitRange.
// After that the set is flushed to the segment vector and deleted.
using SegmentSet = std::set<Segment>;
std::unique_ptr<SegmentSet> segmentSet;
using iterator = Segments::iterator;
using const_iterator = Segments::const_iterator;
iterator begin() { return segments.begin(); }
iterator end() { return segments.end(); }
const_iterator begin() const { return segments.begin(); }
const_iterator end() const { return segments.end(); }
using vni_iterator = VNInfoList::iterator;
using const_vni_iterator = VNInfoList::const_iterator;
vni_iterator vni_begin() { return valnos.begin(); }
vni_iterator vni_end() { return valnos.end(); }
const_vni_iterator vni_begin() const { return valnos.begin(); }
const_vni_iterator vni_end() const { return valnos.end(); }
/// Constructs a new LiveRange object.
LiveRange(bool UseSegmentSet = false)
: segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
: nullptr) {}
/// Constructs a new LiveRange object by copying segments and valnos from
/// another LiveRange.
LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
assert(Other.segmentSet == nullptr &&
"Copying of LiveRanges with active SegmentSets is not supported");
assign(Other, Allocator);
}
/// Copies values numbers and live segments from \p Other into this range.
void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
if (this == &Other)
return;
assert(Other.segmentSet == nullptr &&
"Copying of LiveRanges with active SegmentSets is not supported");
// Duplicate valnos.
for (const VNInfo *VNI : Other.valnos)
createValueCopy(VNI, Allocator);
// Now we can copy segments and remap their valnos.
for (const Segment &S : Other.segments)
segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
}
/// advanceTo - Advance the specified iterator to point to the Segment
/// containing the specified position, or end() if the position is past the
/// end of the range. If no Segment contains this position, but the
/// position is in a hole, this method returns an iterator pointing to the
/// Segment immediately after the hole.
iterator advanceTo(iterator I, SlotIndex Pos) {
assert(I != end());
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
}
const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
assert(I != end());
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
}
/// find - Return an iterator pointing to the first segment that ends after
/// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
/// when searching large ranges.
///
/// If Pos is contained in a Segment, that segment is returned.
/// If Pos is in a hole, the following Segment is returned.
/// If Pos is beyond endIndex, end() is returned.
iterator find(SlotIndex Pos);
const_iterator find(SlotIndex Pos) const {
return const_cast<LiveRange*>(this)->find(Pos);
}
void clear() {
valnos.clear();
segments.clear();
}
size_t size() const {
return segments.size();
}
bool hasAtLeastOneValue() const { return !valnos.empty(); }
bool containsOneValue() const { return valnos.size() == 1; }
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
/// getValNumInfo - Returns pointer to the specified val#.
///
inline VNInfo *getValNumInfo(unsigned ValNo) {
return valnos[ValNo];
}
inline const VNInfo *getValNumInfo(unsigned ValNo) const {
return valnos[ValNo];
}
/// containsValue - Returns true if VNI belongs to this range.
bool containsValue(const VNInfo *VNI) const {
return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
}
/// getNextValue - Create a new value number and return it. MIIdx specifies
/// the instruction that defines the value number.
VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
VNInfo *VNI =
new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
valnos.push_back(VNI);
return VNI;
}
/// createDeadDef - Make sure the range has a value defined at Def.
/// If one already exists, return it. Otherwise allocate a new value and
/// add liveness for a dead def.
VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
/// Create a def of value @p VNI. Return @p VNI. If there already exists
/// a definition at VNI->def, the value defined there must be @p VNI.
VNInfo *createDeadDef(VNInfo *VNI);
/// Create a copy of the given value. The new value will be identical except
/// for the Value number.
VNInfo *createValueCopy(const VNInfo *orig,
VNInfo::Allocator &VNInfoAllocator) {
VNInfo *VNI =
new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
valnos.push_back(VNI);
return VNI;
}
/// RenumberValues - Renumber all values in order of appearance and remove
/// unused values.
void RenumberValues();
/// MergeValueNumberInto - This method is called when two value numbers
/// are found to be equivalent. This eliminates V1, replacing all
/// segments with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
/// Merge all of the live segments of a specific val# in RHS into this live
/// range as the specified value number. The segments in RHS are allowed
/// to overlap with segments in the current range, it will replace the
/// value numbers of the overlaped live segments with the specified value
/// number.
void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
/// MergeValueInAsValue - Merge all of the segments of a specific val#
/// in RHS into this live range as the specified value number.
/// The segments in RHS are allowed to overlap with segments in the
/// current range, but only if the overlapping segments have the
/// specified value number.
void MergeValueInAsValue(const LiveRange &RHS,
const VNInfo *RHSValNo, VNInfo *LHSValNo);
bool empty() const { return segments.empty(); }
/// beginIndex - Return the lowest numbered slot covered.
SlotIndex beginIndex() const {
assert(!empty() && "Call to beginIndex() on empty range.");
return segments.front().start;
}
/// endNumber - return the maximum point of the range of the whole,
/// exclusive.
SlotIndex endIndex() const {
assert(!empty() && "Call to endIndex() on empty range.");
return segments.back().end;
}
bool expiredAt(SlotIndex index) const {
return index >= endIndex();
}
bool liveAt(SlotIndex index) const {
const_iterator r = find(index);
return r != end() && r->start <= index;
}
/// Return the segment that contains the specified index, or null if there
/// is none.
const Segment *getSegmentContaining(SlotIndex Idx) const {
const_iterator I = FindSegmentContaining(Idx);
return I == end() ? nullptr : &*I;
}
/// Return the live segment that contains the specified index, or null if
/// there is none.
Segment *getSegmentContaining(SlotIndex Idx) {
iterator I = FindSegmentContaining(Idx);
return I == end() ? nullptr : &*I;
}
/// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
VNInfo *getVNInfoAt(SlotIndex Idx) const {
const_iterator I = FindSegmentContaining(Idx);
return I == end() ? nullptr : I->valno;
}
/// getVNInfoBefore - Return the VNInfo that is live up to but not
/// necessarilly including Idx, or NULL. Use this to find the reaching def
/// used by an instruction at this SlotIndex position.
VNInfo *getVNInfoBefore(SlotIndex Idx) const {
const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
return I == end() ? nullptr : I->valno;
}
/// Return an iterator to the segment that contains the specified index, or
/// end() if there is none.
iterator FindSegmentContaining(SlotIndex Idx) {
iterator I = find(Idx);
return I != end() && I->start <= Idx ? I : end();
}
const_iterator FindSegmentContaining(SlotIndex Idx) const {
const_iterator I = find(Idx);
return I != end() && I->start <= Idx ? I : end();
}
/// overlaps - Return true if the intersection of the two live ranges is
/// not empty.
bool overlaps(const LiveRange &other) const {
if (other.empty())
return false;
return overlapsFrom(other, other.begin());
}
/// overlaps - Return true if the two ranges have overlapping segments
/// that are not coalescable according to CP.
///
/// Overlapping segments where one range is defined by a coalescable
/// copy are allowed.
bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
const SlotIndexes&) const;
/// overlaps - Return true if the live range overlaps an interval specified
/// by [Start, End).
bool overlaps(SlotIndex Start, SlotIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live ranges
/// is not empty. The specified iterator is a hint that we can begin
/// scanning the Other range starting at I.
bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
/// Returns true if all segments of the @p Other live range are completely
/// covered by this live range.
/// Adjacent live ranges do not affect the covering:the liverange
/// [1,5](5,10] covers (3,7].
bool covers(const LiveRange &Other) const;
/// Add the specified Segment to this range, merging segments as
/// appropriate. This returns an iterator to the inserted segment (which
/// may have grown since it was inserted).
iterator addSegment(Segment S);
/// Attempt to extend a value defined after @p StartIdx to include @p Use.
/// Both @p StartIdx and @p Use should be in the same basic block. In case
/// of subranges, an extension could be prevented by an explicit "undef"
/// caused by a <def,read-undef> on a non-overlapping lane. The list of
/// location of such "undefs" should be provided in @p Undefs.
/// The return value is a pair: the first element is VNInfo of the value
/// that was extended (possibly nullptr), the second is a boolean value
/// indicating whether an "undef" was encountered.
/// If this range is live before @p Use in the basic block that starts at
/// @p StartIdx, and there is no intervening "undef", extend it to be live
/// up to @p Use, and return the pair {value, false}. If there is no
/// segment before @p Use and there is no "undef" between @p StartIdx and
/// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
/// return {nullptr, true}.
std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
SlotIndex StartIdx, SlotIndex Kill);
/// Simplified version of the above "extendInBlock", which assumes that
/// no register lanes are undefined by <def,read-undef> operands.
/// If this range is live before @p Use in the basic block that starts
/// at @p StartIdx, extend it to be live up to @p Use, and return the
/// value. If there is no segment before @p Use, return nullptr.
VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
/// join - Join two live ranges (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS ranges as specified. If
/// the ranges are not joinable, this aborts.
void join(LiveRange &Other,
const int *ValNoAssignments,
const int *RHSValNoAssignments,
SmallVectorImpl<VNInfo *> &NewVNInfo);
/// True iff this segment is a single segment that lies between the
/// specified boundaries, exclusively. Vregs live across a backedge are not
/// considered local. The boundaries are expected to lie within an extended
/// basic block, so vregs that are not live out should contain no holes.
bool isLocal(SlotIndex Start, SlotIndex End) const {
return beginIndex() > Start.getBaseIndex() &&
endIndex() < End.getBoundaryIndex();
}
/// Remove the specified segment from this range. Note that the segment
/// must be a single Segment in its entirety.
void removeSegment(SlotIndex Start, SlotIndex End,
bool RemoveDeadValNo = false);
void removeSegment(Segment S, bool RemoveDeadValNo = false) {
removeSegment(S.start, S.end, RemoveDeadValNo);
}
/// Remove segment pointed to by iterator @p I from this range.
iterator removeSegment(iterator I, bool RemoveDeadValNo = false);
/// Mark \p ValNo for deletion if no segments in this range use it.
void removeValNoIfDead(VNInfo *ValNo);
/// Query Liveness at Idx.
/// The sub-instruction slot of Idx doesn't matter, only the instruction
/// it refers to is considered.
LiveQueryResult Query(SlotIndex Idx) const {
// Find the segment that enters the instruction.
const_iterator I = find(Idx.getBaseIndex());
const_iterator E = end();
if (I == E)
return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
// Is this an instruction live-in segment?
// If Idx is the start index of a basic block, include live-in segments
// that start at Idx.getBaseIndex().
VNInfo *EarlyVal = nullptr;
VNInfo *LateVal = nullptr;
SlotIndex EndPoint;
bool Kill = false;
if (I->start <= Idx.getBaseIndex()) {
EarlyVal = I->valno;
EndPoint = I->end;
// Move to the potentially live-out segment.
if (SlotIndex::isSameInstr(Idx, I->end)) {
Kill = true;
if (++I == E)
return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
}
// Special case: A PHIDef value can have its def in the middle of a
// segment if the value happens to be live out of the layout
// predecessor.
// Such a value is not live-in.
if (EarlyVal->def == Idx.getBaseIndex())
EarlyVal = nullptr;
}
// I now points to the segment that may be live-through, or defined by
// this instr. Ignore segments starting after the current instr.
if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
LateVal = I->valno;
EndPoint = I->end;
}
return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
}
/// removeValNo - Remove all the segments defined by the specified value#.
/// Also remove the value# from value# list.
void removeValNo(VNInfo *ValNo);
/// Returns true if the live range is zero length, i.e. no live segments
/// span instructions. It doesn't pay to spill such a range.
bool isZeroLength(SlotIndexes *Indexes) const {
for (const Segment &S : segments)
if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
S.end.getBaseIndex())
return false;
return true;
}
// Returns true if any segment in the live range contains any of the
// provided slot indexes. Slots which occur in holes between
// segments will not cause the function to return true.
bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
bool operator<(const LiveRange& other) const {
const SlotIndex &thisIndex = beginIndex();
const SlotIndex &otherIndex = other.beginIndex();
return thisIndex < otherIndex;
}
/// Returns true if there is an explicit "undef" between @p Begin
/// @p End.
bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
SlotIndex End) const {
return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool {
return Begin <= Idx && Idx < End;
});
}
/// Flush segment set into the regular segment vector.
/// The method is to be called after the live range
/// has been created, if use of the segment set was
/// activated in the constructor of the live range.
void flushSegmentSet();
/// Stores indexes from the input index sequence R at which this LiveRange
/// is live to the output O iterator.
/// R is a range of _ascending sorted_ _random_ access iterators
/// to the input indexes. Indexes stored at O are ascending sorted so it
/// can be used directly in the subsequent search (for example for
/// subranges). Returns true if found at least one index.
template <typename Range, typename OutputIt>
bool findIndexesLiveAt(Range &&R, OutputIt O) const {
assert(llvm::is_sorted(R));
auto Idx = R.begin(), EndIdx = R.end();
auto Seg = segments.begin(), EndSeg = segments.end();
bool Found = false;
while (Idx != EndIdx && Seg != EndSeg) {
// if the Seg is lower find first segment that is above Idx using binary
// search
if (Seg->end <= *Idx) {
Seg = std::upper_bound(
++Seg, EndSeg, *Idx,
[=](std::remove_reference_t<decltype(*Idx)> V,
const std::remove_reference_t<decltype(*Seg)> &S) {
return V < S.end;
});
if (Seg == EndSeg)
break;
}
auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
if (NotLessStart == EndIdx)
break;
auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
if (NotLessEnd != NotLessStart) {
Found = true;
O = std::copy(NotLessStart, NotLessEnd, O);
}
Idx = NotLessEnd;
++Seg;
}
return Found;
}
void print(raw_ostream &OS) const;
void dump() const;
/// Walk the range and assert if any invariants fail to hold.
///
/// Note that this is a no-op when asserts are disabled.
#ifdef NDEBUG
void verify() const {}
#else
void verify() const;
#endif
protected:
/// Append a segment to the list of segments.
void append(const LiveRange::Segment S);
private:
friend class LiveRangeUpdater;
void addSegmentToSet(Segment S);
void markValNoForDeletion(VNInfo *V);
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
LR.print(OS);
return OS;
}
/// LiveInterval - This class represents the liveness of a register,
/// or stack slot.
class LiveInterval : public LiveRange {
public:
using super = LiveRange;
/// A live range for subregisters. The LaneMask specifies which parts of the
/// super register are covered by the interval.
/// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
class SubRange : public LiveRange {
public:
SubRange *Next = nullptr;
LaneBitmask LaneMask;
/// Constructs a new SubRange object.
SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
/// Constructs a new SubRange object by copying liveness from @p Other.
SubRange(LaneBitmask LaneMask, const LiveRange &Other,
BumpPtrAllocator &Allocator)
: LiveRange(Other, Allocator), LaneMask(LaneMask) {}
void print(raw_ostream &OS) const;
void dump() const;
};
private:
SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
/// ranges.
const Register Reg; // the register or stack slot of this interval.
float Weight = 0.0; // weight of this interval
public:
Register reg() const { return Reg; }
float weight() const { return Weight; }
void incrementWeight(float Inc) { Weight += Inc; }
void setWeight(float Value) { Weight = Value; }
LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {}
~LiveInterval() {
clearSubRanges();
}
template<typename T>
class SingleLinkedListIterator {
T *P;
public:
SingleLinkedListIterator(T *P) : P(P) {}
SingleLinkedListIterator<T> &operator++() {
P = P->Next;
return *this;
}
SingleLinkedListIterator<T> operator++(int) {
SingleLinkedListIterator res = *this;
++*this;
return res;
}
bool operator!=(const SingleLinkedListIterator<T> &Other) const {
return P != Other.operator->();
}
bool operator==(const SingleLinkedListIterator<T> &Other) const {
return P == Other.operator->();
}
T &operator*() const {
return *P;
}
T *operator->() const {
return P;
}
};
using subrange_iterator = SingleLinkedListIterator<SubRange>;
using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
subrange_iterator subrange_begin() {
return subrange_iterator(SubRanges);
}
subrange_iterator subrange_end() {
return subrange_iterator(nullptr);
}
const_subrange_iterator subrange_begin() const {
return const_subrange_iterator(SubRanges);
}
const_subrange_iterator subrange_end() const {
return const_subrange_iterator(nullptr);
}
iterator_range<subrange_iterator> subranges() {
return make_range(subrange_begin(), subrange_end());
}
iterator_range<const_subrange_iterator> subranges() const {
return make_range(subrange_begin(), subrange_end());
}
/// Creates a new empty subregister live range. The range is added at the
/// beginning of the subrange list; subrange iterators stay valid.
SubRange *createSubRange(BumpPtrAllocator &Allocator,
LaneBitmask LaneMask) {
SubRange *Range = new (Allocator) SubRange(LaneMask);
appendSubRange(Range);
return Range;
}
/// Like createSubRange() but the new range is filled with a copy of the
/// liveness information in @p CopyFrom.
SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
LaneBitmask LaneMask,
const LiveRange &CopyFrom) {
SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
appendSubRange(Range);
return Range;
}
/// Returns true if subregister liveness information is available.
bool hasSubRanges() const {
return SubRanges != nullptr;
}
/// Removes all subregister liveness information.
void clearSubRanges();
/// Removes all subranges without any segments (subranges without segments
/// are not considered valid and should only exist temporarily).
void removeEmptySubRanges();
/// getSize - Returns the sum of sizes of all the LiveRange's.
///
unsigned getSize() const;
/// isSpillable - Can this interval be spilled?
bool isSpillable() const { return Weight != huge_valf; }
/// markNotSpillable - Mark interval as not spillable
void markNotSpillable() { Weight = huge_valf; }
/// For a given lane mask @p LaneMask, compute indexes at which the
/// lane is marked undefined by subregister <def,read-undef> definitions.
void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
LaneBitmask LaneMask,
const MachineRegisterInfo &MRI,
const SlotIndexes &Indexes) const;
/// Refines the subranges to support \p LaneMask. This may only be called
/// for LI.hasSubrange()==true. Subregister ranges are split or created
/// until \p LaneMask can be matched exactly. \p Mod is executed on the
/// matching subranges.
///
/// Example:
/// Given an interval with subranges with lanemasks L0F00, L00F0 and
/// L000F, refining for mask L0018. Will split the L00F0 lane into
/// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
/// function will be applied to the L0010 and L0008 subranges.
///
/// \p Indexes and \p TRI are required to clean up the VNIs that
/// don't define the related lane masks after they get shrunk. E.g.,
/// when L000F gets split into L0007 and L0008 maybe only a subset
/// of the VNIs that defined L000F defines L0007.
///
/// The clean up of the VNIs need to look at the actual instructions
/// to decide what is or is not live at a definition point. If the
/// update of the subranges occurs while the IR does not reflect these
/// changes, \p ComposeSubRegIdx can be used to specify how the
/// definition are going to be rewritten.
/// E.g., let say we want to merge:
/// V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
/// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
/// overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
/// Put differently we align V2's sub3 with V1's sub1:
/// V2: sub0 sub1 sub2 sub3
/// V1: <offset> sub0 sub1
///
/// This offset will look like a composed subregidx in the the class:
/// V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
/// => V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
///
/// Now if we didn't rewrite the uses and def of V1, all the checks for V1
/// need to account for this offset.
/// This happens during coalescing where we update the live-ranges while
/// still having the old IR around because updating the IR on-the-fly
/// would actually clobber some information on how the live-ranges that
/// are being updated look like.
void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
std::function<void(LiveInterval::SubRange &)> Apply,
const SlotIndexes &Indexes,
const TargetRegisterInfo &TRI,
unsigned ComposeSubRegIdx = 0);
bool operator<(const LiveInterval& other) const {
const SlotIndex &thisIndex = beginIndex();
const SlotIndex &otherIndex = other.beginIndex();
return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg);
}
void print(raw_ostream &OS) const;
void dump() const;
/// Walks the interval and assert if any invariants fail to hold.
///
/// Note that this is a no-op when asserts are disabled.
#ifdef NDEBUG
void verify(const MachineRegisterInfo *MRI = nullptr) const {}
#else
void verify(const MachineRegisterInfo *MRI = nullptr) const;
#endif
private:
/// Appends @p Range to SubRanges list.
void appendSubRange(SubRange *Range) {
Range->Next = SubRanges;
SubRanges = Range;
}
/// Free memory held by SubRange.
void freeSubRange(SubRange *S);
};
inline raw_ostream &operator<<(raw_ostream &OS,
const LiveInterval::SubRange &SR) {
SR.print(OS);
return OS;
}
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
LI.print(OS);
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
return V < S.start;
}
inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
return S.start < V;
}
/// Helper class for performant LiveRange bulk updates.
///
/// Calling LiveRange::addSegment() repeatedly can be expensive on large
/// live ranges because segments after the insertion point may need to be
/// shifted. The LiveRangeUpdater class can defer the shifting when adding
/// many segments in order.
///
/// The LiveRange will be in an invalid state until flush() is called.
class LiveRangeUpdater {
LiveRange *LR;
SlotIndex LastStart;
LiveRange::iterator WriteI;
LiveRange::iterator ReadI;
SmallVector<LiveRange::Segment, 16> Spills;
void mergeSpills();
public:
/// Create a LiveRangeUpdater for adding segments to LR.
/// LR will temporarily be in an invalid state until flush() is called.
LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
~LiveRangeUpdater() { flush(); }
/// Add a segment to LR and coalesce when possible, just like
/// LR.addSegment(). Segments should be added in increasing start order for
/// best performance.
void add(LiveRange::Segment);
void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
add(LiveRange::Segment(Start, End, VNI));
}
/// Return true if the LR is currently in an invalid state, and flush()
/// needs to be called.
bool isDirty() const { return LastStart.isValid(); }
/// Flush the updater state to LR so it is valid and contains all added
/// segments.
void flush();
/// Select a different destination live range.
void setDest(LiveRange *lr) {
if (LR != lr && isDirty())
flush();
LR = lr;
}
/// Get the current destination live range.
LiveRange *getDest() const { return LR; }
void dump() const;
void print(raw_ostream&) const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
X.print(OS);
return OS;
}
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
/// LiveInterval into equivalence clases of connected components. A
/// LiveInterval that has multiple connected components can be broken into
/// multiple LiveIntervals.
///
/// Given a LiveInterval that may have multiple connected components, run:
///
/// unsigned numComps = ConEQ.Classify(LI);
/// if (numComps > 1) {
/// // allocate numComps-1 new LiveIntervals into LIS[1..]
/// ConEQ.Distribute(LIS);
/// }
class ConnectedVNInfoEqClasses {
LiveIntervals &LIS;
IntEqClasses EqClass;
public:
explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
/// Classify the values in \p LR into connected components.
/// Returns the number of connected components.
unsigned Classify(const LiveRange &LR);
/// getEqClass - Classify creates equivalence classes numbered 0..N. Return
/// the equivalence class assigned the VNI.
unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
/// Distribute values in \p LI into a separate LiveIntervals
/// for each connected component. LIV must have an empty LiveInterval for
/// each additional connected component. The first connected component is
/// left in \p LI.
void Distribute(LiveInterval &LI, LiveInterval *LIV[],
MachineRegisterInfo &MRI);
};
} // end namespace llvm
#endif // LLVM_CODEGEN_LIVEINTERVAL_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|