1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.h - MIBuilder --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file declares the MachineIRBuilder class.
/// This is a helper class to build MachineInstr.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
#define LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Module.h"
namespace llvm {
// Forward declarations.
class MachineFunction;
class MachineInstr;
class TargetInstrInfo;
class GISelChangeObserver;
/// Class which stores all the state required in a MachineIRBuilder.
/// Since MachineIRBuilders will only store state in this object, it allows
/// to transfer BuilderState between different kinds of MachineIRBuilders.
struct MachineIRBuilderState {
/// MachineFunction under construction.
MachineFunction *MF = nullptr;
/// Information used to access the description of the opcodes.
const TargetInstrInfo *TII = nullptr;
/// Information used to verify types are consistent and to create virtual registers.
MachineRegisterInfo *MRI = nullptr;
/// Debug location to be set to any instruction we create.
DebugLoc DL;
/// \name Fields describing the insertion point.
/// @{
MachineBasicBlock *MBB = nullptr;
MachineBasicBlock::iterator II;
/// @}
GISelChangeObserver *Observer = nullptr;
GISelCSEInfo *CSEInfo = nullptr;
};
class DstOp {
union {
LLT LLTTy;
Register Reg;
const TargetRegisterClass *RC;
};
public:
enum class DstType { Ty_LLT, Ty_Reg, Ty_RC };
DstOp(unsigned R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(Register R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(DstType::Ty_Reg) {}
DstOp(const LLT T) : LLTTy(T), Ty(DstType::Ty_LLT) {}
DstOp(const TargetRegisterClass *TRC) : RC(TRC), Ty(DstType::Ty_RC) {}
void addDefToMIB(MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) const {
switch (Ty) {
case DstType::Ty_Reg:
MIB.addDef(Reg);
break;
case DstType::Ty_LLT:
MIB.addDef(MRI.createGenericVirtualRegister(LLTTy));
break;
case DstType::Ty_RC:
MIB.addDef(MRI.createVirtualRegister(RC));
break;
}
}
LLT getLLTTy(const MachineRegisterInfo &MRI) const {
switch (Ty) {
case DstType::Ty_RC:
return LLT{};
case DstType::Ty_LLT:
return LLTTy;
case DstType::Ty_Reg:
return MRI.getType(Reg);
}
llvm_unreachable("Unrecognised DstOp::DstType enum");
}
Register getReg() const {
assert(Ty == DstType::Ty_Reg && "Not a register");
return Reg;
}
const TargetRegisterClass *getRegClass() const {
switch (Ty) {
case DstType::Ty_RC:
return RC;
default:
llvm_unreachable("Not a RC Operand");
}
}
DstType getDstOpKind() const { return Ty; }
private:
DstType Ty;
};
class SrcOp {
union {
MachineInstrBuilder SrcMIB;
Register Reg;
CmpInst::Predicate Pred;
int64_t Imm;
};
public:
enum class SrcType { Ty_Reg, Ty_MIB, Ty_Predicate, Ty_Imm };
SrcOp(Register R) : Reg(R), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineInstrBuilder &MIB) : SrcMIB(MIB), Ty(SrcType::Ty_MIB) {}
SrcOp(const CmpInst::Predicate P) : Pred(P), Ty(SrcType::Ty_Predicate) {}
/// Use of registers held in unsigned integer variables (or more rarely signed
/// integers) is no longer permitted to avoid ambiguity with upcoming support
/// for immediates.
SrcOp(unsigned) = delete;
SrcOp(int) = delete;
SrcOp(uint64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
SrcOp(int64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
void addSrcToMIB(MachineInstrBuilder &MIB) const {
switch (Ty) {
case SrcType::Ty_Predicate:
MIB.addPredicate(Pred);
break;
case SrcType::Ty_Reg:
MIB.addUse(Reg);
break;
case SrcType::Ty_MIB:
MIB.addUse(SrcMIB->getOperand(0).getReg());
break;
case SrcType::Ty_Imm:
MIB.addImm(Imm);
break;
}
}
LLT getLLTTy(const MachineRegisterInfo &MRI) const {
switch (Ty) {
case SrcType::Ty_Predicate:
case SrcType::Ty_Imm:
llvm_unreachable("Not a register operand");
case SrcType::Ty_Reg:
return MRI.getType(Reg);
case SrcType::Ty_MIB:
return MRI.getType(SrcMIB->getOperand(0).getReg());
}
llvm_unreachable("Unrecognised SrcOp::SrcType enum");
}
Register getReg() const {
switch (Ty) {
case SrcType::Ty_Predicate:
case SrcType::Ty_Imm:
llvm_unreachable("Not a register operand");
case SrcType::Ty_Reg:
return Reg;
case SrcType::Ty_MIB:
return SrcMIB->getOperand(0).getReg();
}
llvm_unreachable("Unrecognised SrcOp::SrcType enum");
}
CmpInst::Predicate getPredicate() const {
switch (Ty) {
case SrcType::Ty_Predicate:
return Pred;
default:
llvm_unreachable("Not a register operand");
}
}
int64_t getImm() const {
switch (Ty) {
case SrcType::Ty_Imm:
return Imm;
default:
llvm_unreachable("Not an immediate");
}
}
SrcType getSrcOpKind() const { return Ty; }
private:
SrcType Ty;
};
/// Helper class to build MachineInstr.
/// It keeps internally the insertion point and debug location for all
/// the new instructions we want to create.
/// This information can be modify via the related setters.
class MachineIRBuilder {
MachineIRBuilderState State;
protected:
void validateTruncExt(const LLT Dst, const LLT Src, bool IsExtend);
void validateUnaryOp(const LLT Res, const LLT Op0);
void validateBinaryOp(const LLT Res, const LLT Op0, const LLT Op1);
void validateShiftOp(const LLT Res, const LLT Op0, const LLT Op1);
void validateSelectOp(const LLT ResTy, const LLT TstTy, const LLT Op0Ty,
const LLT Op1Ty);
void recordInsertion(MachineInstr *InsertedInstr) const {
if (State.Observer)
State.Observer->createdInstr(*InsertedInstr);
}
public:
/// Some constructors for easy use.
MachineIRBuilder() = default;
MachineIRBuilder(MachineFunction &MF) { setMF(MF); }
MachineIRBuilder(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt) {
setMF(*MBB.getParent());
setInsertPt(MBB, InsPt);
}
MachineIRBuilder(MachineInstr &MI) :
MachineIRBuilder(*MI.getParent(), MI.getIterator()) {
setInstr(MI);
setDebugLoc(MI.getDebugLoc());
}
MachineIRBuilder(MachineInstr &MI, GISelChangeObserver &Observer) :
MachineIRBuilder(MI) {
setChangeObserver(Observer);
}
virtual ~MachineIRBuilder() = default;
MachineIRBuilder(const MachineIRBuilderState &BState) : State(BState) {}
const TargetInstrInfo &getTII() {
assert(State.TII && "TargetInstrInfo is not set");
return *State.TII;
}
/// Getter for the function we currently build.
MachineFunction &getMF() {
assert(State.MF && "MachineFunction is not set");
return *State.MF;
}
const MachineFunction &getMF() const {
assert(State.MF && "MachineFunction is not set");
return *State.MF;
}
const DataLayout &getDataLayout() const {
return getMF().getFunction().getParent()->getDataLayout();
}
/// Getter for DebugLoc
const DebugLoc &getDL() { return State.DL; }
/// Getter for MRI
MachineRegisterInfo *getMRI() { return State.MRI; }
const MachineRegisterInfo *getMRI() const { return State.MRI; }
/// Getter for the State
MachineIRBuilderState &getState() { return State; }
/// Getter for the basic block we currently build.
const MachineBasicBlock &getMBB() const {
assert(State.MBB && "MachineBasicBlock is not set");
return *State.MBB;
}
MachineBasicBlock &getMBB() {
return const_cast<MachineBasicBlock &>(
const_cast<const MachineIRBuilder *>(this)->getMBB());
}
GISelCSEInfo *getCSEInfo() { return State.CSEInfo; }
const GISelCSEInfo *getCSEInfo() const { return State.CSEInfo; }
/// Current insertion point for new instructions.
MachineBasicBlock::iterator getInsertPt() { return State.II; }
/// Set the insertion point before the specified position.
/// \pre MBB must be in getMF().
/// \pre II must be a valid iterator in MBB.
void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II) {
assert(MBB.getParent() == &getMF() &&
"Basic block is in a different function");
State.MBB = &MBB;
State.II = II;
}
/// @}
void setCSEInfo(GISelCSEInfo *Info) { State.CSEInfo = Info; }
/// \name Setters for the insertion point.
/// @{
/// Set the MachineFunction where to build instructions.
void setMF(MachineFunction &MF);
/// Set the insertion point to the end of \p MBB.
/// \pre \p MBB must be contained by getMF().
void setMBB(MachineBasicBlock &MBB) {
State.MBB = &MBB;
State.II = MBB.end();
assert(&getMF() == MBB.getParent() &&
"Basic block is in a different function");
}
/// Set the insertion point to before MI.
/// \pre MI must be in getMF().
void setInstr(MachineInstr &MI) {
assert(MI.getParent() && "Instruction is not part of a basic block");
setMBB(*MI.getParent());
State.II = MI.getIterator();
}
/// @}
/// Set the insertion point to before MI, and set the debug loc to MI's loc.
/// \pre MI must be in getMF().
void setInstrAndDebugLoc(MachineInstr &MI) {
setInstr(MI);
setDebugLoc(MI.getDebugLoc());
}
void setChangeObserver(GISelChangeObserver &Observer) {
State.Observer = &Observer;
}
void stopObservingChanges() { State.Observer = nullptr; }
/// @}
/// Set the debug location to \p DL for all the next build instructions.
void setDebugLoc(const DebugLoc &DL) { this->State.DL = DL; }
/// Get the current instruction's debug location.
const DebugLoc &getDebugLoc() { return State.DL; }
/// Build and insert <empty> = \p Opcode <empty>.
/// The insertion point is the one set by the last call of either
/// setBasicBlock or setMI.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildInstr(unsigned Opcode) {
return insertInstr(buildInstrNoInsert(Opcode));
}
/// Build but don't insert <empty> = \p Opcode <empty>.
///
/// \pre setMF, setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildInstrNoInsert(unsigned Opcode);
/// Insert an existing instruction at the insertion point.
MachineInstrBuilder insertInstr(MachineInstrBuilder MIB);
/// Build and insert a DBG_VALUE instruction expressing the fact that the
/// associated \p Variable lives in \p Reg (suitably modified by \p Expr).
MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_VALUE instruction expressing the fact that the
/// associated \p Variable lives in memory at \p Reg (suitably modified by \p
/// Expr).
MachineInstrBuilder buildIndirectDbgValue(Register Reg,
const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_VALUE instruction expressing the fact that the
/// associated \p Variable lives in the stack slot specified by \p FI
/// (suitably modified by \p Expr).
MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_VALUE instructions specifying that \p Variable is
/// given by \p C (suitably modified by \p Expr).
MachineInstrBuilder buildConstDbgValue(const Constant &C,
const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_LABEL instructions specifying that \p Label is
/// given. Convert "llvm.dbg.label Label" to "DBG_LABEL Label".
MachineInstrBuilder buildDbgLabel(const MDNode *Label);
/// Build and insert \p Res = G_DYN_STACKALLOC \p Size, \p Align
///
/// G_DYN_STACKALLOC does a dynamic stack allocation and writes the address of
/// the allocated memory into \p Res.
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size,
Align Alignment);
/// Build and insert \p Res = G_FRAME_INDEX \p Idx
///
/// G_FRAME_INDEX materializes the address of an alloca value or other
/// stack-based object.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx);
/// Build and insert \p Res = G_GLOBAL_VALUE \p GV
///
/// G_GLOBAL_VALUE materializes the address of the specified global
/// into \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with pointer type
/// in the same address space as \p GV.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV);
/// Build and insert \p Res = G_PTR_ADD \p Op0, \p Op1
///
/// G_PTR_ADD adds \p Op1 addressible units to the pointer specified by \p Op0,
/// storing the resulting pointer in \p Res. Addressible units are typically
/// bytes but this can vary between targets.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Op0 must be generic virtual registers with pointer
/// type.
/// \pre \p Op1 must be a generic virtual register with scalar type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0,
const SrcOp &Op1);
/// Materialize and insert \p Res = G_PTR_ADD \p Op0, (G_CONSTANT \p Value)
///
/// G_PTR_ADD adds \p Value bytes to the pointer specified by \p Op0,
/// storing the resulting pointer in \p Res. If \p Value is zero then no
/// G_PTR_ADD or G_CONSTANT will be created and \pre Op0 will be assigned to
/// \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Op0 must be a generic virtual register with pointer type.
/// \pre \p ValueTy must be a scalar type.
/// \pre \p Res must be 0. This is to detect confusion between
/// materializePtrAdd() and buildPtrAdd().
/// \post \p Res will either be a new generic virtual register of the same
/// type as \p Op0 or \p Op0 itself.
///
/// \return a MachineInstrBuilder for the newly created instruction.
Optional<MachineInstrBuilder> materializePtrAdd(Register &Res, Register Op0,
const LLT ValueTy,
uint64_t Value);
/// Build and insert \p Res = G_PTRMASK \p Op0, \p Op1
MachineInstrBuilder buildPtrMask(const DstOp &Res, const SrcOp &Op0,
const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_PTRMASK, {Res}, {Op0, Op1});
}
/// Build and insert \p Res = G_PTRMASK \p Op0, \p G_CONSTANT (1 << NumBits) - 1
///
/// This clears the low bits of a pointer operand without destroying its
/// pointer properties. This has the effect of rounding the address *down* to
/// a specified alignment in bits.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Op0 must be generic virtual registers with pointer
/// type.
/// \pre \p NumBits must be an integer representing the number of low bits to
/// be cleared in \p Op0.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0,
uint32_t NumBits);
/// Build and insert
/// a, b, ..., x = G_UNMERGE_VALUES \p Op0
/// \p Res = G_BUILD_VECTOR a, b, ..., x, undef, ..., undef
///
/// Pad \p Op0 with undef elements to match number of elements in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Op0 must be generic virtual registers with vector type,
/// same vector element type and Op0 must have fewer elements then Res.
///
/// \return a MachineInstrBuilder for the newly created build vector instr.
MachineInstrBuilder buildPadVectorWithUndefElements(const DstOp &Res,
const SrcOp &Op0);
/// Build and insert
/// a, b, ..., x, y, z = G_UNMERGE_VALUES \p Op0
/// \p Res = G_BUILD_VECTOR a, b, ..., x
///
/// Delete trailing elements in \p Op0 to match number of elements in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Op0 must be generic virtual registers with vector type,
/// same vector element type and Op0 must have more elements then Res.
///
/// \return a MachineInstrBuilder for the newly created build vector instr.
MachineInstrBuilder buildDeleteTrailingVectorElements(const DstOp &Res,
const SrcOp &Op0);
/// Build and insert \p Res, \p CarryOut = G_UADDO \p Op0, \p Op1
///
/// G_UADDO sets \p Res to \p Op0 + \p Op1 (truncated to the bit width) and
/// sets \p CarryOut to 1 if the result overflowed in unsigned arithmetic.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers with the
/// same scalar type.
////\pre \p CarryOut must be generic virtual register with scalar type
///(typically s1)
///
/// \return The newly created instruction.
MachineInstrBuilder buildUAddo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_UADDO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_USUBO \p Op0, \p Op1
MachineInstrBuilder buildUSubo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_USUBO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_SADDO \p Op0, \p Op1
MachineInstrBuilder buildSAddo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_SADDO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_SUBO \p Op0, \p Op1
MachineInstrBuilder buildSSubo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_SSUBO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_UADDE \p Op0,
/// \p Op1, \p CarryIn
///
/// G_UADDE sets \p Res to \p Op0 + \p Op1 + \p CarryIn (truncated to the bit
/// width) and sets \p CarryOut to 1 if the result overflowed in unsigned
/// arithmetic.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same scalar type.
/// \pre \p CarryOut and \p CarryIn must be generic virtual
/// registers with the same scalar type (typically s1)
///
/// \return The newly created instruction.
MachineInstrBuilder buildUAdde(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_UADDE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res, \p CarryOut = G_USUBE \p Op0, \p Op1, \p CarryInp
MachineInstrBuilder buildUSube(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_USUBE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res, \p CarryOut = G_SADDE \p Op0, \p Op1, \p CarryInp
MachineInstrBuilder buildSAdde(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_SADDE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res, \p CarryOut = G_SSUBE \p Op0, \p Op1, \p CarryInp
MachineInstrBuilder buildSSube(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_SSUBE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res = G_ANYEXT \p Op0
///
/// G_ANYEXT produces a register of the specified width, with bits 0 to
/// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are unspecified
/// (i.e. this is neither zero nor sign-extension). For a vector register,
/// each element is extended individually.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be smaller than \p Res
///
/// \return The newly created instruction.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_SEXT \p Op
///
/// G_SEXT produces a register of the specified width, with bits 0 to
/// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are duplicated from the
/// high bit of \p Op (i.e. 2s-complement sign extended).
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be smaller than \p Res
///
/// \return The newly created instruction.
MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_SEXT_INREG \p Op, ImmOp
MachineInstrBuilder buildSExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp) {
return buildInstr(TargetOpcode::G_SEXT_INREG, {Res}, {Op, SrcOp(ImmOp)});
}
/// Build and insert \p Res = G_FPEXT \p Op
MachineInstrBuilder buildFPExt(const DstOp &Res, const SrcOp &Op,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FPEXT, {Res}, {Op}, Flags);
}
/// Build and insert a G_PTRTOINT instruction.
MachineInstrBuilder buildPtrToInt(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_PTRTOINT, {Dst}, {Src});
}
/// Build and insert a G_INTTOPTR instruction.
MachineInstrBuilder buildIntToPtr(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_INTTOPTR, {Dst}, {Src});
}
/// Build and insert \p Dst = G_BITCAST \p Src
MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_BITCAST, {Dst}, {Src});
}
/// Build and insert \p Dst = G_ADDRSPACE_CAST \p Src
MachineInstrBuilder buildAddrSpaceCast(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_ADDRSPACE_CAST, {Dst}, {Src});
}
/// \return The opcode of the extension the target wants to use for boolean
/// values.
unsigned getBoolExtOp(bool IsVec, bool IsFP) const;
// Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_SEXT \p Op, or \p Res
// = G_ZEXT \p Op depending on how the target wants to extend boolean values.
MachineInstrBuilder buildBoolExt(const DstOp &Res, const SrcOp &Op,
bool IsFP);
/// Build and insert \p Res = G_ZEXT \p Op
///
/// G_ZEXT produces a register of the specified width, with bits 0 to
/// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are 0. For a vector
/// register, each element is extended individually.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be smaller than \p Res
///
/// \return The newly created instruction.
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_SEXT \p Op, \p Res = G_TRUNC \p Op, or
/// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_ZEXT \p Op, \p Res = G_TRUNC \p Op, or
/// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op);
// Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_TRUNC \p Op, or
/// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = \p ExtOpc, \p Res = G_TRUNC \p
/// Op, or \p Res = COPY \p Op depending on the differing sizes of \p Res and
/// \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res,
const SrcOp &Op);
/// Build and inserts \p Res = \p G_AND \p Op, \p LowBitsSet(ImmOp)
/// Since there is no G_ZEXT_INREG like G_SEXT_INREG, the instruction is
/// emulated using G_AND.
MachineInstrBuilder buildZExtInReg(const DstOp &Res, const SrcOp &Op,
int64_t ImmOp);
/// Build and insert an appropriate cast between two registers of equal size.
MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src);
/// Build and insert G_BR \p Dest
///
/// G_BR is an unconditional branch to \p Dest.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBr(MachineBasicBlock &Dest);
/// Build and insert G_BRCOND \p Tst, \p Dest
///
/// G_BRCOND is a conditional branch to \p Dest.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Tst must be a generic virtual register with scalar
/// type. At the beginning of legalization, this will be a single
/// bit (s1). Targets with interesting flags registers may change
/// this. For a wider type, whether the branch is taken must only
/// depend on bit 0 (for now).
///
/// \return The newly created instruction.
MachineInstrBuilder buildBrCond(const SrcOp &Tst, MachineBasicBlock &Dest);
/// Build and insert G_BRINDIRECT \p Tgt
///
/// G_BRINDIRECT is an indirect branch to \p Tgt.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Tgt must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBrIndirect(Register Tgt);
/// Build and insert G_BRJT \p TablePtr, \p JTI, \p IndexReg
///
/// G_BRJT is a jump table branch using a table base pointer \p TablePtr,
/// jump table index \p JTI and index \p IndexReg
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p TablePtr must be a generic virtual register with pointer type.
/// \pre \p JTI must be be a jump table index.
/// \pre \p IndexReg must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI,
Register IndexReg);
/// Build and insert \p Res = G_CONSTANT \p Val
///
/// G_CONSTANT is an integer constant with the specified size and value. \p
/// Val will be extended or truncated to the size of \p Reg.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or pointer
/// type.
///
/// \return The newly created instruction.
virtual MachineInstrBuilder buildConstant(const DstOp &Res,
const ConstantInt &Val);
/// Build and insert \p Res = G_CONSTANT \p Val
///
/// G_CONSTANT is an integer constant with the specified size and value.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildConstant(const DstOp &Res, int64_t Val);
MachineInstrBuilder buildConstant(const DstOp &Res, const APInt &Val);
/// Build and insert \p Res = G_FCONSTANT \p Val
///
/// G_FCONSTANT is a floating-point constant with the specified size and
/// value.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar type.
///
/// \return The newly created instruction.
virtual MachineInstrBuilder buildFConstant(const DstOp &Res,
const ConstantFP &Val);
MachineInstrBuilder buildFConstant(const DstOp &Res, double Val);
MachineInstrBuilder buildFConstant(const DstOp &Res, const APFloat &Val);
/// Build and insert \p Res = COPY Op
///
/// Register-to-register COPY sets \p Res to \p Op.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op);
/// Build and insert G_ASSERT_SEXT, G_ASSERT_ZEXT, or G_ASSERT_ALIGN
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAssertOp(unsigned Opc, const DstOp &Res, const SrcOp &Op,
unsigned Val) {
return buildInstr(Opc, Res, Op).addImm(Val);
}
/// Build and insert \p Res = G_ASSERT_ZEXT Op, Size
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAssertZExt(const DstOp &Res, const SrcOp &Op,
unsigned Size) {
return buildAssertOp(TargetOpcode::G_ASSERT_ZEXT, Res, Op, Size);
}
/// Build and insert \p Res = G_ASSERT_SEXT Op, Size
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAssertSExt(const DstOp &Res, const SrcOp &Op,
unsigned Size) {
return buildAssertOp(TargetOpcode::G_ASSERT_SEXT, Res, Op, Size);
}
/// Build and insert \p Res = G_ASSERT_ALIGN Op, AlignVal
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAssertAlign(const DstOp &Res, const SrcOp &Op,
Align AlignVal) {
return buildAssertOp(TargetOpcode::G_ASSERT_ALIGN, Res, Op, AlignVal.value());
}
/// Build and insert `Res = G_LOAD Addr, MMO`.
///
/// Loads the value stored at \p Addr. Puts the result in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr,
MachineMemOperand &MMO) {
return buildLoadInstr(TargetOpcode::G_LOAD, Res, Addr, MMO);
}
/// Build and insert a G_LOAD instruction, while constructing the
/// MachineMemOperand.
MachineInstrBuilder
buildLoad(const DstOp &Res, const SrcOp &Addr, MachinePointerInfo PtrInfo,
Align Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
/// Build and insert `Res = <opcode> Addr, MMO`.
///
/// Loads the value stored at \p Addr. Puts the result in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res,
const SrcOp &Addr, MachineMemOperand &MMO);
/// Helper to create a load from a constant offset given a base address. Load
/// the type of \p Dst from \p Offset from the given base address and memory
/// operand.
MachineInstrBuilder buildLoadFromOffset(const DstOp &Dst,
const SrcOp &BasePtr,
MachineMemOperand &BaseMMO,
int64_t Offset);
/// Build and insert `G_STORE Val, Addr, MMO`.
///
/// Stores the value \p Val to \p Addr.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Val must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr,
MachineMemOperand &MMO);
/// Build and insert a G_STORE instruction, while constructing the
/// MachineMemOperand.
MachineInstrBuilder
buildStore(const SrcOp &Val, const SrcOp &Addr, MachinePointerInfo PtrInfo,
Align Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
/// Build and insert `Res0, ... = G_EXTRACT Src, Idx0`.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Src must be generic virtual registers.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index);
/// Build and insert \p Res = IMPLICIT_DEF.
MachineInstrBuilder buildUndef(const DstOp &Res);
/// Build and insert instructions to put \p Ops together at the specified p
/// Indices to form a larger register.
///
/// If the types of the input registers are uniform and cover the entirity of
/// \p Res then a G_MERGE_VALUES will be produced. Otherwise an IMPLICIT_DEF
/// followed by a sequence of G_INSERT instructions.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The final element of the sequence must not extend past the end of the
/// destination register.
/// \pre The bits defined by each Op (derived from index and scalar size) must
/// not overlap.
/// \pre \p Indices must be in ascending order of bit position.
void buildSequence(Register Res, ArrayRef<Register> Ops,
ArrayRef<uint64_t> Indices);
/// Build and insert \p Res = G_MERGE_VALUES \p Op0, ...
///
/// G_MERGE_VALUES combines the input elements contiguously into a larger
/// register.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the input
/// registers.
/// \pre The type of all \p Ops registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildMerge(const DstOp &Res, ArrayRef<Register> Ops);
MachineInstrBuilder buildMerge(const DstOp &Res,
std::initializer_list<SrcOp> Ops);
/// Build and insert \p Res0, ... = G_UNMERGE_VALUES \p Op
///
/// G_UNMERGE_VALUES splits contiguous bits of the input into multiple
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the input
/// registers.
/// \pre The type of all \p Res registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildUnmerge(ArrayRef<LLT> Res, const SrcOp &Op);
MachineInstrBuilder buildUnmerge(ArrayRef<Register> Res, const SrcOp &Op);
/// Build and insert an unmerge of \p Res sized pieces to cover \p Op
MachineInstrBuilder buildUnmerge(LLT Res, const SrcOp &Op);
/// Build and insert \p Res = G_BUILD_VECTOR \p Op0, ...
///
/// G_BUILD_VECTOR creates a vector value from multiple scalar registers.
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the
/// input scalar registers.
/// \pre The type of all \p Ops registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBuildVector(const DstOp &Res,
ArrayRef<Register> Ops);
/// Build and insert \p Res = G_BUILD_VECTOR with \p Src replicated to fill
/// the number of elements
MachineInstrBuilder buildSplatVector(const DstOp &Res,
const SrcOp &Src);
/// Build and insert \p Res = G_BUILD_VECTOR_TRUNC \p Op0, ...
///
/// G_BUILD_VECTOR_TRUNC creates a vector value from multiple scalar registers
/// which have types larger than the destination vector element type, and
/// truncates the values to fit.
///
/// If the operands given are already the same size as the vector elt type,
/// then this method will instead create a G_BUILD_VECTOR instruction.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The type of all \p Ops registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBuildVectorTrunc(const DstOp &Res,
ArrayRef<Register> Ops);
/// Build and insert a vector splat of a scalar \p Src using a
/// G_INSERT_VECTOR_ELT and G_SHUFFLE_VECTOR idiom.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Src must have the same type as the element type of \p Dst
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildShuffleSplat(const DstOp &Res, const SrcOp &Src);
/// Build and insert \p Res = G_SHUFFLE_VECTOR \p Src1, \p Src2, \p Mask
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildShuffleVector(const DstOp &Res, const SrcOp &Src1,
const SrcOp &Src2, ArrayRef<int> Mask);
/// Build and insert \p Res = G_CONCAT_VECTORS \p Op0, ...
///
/// G_CONCAT_VECTORS creates a vector from the concatenation of 2 or more
/// vectors.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the input
/// registers.
/// \pre The type of all source operands must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildConcatVectors(const DstOp &Res,
ArrayRef<Register> Ops);
MachineInstrBuilder buildInsert(const DstOp &Res, const SrcOp &Src,
const SrcOp &Op, unsigned Index);
/// Build and insert either a G_INTRINSIC (if \p HasSideEffects is false) or
/// G_INTRINSIC_W_SIDE_EFFECTS instruction. Its first operand will be the
/// result register definition unless \p Reg is NoReg (== 0). The second
/// operand will be the intrinsic's ID.
///
/// Callers are expected to add the required definitions and uses afterwards.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<Register> Res,
bool HasSideEffects);
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<DstOp> Res,
bool HasSideEffects);
/// Build and insert \p Res = G_FPTRUNC \p Op
///
/// G_FPTRUNC converts a floating-point value into one with a smaller type.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Res must be smaller than \p Op
///
/// \return The newly created instruction.
MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op,
Optional<unsigned> Flags = None);
/// Build and insert \p Res = G_TRUNC \p Op
///
/// G_TRUNC extracts the low bits of a type. For a vector type each element is
/// truncated independently before being packed into the destination.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Res must be smaller than \p Op
///
/// \return The newly created instruction.
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op);
/// Build and insert a \p Res = G_ICMP \p Pred, \p Op0, \p Op1
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or
/// vector type. Typically this starts as s1 or <N x s1>.
/// \pre \p Op0 and Op1 must be generic virtual registers with the
/// same number of elements as \p Res. If \p Res is a scalar,
/// \p Op0 must be either a scalar or pointer.
/// \pre \p Pred must be an integer predicate.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res,
const SrcOp &Op0, const SrcOp &Op1);
/// Build and insert a \p Res = G_FCMP \p Pred\p Op0, \p Op1
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or
/// vector type. Typically this starts as s1 or <N x s1>.
/// \pre \p Op0 and Op1 must be generic virtual registers with the
/// same number of elements as \p Res (or scalar, if \p Res is
/// scalar).
/// \pre \p Pred must be a floating-point predicate.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res,
const SrcOp &Op0, const SrcOp &Op1,
Optional<unsigned> Flags = None);
/// Build and insert a \p Res = G_SELECT \p Tst, \p Op0, \p Op1
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same type.
/// \pre \p Tst must be a generic virtual register with scalar, pointer or
/// vector type. If vector then it must have the same number of
/// elements as the other parameters.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst,
const SrcOp &Op0, const SrcOp &Op1,
Optional<unsigned> Flags = None);
/// Build and insert \p Res = G_INSERT_VECTOR_ELT \p Val,
/// \p Elt, \p Idx
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Val must be a generic virtual register
// with the same vector type.
/// \pre \p Elt and \p Idx must be a generic virtual register
/// with scalar type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildInsertVectorElement(const DstOp &Res,
const SrcOp &Val,
const SrcOp &Elt,
const SrcOp &Idx);
/// Build and insert \p Res = G_EXTRACT_VECTOR_ELT \p Val, \p Idx
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar type.
/// \pre \p Val must be a generic virtual register with vector type.
/// \pre \p Idx must be a generic virtual register with scalar type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildExtractVectorElement(const DstOp &Res,
const SrcOp &Val,
const SrcOp &Idx);
/// Build and insert `OldValRes<def>, SuccessRes<def> =
/// G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr, CmpVal, NewVal, MMO`.
///
/// Atomically replace the value at \p Addr with \p NewVal if it is currently
/// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
/// Addr in \p Res, along with an s1 indicating whether it was replaced.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register of scalar type.
/// \pre \p SuccessRes must be a generic virtual register of scalar type. It
/// will be assigned 0 on failure and 1 on success.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
/// registers of the same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder
buildAtomicCmpXchgWithSuccess(Register OldValRes, Register SuccessRes,
Register Addr, Register CmpVal, Register NewVal,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMIC_CMPXCHG Addr, CmpVal, NewVal,
/// MMO`.
///
/// Atomically replace the value at \p Addr with \p NewVal if it is currently
/// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
/// Addr in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register of scalar type.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
/// registers of the same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicCmpXchg(Register OldValRes, Register Addr,
Register CmpVal, Register NewVal,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_<Opcode> Addr, Val, MMO`.
///
/// Atomically read-modify-update the value at \p Addr with \p Val. Puts the
/// original value from \p Addr in \p OldValRes. The modification is
/// determined by the opcode.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes,
const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_XCHG Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with \p Val. Puts the original
/// value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWXchg(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_ADD Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the addition of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWAdd(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_SUB Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the subtraction of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWSub(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_AND Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise and of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWAnd(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_NAND Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise nand of \p Val
/// and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWNand(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_OR Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise or of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWOr(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_XOR Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise xor of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWXor(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_MAX Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the signed maximum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWMax(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_MIN Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the signed minimum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWMin(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_UMAX Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the unsigned maximum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWUmax(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_UMIN Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the unsigned minimum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWUmin(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_FADD Addr, Val, MMO`.
MachineInstrBuilder buildAtomicRMWFAdd(
const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_FSUB Addr, Val, MMO`.
MachineInstrBuilder buildAtomicRMWFSub(
const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO);
/// Build and insert `G_FENCE Ordering, Scope`.
MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope);
/// Build and insert \p Dst = G_FREEZE \p Src
MachineInstrBuilder buildFreeze(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_FREEZE, {Dst}, {Src});
}
/// Build and insert \p Res = G_BLOCK_ADDR \p BA
///
/// G_BLOCK_ADDR computes the address of a basic block.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register of a pointer type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildBlockAddress(Register Res, const BlockAddress *BA);
/// Build and insert \p Res = G_ADD \p Op0, \p Op1
///
/// G_ADD sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
/// truncated to their width.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_ADD, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_SUB \p Op0, \p Op1
///
/// G_SUB sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
/// truncated to their width.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildSub(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_SUB, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_MUL \p Op0, \p Op1
///
/// G_MUL sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
/// truncated to their width.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_MUL, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildUMulH(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_UMULH, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildSMulH(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_SMULH, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_UREM \p Op0, \p Op1
MachineInstrBuilder buildURem(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_UREM, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMul(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMUL, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMinNum(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMINNUM, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMaxNum(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMAXNUM, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMinNumIEEE(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMINNUM_IEEE, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMaxNumIEEE(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMAXNUM_IEEE, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_SHL, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_LSHR, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildAShr(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_ASHR, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_AND \p Op0, \p Op1
///
/// G_AND sets \p Res to the bitwise and of integer parameters \p Op0 and \p
/// Op1.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_AND, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_OR \p Op0, \p Op1
///
/// G_OR sets \p Res to the bitwise or of integer parameters \p Op0 and \p
/// Op1.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_OR, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_XOR \p Op0, \p Op1
MachineInstrBuilder buildXor(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, Src1});
}
/// Build and insert a bitwise not,
/// \p NegOne = G_CONSTANT -1
/// \p Res = G_OR \p Op0, NegOne
MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0) {
auto NegOne = buildConstant(Dst.getLLTTy(*getMRI()), -1);
return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, NegOne});
}
/// Build and insert integer negation
/// \p Zero = G_CONSTANT 0
/// \p Res = G_SUB Zero, \p Op0
MachineInstrBuilder buildNeg(const DstOp &Dst, const SrcOp &Src0) {
auto Zero = buildConstant(Dst.getLLTTy(*getMRI()), 0);
return buildInstr(TargetOpcode::G_SUB, {Dst}, {Zero, Src0});
}
/// Build and insert \p Res = G_CTPOP \p Op0, \p Src0
MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTPOP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTLZ \p Op0, \p Src0
MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTLZ, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTLZ_ZERO_UNDEF \p Op0, \p Src0
MachineInstrBuilder buildCTLZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTTZ \p Op0, \p Src0
MachineInstrBuilder buildCTTZ(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTTZ, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTTZ_ZERO_UNDEF \p Op0, \p Src0
MachineInstrBuilder buildCTTZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Dst}, {Src0});
}
/// Build and insert \p Dst = G_BSWAP \p Src0
MachineInstrBuilder buildBSwap(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_BSWAP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_FADD \p Op0, \p Op1
MachineInstrBuilder buildFAdd(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FADD, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FSUB \p Op0, \p Op1
MachineInstrBuilder buildFSub(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FSUB, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FDIV \p Op0, \p Op1
MachineInstrBuilder buildFDiv(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FDIV, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FMA \p Op0, \p Op1, \p Op2
MachineInstrBuilder buildFMA(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1, const SrcOp &Src2,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMA, {Dst}, {Src0, Src1, Src2}, Flags);
}
/// Build and insert \p Res = G_FMAD \p Op0, \p Op1, \p Op2
MachineInstrBuilder buildFMAD(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1, const SrcOp &Src2,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMAD, {Dst}, {Src0, Src1, Src2}, Flags);
}
/// Build and insert \p Res = G_FNEG \p Op0
MachineInstrBuilder buildFNeg(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FNEG, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Res = G_FABS \p Op0
MachineInstrBuilder buildFAbs(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FABS, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Dst = G_FCANONICALIZE \p Src0
MachineInstrBuilder buildFCanonicalize(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FCANONICALIZE, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Dst = G_INTRINSIC_TRUNC \p Src0
MachineInstrBuilder buildIntrinsicTrunc(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Res = GFFLOOR \p Op0, \p Op1
MachineInstrBuilder buildFFloor(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FFLOOR, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Dst = G_FLOG \p Src
MachineInstrBuilder buildFLog(const DstOp &Dst, const SrcOp &Src,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FLOG, {Dst}, {Src}, Flags);
}
/// Build and insert \p Dst = G_FLOG2 \p Src
MachineInstrBuilder buildFLog2(const DstOp &Dst, const SrcOp &Src,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FLOG2, {Dst}, {Src}, Flags);
}
/// Build and insert \p Dst = G_FEXP2 \p Src
MachineInstrBuilder buildFExp2(const DstOp &Dst, const SrcOp &Src,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FEXP2, {Dst}, {Src}, Flags);
}
/// Build and insert \p Dst = G_FPOW \p Src0, \p Src1
MachineInstrBuilder buildFPow(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FPOW, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FCOPYSIGN \p Op0, \p Op1
MachineInstrBuilder buildFCopysign(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_FCOPYSIGN, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_UITOFP \p Src0
MachineInstrBuilder buildUITOFP(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_UITOFP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_SITOFP \p Src0
MachineInstrBuilder buildSITOFP(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_SITOFP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_FPTOUI \p Src0
MachineInstrBuilder buildFPTOUI(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_FPTOUI, {Dst}, {Src0});
}
/// Build and insert \p Res = G_FPTOSI \p Src0
MachineInstrBuilder buildFPTOSI(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_FPTOSI, {Dst}, {Src0});
}
/// Build and insert \p Res = G_SMIN \p Op0, \p Op1
MachineInstrBuilder buildSMin(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_SMIN, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_SMAX \p Op0, \p Op1
MachineInstrBuilder buildSMax(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_SMAX, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_UMIN \p Op0, \p Op1
MachineInstrBuilder buildUMin(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_UMIN, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_UMAX \p Op0, \p Op1
MachineInstrBuilder buildUMax(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_UMAX, {Dst}, {Src0, Src1});
}
/// Build and insert \p Dst = G_ABS \p Src
MachineInstrBuilder buildAbs(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_ABS, {Dst}, {Src});
}
/// Build and insert \p Res = G_JUMP_TABLE \p JTI
///
/// G_JUMP_TABLE sets \p Res to the address of the jump table specified by
/// the jump table index \p JTI.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI);
/// Build and insert \p Res = G_VECREDUCE_SEQ_FADD \p ScalarIn, \p VecIn
///
/// \p ScalarIn is the scalar accumulator input to start the sequential
/// reduction operation of \p VecIn.
MachineInstrBuilder buildVecReduceSeqFAdd(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FADD, {Dst},
{ScalarIn, {VecIn}});
}
/// Build and insert \p Res = G_VECREDUCE_SEQ_FMUL \p ScalarIn, \p VecIn
///
/// \p ScalarIn is the scalar accumulator input to start the sequential
/// reduction operation of \p VecIn.
MachineInstrBuilder buildVecReduceSeqFMul(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FMUL, {Dst},
{ScalarIn, {VecIn}});
}
/// Build and insert \p Res = G_VECREDUCE_FADD \p Src
///
/// \p ScalarIn is the scalar accumulator input to the reduction operation of
/// \p VecIn.
MachineInstrBuilder buildVecReduceFAdd(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_FADD, {Dst}, {ScalarIn, VecIn});
}
/// Build and insert \p Res = G_VECREDUCE_FMUL \p Src
///
/// \p ScalarIn is the scalar accumulator input to the reduction operation of
/// \p VecIn.
MachineInstrBuilder buildVecReduceFMul(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_FMUL, {Dst}, {ScalarIn, VecIn});
}
/// Build and insert \p Res = G_VECREDUCE_FMAX \p Src
MachineInstrBuilder buildVecReduceFMax(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_FMAX, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_FMIN \p Src
MachineInstrBuilder buildVecReduceFMin(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_FMIN, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_ADD \p Src
MachineInstrBuilder buildVecReduceAdd(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_ADD, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_MUL \p Src
MachineInstrBuilder buildVecReduceMul(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_MUL, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_AND \p Src
MachineInstrBuilder buildVecReduceAnd(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_AND, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_OR \p Src
MachineInstrBuilder buildVecReduceOr(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_OR, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_XOR \p Src
MachineInstrBuilder buildVecReduceXor(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_XOR, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_SMAX \p Src
MachineInstrBuilder buildVecReduceSMax(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_SMAX, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_SMIN \p Src
MachineInstrBuilder buildVecReduceSMin(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_SMIN, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_UMAX \p Src
MachineInstrBuilder buildVecReduceUMax(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_UMAX, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_UMIN \p Src
MachineInstrBuilder buildVecReduceUMin(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_UMIN, {Dst}, {Src});
}
/// Build and insert G_MEMCPY or G_MEMMOVE
MachineInstrBuilder buildMemTransferInst(unsigned Opcode, const SrcOp &DstPtr,
const SrcOp &SrcPtr,
const SrcOp &Size,
MachineMemOperand &DstMMO,
MachineMemOperand &SrcMMO) {
auto MIB = buildInstr(
Opcode, {}, {DstPtr, SrcPtr, Size, SrcOp(INT64_C(0) /*isTailCall*/)});
MIB.addMemOperand(&DstMMO);
MIB.addMemOperand(&SrcMMO);
return MIB;
}
MachineInstrBuilder buildMemCpy(const SrcOp &DstPtr, const SrcOp &SrcPtr,
const SrcOp &Size, MachineMemOperand &DstMMO,
MachineMemOperand &SrcMMO) {
return buildMemTransferInst(TargetOpcode::G_MEMCPY, DstPtr, SrcPtr, Size,
DstMMO, SrcMMO);
}
/// Build and insert \p Dst = G_SBFX \p Src, \p LSB, \p Width.
MachineInstrBuilder buildSbfx(const DstOp &Dst, const SrcOp &Src,
const SrcOp &LSB, const SrcOp &Width) {
return buildInstr(TargetOpcode::G_SBFX, {Dst}, {Src, LSB, Width});
}
/// Build and insert \p Dst = G_UBFX \p Src, \p LSB, \p Width.
MachineInstrBuilder buildUbfx(const DstOp &Dst, const SrcOp &Src,
const SrcOp &LSB, const SrcOp &Width) {
return buildInstr(TargetOpcode::G_UBFX, {Dst}, {Src, LSB, Width});
}
/// Build and insert \p Dst = G_ROTR \p Src, \p Amt
MachineInstrBuilder buildRotateRight(const DstOp &Dst, const SrcOp &Src,
const SrcOp &Amt) {
return buildInstr(TargetOpcode::G_ROTR, {Dst}, {Src, Amt});
}
/// Build and insert \p Dst = G_ROTL \p Src, \p Amt
MachineInstrBuilder buildRotateLeft(const DstOp &Dst, const SrcOp &Src,
const SrcOp &Amt) {
return buildInstr(TargetOpcode::G_ROTL, {Dst}, {Src, Amt});
}
/// Build and insert \p Dst = G_BITREVERSE \p Src
MachineInstrBuilder buildBitReverse(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_BITREVERSE, {Dst}, {Src});
}
virtual MachineInstrBuilder buildInstr(unsigned Opc, ArrayRef<DstOp> DstOps,
ArrayRef<SrcOp> SrcOps,
Optional<unsigned> Flags = None);
};
} // End namespace llvm.
#endif // LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|