1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//=- llvm/CodeGen/GlobalISel/RegBankSelect.h - Reg Bank Selector --*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file describes the interface of the MachineFunctionPass
/// responsible for assigning the generic virtual registers to register bank.
///
/// By default, the reg bank selector relies on local decisions to
/// assign the register bank. In other words, it looks at one instruction
/// at a time to decide where the operand of that instruction should live.
///
/// At higher optimization level, we could imagine that the reg bank selector
/// would use more global analysis and do crazier thing like duplicating
/// instructions and so on. This is future work.
///
/// For now, the pass uses a greedy algorithm to decide where the operand
/// of an instruction should live. It asks the target which banks may be
/// used for each operand of the instruction and what is the cost. Then,
/// it chooses the solution which minimize the cost of the instruction plus
/// the cost of any move that may be needed to the values into the right
/// register bank.
/// In other words, the cost for an instruction on a register bank RegBank
/// is: Cost of I on RegBank plus the sum of the cost for bringing the
/// input operands from their current register bank to RegBank.
/// Thus, the following formula:
/// cost(I, RegBank) = cost(I.Opcode, RegBank) +
/// sum(for each arg in I.arguments: costCrossCopy(arg.RegBank, RegBank))
///
/// E.g., Let say we are assigning the register bank for the instruction
/// defining v2.
/// v0(A_REGBANK) = ...
/// v1(A_REGBANK) = ...
/// v2 = G_ADD i32 v0, v1 <-- MI
///
/// The target may say it can generate G_ADD i32 on register bank A and B
/// with a cost of respectively 5 and 1.
/// Then, let say the cost of a cross register bank copies from A to B is 1.
/// The reg bank selector would compare the following two costs:
/// cost(MI, A_REGBANK) = cost(G_ADD, A_REGBANK) + cost(v0.RegBank, A_REGBANK) +
/// cost(v1.RegBank, A_REGBANK)
/// = 5 + cost(A_REGBANK, A_REGBANK) + cost(A_REGBANK,
/// A_REGBANK)
/// = 5 + 0 + 0 = 5
/// cost(MI, B_REGBANK) = cost(G_ADD, B_REGBANK) + cost(v0.RegBank, B_REGBANK) +
/// cost(v1.RegBank, B_REGBANK)
/// = 1 + cost(A_REGBANK, B_REGBANK) + cost(A_REGBANK,
/// B_REGBANK)
/// = 1 + 1 + 1 = 3
/// Therefore, in this specific example, the reg bank selector would choose
/// bank B for MI.
/// v0(A_REGBANK) = ...
/// v1(A_REGBANK) = ...
/// tmp0(B_REGBANK) = COPY v0
/// tmp1(B_REGBANK) = COPY v1
/// v2(B_REGBANK) = G_ADD i32 tmp0, tmp1
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_GLOBALISEL_REGBANKSELECT_H
#define LLVM_CODEGEN_GLOBALISEL_REGBANKSELECT_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include <cassert>
#include <cstdint>
#include <memory>
namespace llvm {
class BlockFrequency;
class MachineBlockFrequencyInfo;
class MachineBranchProbabilityInfo;
class MachineOperand;
class MachineRegisterInfo;
class Pass;
class raw_ostream;
class TargetPassConfig;
class TargetRegisterInfo;
/// This pass implements the reg bank selector pass used in the GlobalISel
/// pipeline. At the end of this pass, all register operands have been assigned
class RegBankSelect : public MachineFunctionPass {
public:
static char ID;
/// List of the modes supported by the RegBankSelect pass.
enum Mode {
/// Assign the register banks as fast as possible (default).
Fast,
/// Greedily minimize the cost of assigning register banks.
/// This should produce code of greater quality, but will
/// require more compile time.
Greedy
};
/// Abstract class used to represent an insertion point in a CFG.
/// This class records an insertion point and materializes it on
/// demand.
/// It allows to reason about the frequency of this insertion point,
/// without having to logically materialize it (e.g., on an edge),
/// before we actually need to insert something.
class InsertPoint {
protected:
/// Tell if the insert point has already been materialized.
bool WasMaterialized = false;
/// Materialize the insertion point.
///
/// If isSplit() is true, this involves actually splitting
/// the block or edge.
///
/// \post getPointImpl() returns a valid iterator.
/// \post getInsertMBBImpl() returns a valid basic block.
/// \post isSplit() == false ; no more splitting should be required.
virtual void materialize() = 0;
/// Return the materialized insertion basic block.
/// Code will be inserted into that basic block.
///
/// \pre ::materialize has been called.
virtual MachineBasicBlock &getInsertMBBImpl() = 0;
/// Return the materialized insertion point.
/// Code will be inserted before that point.
///
/// \pre ::materialize has been called.
virtual MachineBasicBlock::iterator getPointImpl() = 0;
public:
virtual ~InsertPoint() = default;
/// The first call to this method will cause the splitting to
/// happen if need be, then sub sequent calls just return
/// the iterator to that point. I.e., no more splitting will
/// occur.
///
/// \return The iterator that should be used with
/// MachineBasicBlock::insert. I.e., additional code happens
/// before that point.
MachineBasicBlock::iterator getPoint() {
if (!WasMaterialized) {
WasMaterialized = true;
assert(canMaterialize() && "Impossible to materialize this point");
materialize();
}
// When we materialized the point we should have done the splitting.
assert(!isSplit() && "Wrong pre-condition");
return getPointImpl();
}
/// The first call to this method will cause the splitting to
/// happen if need be, then sub sequent calls just return
/// the basic block that contains the insertion point.
/// I.e., no more splitting will occur.
///
/// \return The basic block should be used with
/// MachineBasicBlock::insert and ::getPoint. The new code should
/// happen before that point.
MachineBasicBlock &getInsertMBB() {
if (!WasMaterialized) {
WasMaterialized = true;
assert(canMaterialize() && "Impossible to materialize this point");
materialize();
}
// When we materialized the point we should have done the splitting.
assert(!isSplit() && "Wrong pre-condition");
return getInsertMBBImpl();
}
/// Insert \p MI in the just before ::getPoint()
MachineBasicBlock::iterator insert(MachineInstr &MI) {
return getInsertMBB().insert(getPoint(), &MI);
}
/// Does this point involve splitting an edge or block?
/// As soon as ::getPoint is called and thus, the point
/// materialized, the point will not require splitting anymore,
/// i.e., this will return false.
virtual bool isSplit() const { return false; }
/// Frequency of the insertion point.
/// \p P is used to access the various analysis that will help to
/// get that information, like MachineBlockFrequencyInfo. If \p P
/// does not contain enough enough to return the actual frequency,
/// this returns 1.
virtual uint64_t frequency(const Pass &P) const { return 1; }
/// Check whether this insertion point can be materialized.
/// As soon as ::getPoint is called and thus, the point materialized
/// calling this method does not make sense.
virtual bool canMaterialize() const { return false; }
};
/// Insertion point before or after an instruction.
class InstrInsertPoint : public InsertPoint {
private:
/// Insertion point.
MachineInstr &Instr;
/// Does the insertion point is before or after Instr.
bool Before;
void materialize() override;
MachineBasicBlock::iterator getPointImpl() override {
if (Before)
return Instr;
return Instr.getNextNode() ? *Instr.getNextNode()
: Instr.getParent()->end();
}
MachineBasicBlock &getInsertMBBImpl() override {
return *Instr.getParent();
}
public:
/// Create an insertion point before (\p Before=true) or after \p Instr.
InstrInsertPoint(MachineInstr &Instr, bool Before = true);
bool isSplit() const override;
uint64_t frequency(const Pass &P) const override;
// Worst case, we need to slice the basic block, but that is still doable.
bool canMaterialize() const override { return true; }
};
/// Insertion point at the beginning or end of a basic block.
class MBBInsertPoint : public InsertPoint {
private:
/// Insertion point.
MachineBasicBlock &MBB;
/// Does the insertion point is at the beginning or end of MBB.
bool Beginning;
void materialize() override { /*Nothing to do to materialize*/
}
MachineBasicBlock::iterator getPointImpl() override {
return Beginning ? MBB.begin() : MBB.end();
}
MachineBasicBlock &getInsertMBBImpl() override { return MBB; }
public:
MBBInsertPoint(MachineBasicBlock &MBB, bool Beginning = true)
: MBB(MBB), Beginning(Beginning) {
// If we try to insert before phis, we should use the insertion
// points on the incoming edges.
assert((!Beginning || MBB.getFirstNonPHI() == MBB.begin()) &&
"Invalid beginning point");
// If we try to insert after the terminators, we should use the
// points on the outcoming edges.
assert((Beginning || MBB.getFirstTerminator() == MBB.end()) &&
"Invalid end point");
}
bool isSplit() const override { return false; }
uint64_t frequency(const Pass &P) const override;
bool canMaterialize() const override { return true; };
};
/// Insertion point on an edge.
class EdgeInsertPoint : public InsertPoint {
private:
/// Source of the edge.
MachineBasicBlock &Src;
/// Destination of the edge.
/// After the materialization is done, this hold the basic block
/// that resulted from the splitting.
MachineBasicBlock *DstOrSplit;
/// P is used to update the analysis passes as applicable.
Pass &P;
void materialize() override;
MachineBasicBlock::iterator getPointImpl() override {
// DstOrSplit should be the Split block at this point.
// I.e., it should have one predecessor, Src, and one successor,
// the original Dst.
assert(DstOrSplit && DstOrSplit->isPredecessor(&Src) &&
DstOrSplit->pred_size() == 1 && DstOrSplit->succ_size() == 1 &&
"Did not split?!");
return DstOrSplit->begin();
}
MachineBasicBlock &getInsertMBBImpl() override { return *DstOrSplit; }
public:
EdgeInsertPoint(MachineBasicBlock &Src, MachineBasicBlock &Dst, Pass &P)
: Src(Src), DstOrSplit(&Dst), P(P) {}
bool isSplit() const override {
return Src.succ_size() > 1 && DstOrSplit->pred_size() > 1;
}
uint64_t frequency(const Pass &P) const override;
bool canMaterialize() const override;
};
/// Struct used to represent the placement of a repairing point for
/// a given operand.
class RepairingPlacement {
public:
/// Define the kind of action this repairing needs.
enum RepairingKind {
/// Nothing to repair, just drop this action.
None,
/// Reparing code needs to happen before InsertPoints.
Insert,
/// (Re)assign the register bank of the operand.
Reassign,
/// Mark this repairing placement as impossible.
Impossible
};
/// \name Convenient types for a list of insertion points.
/// @{
using InsertionPoints = SmallVector<std::unique_ptr<InsertPoint>, 2>;
using insertpt_iterator = InsertionPoints::iterator;
using const_insertpt_iterator = InsertionPoints::const_iterator;
/// @}
private:
/// Kind of repairing.
RepairingKind Kind;
/// Index of the operand that will be repaired.
unsigned OpIdx;
/// Are all the insert points materializeable?
bool CanMaterialize;
/// Is there any of the insert points needing splitting?
bool HasSplit = false;
/// Insertion point for the repair code.
/// The repairing code needs to happen just before these points.
InsertionPoints InsertPoints;
/// Some insertion points may need to update the liveness and such.
Pass &P;
public:
/// Create a repairing placement for the \p OpIdx-th operand of
/// \p MI. \p TRI is used to make some checks on the register aliases
/// if the machine operand is a physical register. \p P is used to
/// to update liveness information and such when materializing the
/// points.
RepairingPlacement(MachineInstr &MI, unsigned OpIdx,
const TargetRegisterInfo &TRI, Pass &P,
RepairingKind Kind = RepairingKind::Insert);
/// \name Getters.
/// @{
RepairingKind getKind() const { return Kind; }
unsigned getOpIdx() const { return OpIdx; }
bool canMaterialize() const { return CanMaterialize; }
bool hasSplit() { return HasSplit; }
/// @}
/// \name Overloaded methods to add an insertion point.
/// @{
/// Add a MBBInsertionPoint to the list of InsertPoints.
void addInsertPoint(MachineBasicBlock &MBB, bool Beginning);
/// Add a InstrInsertionPoint to the list of InsertPoints.
void addInsertPoint(MachineInstr &MI, bool Before);
/// Add an EdgeInsertionPoint (\p Src, \p Dst) to the list of InsertPoints.
void addInsertPoint(MachineBasicBlock &Src, MachineBasicBlock &Dst);
/// Add an InsertPoint to the list of insert points.
/// This method takes the ownership of &\p Point.
void addInsertPoint(InsertPoint &Point);
/// @}
/// \name Accessors related to the insertion points.
/// @{
insertpt_iterator begin() { return InsertPoints.begin(); }
insertpt_iterator end() { return InsertPoints.end(); }
const_insertpt_iterator begin() const { return InsertPoints.begin(); }
const_insertpt_iterator end() const { return InsertPoints.end(); }
unsigned getNumInsertPoints() const { return InsertPoints.size(); }
/// @}
/// Change the type of this repairing placement to \p NewKind.
/// It is not possible to switch a repairing placement to the
/// RepairingKind::Insert. There is no fundamental problem with
/// that, but no uses as well, so do not support it for now.
///
/// \pre NewKind != RepairingKind::Insert
/// \post getKind() == NewKind
void switchTo(RepairingKind NewKind) {
assert(NewKind != Kind && "Already of the right Kind");
Kind = NewKind;
InsertPoints.clear();
CanMaterialize = NewKind != RepairingKind::Impossible;
HasSplit = false;
assert(NewKind != RepairingKind::Insert &&
"We would need more MI to switch to Insert");
}
};
private:
/// Helper class used to represent the cost for mapping an instruction.
/// When mapping an instruction, we may introduce some repairing code.
/// In most cases, the repairing code is local to the instruction,
/// thus, we can omit the basic block frequency from the cost.
/// However, some alternatives may produce non-local cost, e.g., when
/// repairing a phi, and thus we then need to scale the local cost
/// to the non-local cost. This class does this for us.
/// \note: We could simply always scale the cost. The problem is that
/// there are higher chances that we saturate the cost easier and end
/// up having the same cost for actually different alternatives.
/// Another option would be to use APInt everywhere.
class MappingCost {
private:
/// Cost of the local instructions.
/// This cost is free of basic block frequency.
uint64_t LocalCost = 0;
/// Cost of the non-local instructions.
/// This cost should include the frequency of the related blocks.
uint64_t NonLocalCost = 0;
/// Frequency of the block where the local instructions live.
uint64_t LocalFreq;
MappingCost(uint64_t LocalCost, uint64_t NonLocalCost, uint64_t LocalFreq)
: LocalCost(LocalCost), NonLocalCost(NonLocalCost),
LocalFreq(LocalFreq) {}
/// Check if this cost is saturated.
bool isSaturated() const;
public:
/// Create a MappingCost assuming that most of the instructions
/// will occur in a basic block with \p LocalFreq frequency.
MappingCost(const BlockFrequency &LocalFreq);
/// Add \p Cost to the local cost.
/// \return true if this cost is saturated, false otherwise.
bool addLocalCost(uint64_t Cost);
/// Add \p Cost to the non-local cost.
/// Non-local cost should reflect the frequency of their placement.
/// \return true if this cost is saturated, false otherwise.
bool addNonLocalCost(uint64_t Cost);
/// Saturate the cost to the maximal representable value.
void saturate();
/// Return an instance of MappingCost that represents an
/// impossible mapping.
static MappingCost ImpossibleCost();
/// Check if this is less than \p Cost.
bool operator<(const MappingCost &Cost) const;
/// Check if this is equal to \p Cost.
bool operator==(const MappingCost &Cost) const;
/// Check if this is not equal to \p Cost.
bool operator!=(const MappingCost &Cost) const { return !(*this == Cost); }
/// Check if this is greater than \p Cost.
bool operator>(const MappingCost &Cost) const {
return *this != Cost && Cost < *this;
}
/// Print this on dbgs() stream.
void dump() const;
/// Print this on \p OS;
void print(raw_ostream &OS) const;
/// Overload the stream operator for easy debug printing.
friend raw_ostream &operator<<(raw_ostream &OS, const MappingCost &Cost) {
Cost.print(OS);
return OS;
}
};
/// Interface to the target lowering info related
/// to register banks.
const RegisterBankInfo *RBI = nullptr;
/// MRI contains all the register class/bank information that this
/// pass uses and updates.
MachineRegisterInfo *MRI = nullptr;
/// Information on the register classes for the current function.
const TargetRegisterInfo *TRI = nullptr;
/// Get the frequency of blocks.
/// This is required for non-fast mode.
MachineBlockFrequencyInfo *MBFI = nullptr;
/// Get the frequency of the edges.
/// This is required for non-fast mode.
MachineBranchProbabilityInfo *MBPI = nullptr;
/// Current optimization remark emitter. Used to report failures.
std::unique_ptr<MachineOptimizationRemarkEmitter> MORE;
/// Helper class used for every code morphing.
MachineIRBuilder MIRBuilder;
/// Optimization mode of the pass.
Mode OptMode;
/// Current target configuration. Controls how the pass handles errors.
const TargetPassConfig *TPC;
/// Assign the register bank of each operand of \p MI.
/// \return True on success, false otherwise.
bool assignInstr(MachineInstr &MI);
/// Initialize the field members using \p MF.
void init(MachineFunction &MF);
/// Check if \p Reg is already assigned what is described by \p ValMapping.
/// \p OnlyAssign == true means that \p Reg just needs to be assigned a
/// register bank. I.e., no repairing is necessary to have the
/// assignment match.
bool assignmentMatch(Register Reg,
const RegisterBankInfo::ValueMapping &ValMapping,
bool &OnlyAssign) const;
/// Insert repairing code for \p Reg as specified by \p ValMapping.
/// The repairing placement is specified by \p RepairPt.
/// \p NewVRegs contains all the registers required to remap \p Reg.
/// In other words, the number of registers in NewVRegs must be equal
/// to ValMapping.BreakDown.size().
///
/// The transformation could be sketched as:
/// \code
/// ... = op Reg
/// \endcode
/// Becomes
/// \code
/// <NewRegs> = COPY or extract Reg
/// ... = op Reg
/// \endcode
///
/// and
/// \code
/// Reg = op ...
/// \endcode
/// Becomes
/// \code
/// Reg = op ...
/// Reg = COPY or build_sequence <NewRegs>
/// \endcode
///
/// \pre NewVRegs.size() == ValMapping.BreakDown.size()
///
/// \note The caller is supposed to do the rewriting of op if need be.
/// I.e., Reg = op ... => <NewRegs> = NewOp ...
///
/// \return True if the repairing worked, false otherwise.
bool repairReg(MachineOperand &MO,
const RegisterBankInfo::ValueMapping &ValMapping,
RegBankSelect::RepairingPlacement &RepairPt,
const iterator_range<SmallVectorImpl<Register>::const_iterator>
&NewVRegs);
/// Return the cost of the instruction needed to map \p MO to \p ValMapping.
/// The cost is free of basic block frequencies.
/// \pre MO.isReg()
/// \pre MO is assigned to a register bank.
/// \pre ValMapping is a valid mapping for MO.
uint64_t
getRepairCost(const MachineOperand &MO,
const RegisterBankInfo::ValueMapping &ValMapping) const;
/// Find the best mapping for \p MI from \p PossibleMappings.
/// \return a reference on the best mapping in \p PossibleMappings.
const RegisterBankInfo::InstructionMapping &
findBestMapping(MachineInstr &MI,
RegisterBankInfo::InstructionMappings &PossibleMappings,
SmallVectorImpl<RepairingPlacement> &RepairPts);
/// Compute the cost of mapping \p MI with \p InstrMapping and
/// compute the repairing placement for such mapping in \p
/// RepairPts.
/// \p BestCost is used to specify when the cost becomes too high
/// and thus it is not worth computing the RepairPts. Moreover if
/// \p BestCost == nullptr, the mapping cost is actually not
/// computed.
MappingCost
computeMapping(MachineInstr &MI,
const RegisterBankInfo::InstructionMapping &InstrMapping,
SmallVectorImpl<RepairingPlacement> &RepairPts,
const MappingCost *BestCost = nullptr);
/// When \p RepairPt involves splitting to repair \p MO for the
/// given \p ValMapping, try to change the way we repair such that
/// the splitting is not required anymore.
///
/// \pre \p RepairPt.hasSplit()
/// \pre \p MO == MO.getParent()->getOperand(\p RepairPt.getOpIdx())
/// \pre \p ValMapping is the mapping of \p MO for MO.getParent()
/// that implied \p RepairPt.
void tryAvoidingSplit(RegBankSelect::RepairingPlacement &RepairPt,
const MachineOperand &MO,
const RegisterBankInfo::ValueMapping &ValMapping) const;
/// Apply \p Mapping to \p MI. \p RepairPts represents the different
/// mapping action that need to happen for the mapping to be
/// applied.
/// \return True if the mapping was applied sucessfully, false otherwise.
bool applyMapping(MachineInstr &MI,
const RegisterBankInfo::InstructionMapping &InstrMapping,
SmallVectorImpl<RepairingPlacement> &RepairPts);
public:
/// Create a RegBankSelect pass with the specified \p RunningMode.
RegBankSelect(Mode RunningMode = Fast);
StringRef getPassName() const override { return "RegBankSelect"; }
void getAnalysisUsage(AnalysisUsage &AU) const override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties()
.set(MachineFunctionProperties::Property::IsSSA)
.set(MachineFunctionProperties::Property::Legalized);
}
MachineFunctionProperties getSetProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::RegBankSelected);
}
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties()
.set(MachineFunctionProperties::Property::NoPHIs);
}
/// Walk through \p MF and assign a register bank to every virtual register
/// that are still mapped to nothing.
/// The target needs to provide a RegisterBankInfo and in particular
/// override RegisterBankInfo::getInstrMapping.
///
/// Simplified algo:
/// \code
/// RBI = MF.subtarget.getRegBankInfo()
/// MIRBuilder.setMF(MF)
/// for each bb in MF
/// for each inst in bb
/// MIRBuilder.setInstr(inst)
/// MappingCosts = RBI.getMapping(inst);
/// Idx = findIdxOfMinCost(MappingCosts)
/// CurRegBank = MappingCosts[Idx].RegBank
/// MRI.setRegBank(inst.getOperand(0).getReg(), CurRegBank)
/// for each argument in inst
/// if (CurRegBank != argument.RegBank)
/// ArgReg = argument.getReg()
/// Tmp = MRI.createNewVirtual(MRI.getSize(ArgReg), CurRegBank)
/// MIRBuilder.buildInstr(COPY, Tmp, ArgReg)
/// inst.getOperand(argument.getOperandNo()).setReg(Tmp)
/// \endcode
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end namespace llvm
#endif // LLVM_CODEGEN_GLOBALISEL_REGBANKSELECT_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|