aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/include/llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h
blob: c50db98633aad790efac0cb783306fe421e23bd4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===-- llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h -----*- C++ -*-//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains some helper functions which try to cleanup artifacts
// such as G_TRUNCs/G_[ZSA]EXTENDS that were created during legalization to make
// the types match. This file also contains some combines of merges that happens
// at the end of the legalization.
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H
#define LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H

#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "legalizer"
using namespace llvm::MIPatternMatch;

namespace llvm {
class LegalizationArtifactCombiner {
  MachineIRBuilder &Builder;
  MachineRegisterInfo &MRI;
  const LegalizerInfo &LI;

  static bool isArtifactCast(unsigned Opc) {
    switch (Opc) {
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_SEXT:
    case TargetOpcode::G_ZEXT:
    case TargetOpcode::G_ANYEXT:
      return true;
    default:
      return false;
    }
  }

public:
  LegalizationArtifactCombiner(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                    const LegalizerInfo &LI)
      : Builder(B), MRI(MRI), LI(LI) {}

  bool tryCombineAnyExt(MachineInstr &MI,
                        SmallVectorImpl<MachineInstr *> &DeadInsts,
                        SmallVectorImpl<Register> &UpdatedDefs,
                        GISelObserverWrapper &Observer) {
    assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);

    Builder.setInstrAndDebugLoc(MI);
    Register DstReg = MI.getOperand(0).getReg();
    Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());

    // aext(trunc x) - > aext/copy/trunc x
    Register TruncSrc;
    if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
      LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
      if (MRI.getType(DstReg) == MRI.getType(TruncSrc))
        replaceRegOrBuildCopy(DstReg, TruncSrc, MRI, Builder, UpdatedDefs,
                              Observer);
      else
        Builder.buildAnyExtOrTrunc(DstReg, TruncSrc);
      UpdatedDefs.push_back(DstReg);
      markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
      return true;
    }

    // aext([asz]ext x) -> [asz]ext x
    Register ExtSrc;
    MachineInstr *ExtMI;
    if (mi_match(SrcReg, MRI,
                 m_all_of(m_MInstr(ExtMI), m_any_of(m_GAnyExt(m_Reg(ExtSrc)),
                                                    m_GSExt(m_Reg(ExtSrc)),
                                                    m_GZExt(m_Reg(ExtSrc)))))) {
      Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc});
      UpdatedDefs.push_back(DstReg);
      markInstAndDefDead(MI, *ExtMI, DeadInsts);
      return true;
    }

    // Try to fold aext(g_constant) when the larger constant type is legal.
    auto *SrcMI = MRI.getVRegDef(SrcReg);
    if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
      const LLT DstTy = MRI.getType(DstReg);
      if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
        auto &CstVal = SrcMI->getOperand(1);
        Builder.buildConstant(
            DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits()));
        UpdatedDefs.push_back(DstReg);
        markInstAndDefDead(MI, *SrcMI, DeadInsts);
        return true;
      }
    }
    return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
  }

  bool tryCombineZExt(MachineInstr &MI,
                      SmallVectorImpl<MachineInstr *> &DeadInsts,
                      SmallVectorImpl<Register> &UpdatedDefs,
                      GISelObserverWrapper &Observer) {
    assert(MI.getOpcode() == TargetOpcode::G_ZEXT);

    Builder.setInstrAndDebugLoc(MI);
    Register DstReg = MI.getOperand(0).getReg();
    Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());

    // zext(trunc x) - > and (aext/copy/trunc x), mask
    // zext(sext x) -> and (sext x), mask
    Register TruncSrc;
    Register SextSrc;
    if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))) ||
        mi_match(SrcReg, MRI, m_GSExt(m_Reg(SextSrc)))) {
      LLT DstTy = MRI.getType(DstReg);
      if (isInstUnsupported({TargetOpcode::G_AND, {DstTy}}) ||
          isConstantUnsupported(DstTy))
        return false;
      LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
      LLT SrcTy = MRI.getType(SrcReg);
      APInt MaskVal = APInt::getAllOnes(SrcTy.getScalarSizeInBits());
      auto Mask = Builder.buildConstant(
        DstTy, MaskVal.zext(DstTy.getScalarSizeInBits()));
      if (SextSrc && (DstTy != MRI.getType(SextSrc)))
        SextSrc = Builder.buildSExtOrTrunc(DstTy, SextSrc).getReg(0);
      if (TruncSrc && (DstTy != MRI.getType(TruncSrc)))
        TruncSrc = Builder.buildAnyExtOrTrunc(DstTy, TruncSrc).getReg(0);
      Builder.buildAnd(DstReg, SextSrc ? SextSrc : TruncSrc, Mask);
      markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
      return true;
    }

    // zext(zext x) -> (zext x)
    Register ZextSrc;
    if (mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZextSrc)))) {
      LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
      Observer.changingInstr(MI);
      MI.getOperand(1).setReg(ZextSrc);
      Observer.changedInstr(MI);
      UpdatedDefs.push_back(DstReg);
      markDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
      return true;
    }

    // Try to fold zext(g_constant) when the larger constant type is legal.
    auto *SrcMI = MRI.getVRegDef(SrcReg);
    if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
      const LLT DstTy = MRI.getType(DstReg);
      if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
        auto &CstVal = SrcMI->getOperand(1);
        Builder.buildConstant(
            DstReg, CstVal.getCImm()->getValue().zext(DstTy.getSizeInBits()));
        UpdatedDefs.push_back(DstReg);
        markInstAndDefDead(MI, *SrcMI, DeadInsts);
        return true;
      }
    }
    return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
  }

  bool tryCombineSExt(MachineInstr &MI,
                      SmallVectorImpl<MachineInstr *> &DeadInsts,
                      SmallVectorImpl<Register> &UpdatedDefs) {
    assert(MI.getOpcode() == TargetOpcode::G_SEXT);

    Builder.setInstrAndDebugLoc(MI);
    Register DstReg = MI.getOperand(0).getReg();
    Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());

    // sext(trunc x) - > (sext_inreg (aext/copy/trunc x), c)
    Register TruncSrc;
    if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
      LLT DstTy = MRI.getType(DstReg);
      if (isInstUnsupported({TargetOpcode::G_SEXT_INREG, {DstTy}}))
        return false;
      LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
      LLT SrcTy = MRI.getType(SrcReg);
      uint64_t SizeInBits = SrcTy.getScalarSizeInBits();
      if (DstTy != MRI.getType(TruncSrc))
        TruncSrc = Builder.buildAnyExtOrTrunc(DstTy, TruncSrc).getReg(0);
      Builder.buildSExtInReg(DstReg, TruncSrc, SizeInBits);
      markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
      return true;
    }

    // sext(zext x) -> (zext x)
    // sext(sext x) -> (sext x)
    Register ExtSrc;
    MachineInstr *ExtMI;
    if (mi_match(SrcReg, MRI,
                 m_all_of(m_MInstr(ExtMI), m_any_of(m_GZExt(m_Reg(ExtSrc)),
                                                    m_GSExt(m_Reg(ExtSrc)))))) {
      LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
      Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc});
      UpdatedDefs.push_back(DstReg);
      markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
      return true;
    }

    // Try to fold sext(g_constant) when the larger constant type is legal.
    auto *SrcMI = MRI.getVRegDef(SrcReg);
    if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
      const LLT DstTy = MRI.getType(DstReg);
      if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
        auto &CstVal = SrcMI->getOperand(1);
        Builder.buildConstant(
            DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits()));
        UpdatedDefs.push_back(DstReg);
        markInstAndDefDead(MI, *SrcMI, DeadInsts);
        return true;
      }
    }

    return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
  }

  bool tryCombineTrunc(MachineInstr &MI,
                       SmallVectorImpl<MachineInstr *> &DeadInsts,
                       SmallVectorImpl<Register> &UpdatedDefs,
                       GISelObserverWrapper &Observer) {
    assert(MI.getOpcode() == TargetOpcode::G_TRUNC);

    Builder.setInstr(MI);
    Register DstReg = MI.getOperand(0).getReg();
    Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());

    // Try to fold trunc(g_constant) when the smaller constant type is legal.
    auto *SrcMI = MRI.getVRegDef(SrcReg);
    if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
      const LLT DstTy = MRI.getType(DstReg);
      if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
        auto &CstVal = SrcMI->getOperand(1);
        Builder.buildConstant(
            DstReg, CstVal.getCImm()->getValue().trunc(DstTy.getSizeInBits()));
        UpdatedDefs.push_back(DstReg);
        markInstAndDefDead(MI, *SrcMI, DeadInsts);
        return true;
      }
    }

    // Try to fold trunc(merge) to directly use the source of the merge.
    // This gets rid of large, difficult to legalize, merges
    if (auto *SrcMerge = dyn_cast<GMerge>(SrcMI)) {
      const Register MergeSrcReg = SrcMerge->getSourceReg(0);
      const LLT MergeSrcTy = MRI.getType(MergeSrcReg);
      const LLT DstTy = MRI.getType(DstReg);

      // We can only fold if the types are scalar
      const unsigned DstSize = DstTy.getSizeInBits();
      const unsigned MergeSrcSize = MergeSrcTy.getSizeInBits();
      if (!DstTy.isScalar() || !MergeSrcTy.isScalar())
        return false;

      if (DstSize < MergeSrcSize) {
        // When the merge source is larger than the destination, we can just
        // truncate the merge source directly
        if (isInstUnsupported({TargetOpcode::G_TRUNC, {DstTy, MergeSrcTy}}))
          return false;

        LLVM_DEBUG(dbgs() << "Combining G_TRUNC(G_MERGE_VALUES) to G_TRUNC: "
                          << MI);

        Builder.buildTrunc(DstReg, MergeSrcReg);
        UpdatedDefs.push_back(DstReg);
      } else if (DstSize == MergeSrcSize) {
        // If the sizes match we can simply try to replace the register
        LLVM_DEBUG(
            dbgs() << "Replacing G_TRUNC(G_MERGE_VALUES) with merge input: "
                   << MI);
        replaceRegOrBuildCopy(DstReg, MergeSrcReg, MRI, Builder, UpdatedDefs,
                              Observer);
      } else if (DstSize % MergeSrcSize == 0) {
        // If the trunc size is a multiple of the merge source size we can use
        // a smaller merge instead
        if (isInstUnsupported(
                {TargetOpcode::G_MERGE_VALUES, {DstTy, MergeSrcTy}}))
          return false;

        LLVM_DEBUG(
            dbgs() << "Combining G_TRUNC(G_MERGE_VALUES) to G_MERGE_VALUES: "
                   << MI);

        const unsigned NumSrcs = DstSize / MergeSrcSize;
        assert(NumSrcs < SrcMI->getNumOperands() - 1 &&
               "trunc(merge) should require less inputs than merge");
        SmallVector<Register, 8> SrcRegs(NumSrcs);
        for (unsigned i = 0; i < NumSrcs; ++i)
          SrcRegs[i] = SrcMerge->getSourceReg(i);

        Builder.buildMerge(DstReg, SrcRegs);
        UpdatedDefs.push_back(DstReg);
      } else {
        // Unable to combine
        return false;
      }

      markInstAndDefDead(MI, *SrcMerge, DeadInsts);
      return true;
    }

    // trunc(trunc) -> trunc
    Register TruncSrc;
    if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
      // Always combine trunc(trunc) since the eventual resulting trunc must be
      // legal anyway as it must be legal for all outputs of the consumer type
      // set.
      LLVM_DEBUG(dbgs() << ".. Combine G_TRUNC(G_TRUNC): " << MI);

      Builder.buildTrunc(DstReg, TruncSrc);
      UpdatedDefs.push_back(DstReg);
      markInstAndDefDead(MI, *MRI.getVRegDef(TruncSrc), DeadInsts);
      return true;
    }

    return false;
  }

  /// Try to fold G_[ASZ]EXT (G_IMPLICIT_DEF).
  bool tryFoldImplicitDef(MachineInstr &MI,
                          SmallVectorImpl<MachineInstr *> &DeadInsts,
                          SmallVectorImpl<Register> &UpdatedDefs) {
    unsigned Opcode = MI.getOpcode();
    assert(Opcode == TargetOpcode::G_ANYEXT || Opcode == TargetOpcode::G_ZEXT ||
           Opcode == TargetOpcode::G_SEXT);

    if (MachineInstr *DefMI = getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF,
                                           MI.getOperand(1).getReg(), MRI)) {
      Builder.setInstr(MI);
      Register DstReg = MI.getOperand(0).getReg();
      LLT DstTy = MRI.getType(DstReg);

      if (Opcode == TargetOpcode::G_ANYEXT) {
        // G_ANYEXT (G_IMPLICIT_DEF) -> G_IMPLICIT_DEF
        if (!isInstLegal({TargetOpcode::G_IMPLICIT_DEF, {DstTy}}))
          return false;
        LLVM_DEBUG(dbgs() << ".. Combine G_ANYEXT(G_IMPLICIT_DEF): " << MI;);
        Builder.buildInstr(TargetOpcode::G_IMPLICIT_DEF, {DstReg}, {});
        UpdatedDefs.push_back(DstReg);
      } else {
        // G_[SZ]EXT (G_IMPLICIT_DEF) -> G_CONSTANT 0 because the top
        // bits will be 0 for G_ZEXT and 0/1 for the G_SEXT.
        if (isConstantUnsupported(DstTy))
          return false;
        LLVM_DEBUG(dbgs() << ".. Combine G_[SZ]EXT(G_IMPLICIT_DEF): " << MI;);
        Builder.buildConstant(DstReg, 0);
        UpdatedDefs.push_back(DstReg);
      }

      markInstAndDefDead(MI, *DefMI, DeadInsts);
      return true;
    }
    return false;
  }

  bool tryFoldUnmergeCast(MachineInstr &MI, MachineInstr &CastMI,
                          SmallVectorImpl<MachineInstr *> &DeadInsts,
                          SmallVectorImpl<Register> &UpdatedDefs) {

    assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);

    const unsigned CastOpc = CastMI.getOpcode();

    if (!isArtifactCast(CastOpc))
      return false;

    const unsigned NumDefs = MI.getNumOperands() - 1;

    const Register CastSrcReg = CastMI.getOperand(1).getReg();
    const LLT CastSrcTy = MRI.getType(CastSrcReg);
    const LLT DestTy = MRI.getType(MI.getOperand(0).getReg());
    const LLT SrcTy = MRI.getType(MI.getOperand(NumDefs).getReg());

    const unsigned CastSrcSize = CastSrcTy.getSizeInBits();
    const unsigned DestSize = DestTy.getSizeInBits();

    if (CastOpc == TargetOpcode::G_TRUNC) {
      if (SrcTy.isVector() && SrcTy.getScalarType() == DestTy.getScalarType()) {
        //  %1:_(<4 x s8>) = G_TRUNC %0(<4 x s32>)
        //  %2:_(s8), %3:_(s8), %4:_(s8), %5:_(s8) = G_UNMERGE_VALUES %1
        // =>
        //  %6:_(s32), %7:_(s32), %8:_(s32), %9:_(s32) = G_UNMERGE_VALUES %0
        //  %2:_(s8) = G_TRUNC %6
        //  %3:_(s8) = G_TRUNC %7
        //  %4:_(s8) = G_TRUNC %8
        //  %5:_(s8) = G_TRUNC %9

        unsigned UnmergeNumElts =
            DestTy.isVector() ? CastSrcTy.getNumElements() / NumDefs : 1;
        LLT UnmergeTy = CastSrcTy.changeElementCount(
            ElementCount::getFixed(UnmergeNumElts));

        if (isInstUnsupported(
                {TargetOpcode::G_UNMERGE_VALUES, {UnmergeTy, CastSrcTy}}))
          return false;

        Builder.setInstr(MI);
        auto NewUnmerge = Builder.buildUnmerge(UnmergeTy, CastSrcReg);

        for (unsigned I = 0; I != NumDefs; ++I) {
          Register DefReg = MI.getOperand(I).getReg();
          UpdatedDefs.push_back(DefReg);
          Builder.buildTrunc(DefReg, NewUnmerge.getReg(I));
        }

        markInstAndDefDead(MI, CastMI, DeadInsts);
        return true;
      }

      if (CastSrcTy.isScalar() && SrcTy.isScalar() && !DestTy.isVector()) {
        //  %1:_(s16) = G_TRUNC %0(s32)
        //  %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %1
        // =>
        //  %2:_(s8), %3:_(s8), %4:_(s8), %5:_(s8) = G_UNMERGE_VALUES %0

        // Unmerge(trunc) can be combined if the trunc source size is a multiple
        // of the unmerge destination size
        if (CastSrcSize % DestSize != 0)
          return false;

        // Check if the new unmerge is supported
        if (isInstUnsupported(
                {TargetOpcode::G_UNMERGE_VALUES, {DestTy, CastSrcTy}}))
          return false;

        // Gather the original destination registers and create new ones for the
        // unused bits
        const unsigned NewNumDefs = CastSrcSize / DestSize;
        SmallVector<Register, 8> DstRegs(NewNumDefs);
        for (unsigned Idx = 0; Idx < NewNumDefs; ++Idx) {
          if (Idx < NumDefs)
            DstRegs[Idx] = MI.getOperand(Idx).getReg();
          else
            DstRegs[Idx] = MRI.createGenericVirtualRegister(DestTy);
        }

        // Build new unmerge
        Builder.setInstr(MI);
        Builder.buildUnmerge(DstRegs, CastSrcReg);
        UpdatedDefs.append(DstRegs.begin(), DstRegs.begin() + NewNumDefs);
        markInstAndDefDead(MI, CastMI, DeadInsts);
        return true;
      }
    }

    // TODO: support combines with other casts as well
    return false;
  }

  static bool canFoldMergeOpcode(unsigned MergeOp, unsigned ConvertOp,
                                 LLT OpTy, LLT DestTy) {
    // Check if we found a definition that is like G_MERGE_VALUES.
    switch (MergeOp) {
    default:
      return false;
    case TargetOpcode::G_BUILD_VECTOR:
    case TargetOpcode::G_MERGE_VALUES:
      // The convert operation that we will need to insert is
      // going to convert the input of that type of instruction (scalar)
      // to the destination type (DestTy).
      // The conversion needs to stay in the same domain (scalar to scalar
      // and vector to vector), so if we were to allow to fold the merge
      // we would need to insert some bitcasts.
      // E.g.,
      // <2 x s16> = build_vector s16, s16
      // <2 x s32> = zext <2 x s16>
      // <2 x s16>, <2 x s16> = unmerge <2 x s32>
      //
      // As is the folding would produce:
      // <2 x s16> = zext s16  <-- scalar to vector
      // <2 x s16> = zext s16  <-- scalar to vector
      // Which is invalid.
      // Instead we would want to generate:
      // s32 = zext s16
      // <2 x s16> = bitcast s32
      // s32 = zext s16
      // <2 x s16> = bitcast s32
      //
      // That is not done yet.
      if (ConvertOp == 0)
        return true;
      return !DestTy.isVector() && OpTy.isVector() &&
             DestTy == OpTy.getElementType();
    case TargetOpcode::G_CONCAT_VECTORS: {
      if (ConvertOp == 0)
        return true;
      if (!DestTy.isVector())
        return false;

      const unsigned OpEltSize = OpTy.getElementType().getSizeInBits();

      // Don't handle scalarization with a cast that isn't in the same
      // direction as the vector cast. This could be handled, but it would
      // require more intermediate unmerges.
      if (ConvertOp == TargetOpcode::G_TRUNC)
        return DestTy.getSizeInBits() <= OpEltSize;
      return DestTy.getSizeInBits() >= OpEltSize;
    }
    }
  }

  /// Try to replace DstReg with SrcReg or build a COPY instruction
  /// depending on the register constraints.
  static void replaceRegOrBuildCopy(Register DstReg, Register SrcReg,
                                    MachineRegisterInfo &MRI,
                                    MachineIRBuilder &Builder,
                                    SmallVectorImpl<Register> &UpdatedDefs,
                                    GISelChangeObserver &Observer) {
    if (!llvm::canReplaceReg(DstReg, SrcReg, MRI)) {
      Builder.buildCopy(DstReg, SrcReg);
      UpdatedDefs.push_back(DstReg);
      return;
    }
    SmallVector<MachineInstr *, 4> UseMIs;
    // Get the users and notify the observer before replacing.
    for (auto &UseMI : MRI.use_instructions(DstReg)) {
      UseMIs.push_back(&UseMI);
      Observer.changingInstr(UseMI);
    }
    // Replace the registers.
    MRI.replaceRegWith(DstReg, SrcReg);
    UpdatedDefs.push_back(SrcReg);
    // Notify the observer that we changed the instructions.
    for (auto *UseMI : UseMIs)
      Observer.changedInstr(*UseMI);
  }

  /// Return the operand index in \p MI that defines \p Def
  static unsigned getDefIndex(const MachineInstr &MI, Register SearchDef) {
    unsigned DefIdx = 0;
    for (const MachineOperand &Def : MI.defs()) {
      if (Def.getReg() == SearchDef)
        break;
      ++DefIdx;
    }

    return DefIdx;
  }

  /// This class provides utilities for finding source registers of specific
  /// bit ranges in an artifact. The routines can look through the source
  /// registers if they're other artifacts to try to find a non-artifact source
  /// of a value.
  class ArtifactValueFinder {
    MachineRegisterInfo &MRI;
    MachineIRBuilder &MIB;
    const LegalizerInfo &LI;

    // Stores the best register found in the current query so far.
    Register CurrentBest = Register();

    /// Given an concat_vector op \p Concat and a start bit and size, try to
    /// find the origin of the value defined by that start position and size.
    ///
    /// \returns a register with the requested size, or the current best
    /// register found during the current query.
    Register findValueFromConcat(GConcatVectors &Concat, unsigned StartBit,
                                 unsigned Size) {
      assert(Size > 0);

      // Find the source operand that provides the bits requested.
      Register Src1Reg = Concat.getSourceReg(0);
      unsigned SrcSize = MRI.getType(Src1Reg).getSizeInBits();

      // Operand index of the source that provides the start of the bit range.
      unsigned StartSrcIdx = (StartBit / SrcSize) + 1;
      // Offset into the source at which the bit range starts.
      unsigned InRegOffset = StartBit % SrcSize;
      // Check that the bits don't span multiple sources.
      // FIXME: we might be able return multiple sources? Or create an
      // appropriate concat to make it fit.
      if (InRegOffset + Size > SrcSize)
        return CurrentBest;

      Register SrcReg = Concat.getReg(StartSrcIdx);
      if (InRegOffset == 0 && Size == SrcSize) {
        CurrentBest = SrcReg;
        return findValueFromDefImpl(SrcReg, 0, Size);
      }

      return findValueFromDefImpl(SrcReg, InRegOffset, Size);
    }

    /// Given an build_vector op \p BV and a start bit and size, try to find
    /// the origin of the value defined by that start position and size.
    ///
    /// \returns a register with the requested size, or the current best
    /// register found during the current query.
    Register findValueFromBuildVector(GBuildVector &BV, unsigned StartBit,
                                      unsigned Size) {
      assert(Size > 0);

      // Find the source operand that provides the bits requested.
      Register Src1Reg = BV.getSourceReg(0);
      unsigned SrcSize = MRI.getType(Src1Reg).getSizeInBits();

      // Operand index of the source that provides the start of the bit range.
      unsigned StartSrcIdx = (StartBit / SrcSize) + 1;
      // Offset into the source at which the bit range starts.
      unsigned InRegOffset = StartBit % SrcSize;

      if (InRegOffset != 0)
        return CurrentBest; // Give up, bits don't start at a scalar source.
      if (Size < SrcSize)
        return CurrentBest; // Scalar source is too large for requested bits.

      // If the bits cover multiple sources evenly, then create a new
      // build_vector to synthesize the required size, if that's been requested.
      if (Size > SrcSize) {
        if (Size % SrcSize > 0)
          return CurrentBest; // Isn't covered exactly by sources.

        unsigned NumSrcsUsed = Size / SrcSize;
        // If we're requesting all of the sources, just return this def.
        if (NumSrcsUsed == BV.getNumSources())
          return BV.getReg(0);

        LLT SrcTy = MRI.getType(Src1Reg);
        LLT NewBVTy = LLT::fixed_vector(NumSrcsUsed, SrcTy);

        // Check if the resulting build vector would be legal.
        LegalizeActionStep ActionStep =
            LI.getAction({TargetOpcode::G_BUILD_VECTOR, {NewBVTy, SrcTy}});
        if (ActionStep.Action != LegalizeActions::Legal)
          return CurrentBest;

        SmallVector<Register> NewSrcs;
        for (unsigned SrcIdx = StartSrcIdx; SrcIdx < StartSrcIdx + NumSrcsUsed;
             ++SrcIdx)
          NewSrcs.push_back(BV.getReg(SrcIdx));
        MIB.setInstrAndDebugLoc(BV);
        return MIB.buildBuildVector(NewBVTy, NewSrcs).getReg(0);
      }
      // A single source is requested, just return it.
      return BV.getReg(StartSrcIdx);
    }

    /// Given an G_INSERT op \p MI and a start bit and size, try to find
    /// the origin of the value defined by that start position and size.
    ///
    /// \returns a register with the requested size, or the current best
    /// register found during the current query.
    Register findValueFromInsert(MachineInstr &MI, unsigned StartBit,
                                 unsigned Size) {
      assert(MI.getOpcode() == TargetOpcode::G_INSERT);
      assert(Size > 0);

      Register ContainerSrcReg = MI.getOperand(1).getReg();
      Register InsertedReg = MI.getOperand(2).getReg();
      LLT InsertedRegTy = MRI.getType(InsertedReg);
      unsigned InsertOffset = MI.getOperand(3).getImm();

      // There are 4 possible container/insertreg + requested bit-range layouts
      // that the instruction and query could be representing.
      // For: %_ = G_INSERT %CONTAINER, %INS, InsOff (abbrev. to 'IO')
      // and a start bit 'SB', with size S, giving an end bit 'EB', we could
      // have...
      // Scenario A:
      //   --------------------------
      //  |  INS    |  CONTAINER     |
      //   --------------------------
      //       |   |
      //       SB  EB
      //
      // Scenario B:
      //   --------------------------
      //  |  INS    |  CONTAINER     |
      //   --------------------------
      //                |    |
      //                SB   EB
      //
      // Scenario C:
      //   --------------------------
      //  |  CONTAINER    |  INS     |
      //   --------------------------
      //       |    |
      //       SB   EB
      //
      // Scenario D:
      //   --------------------------
      //  |  CONTAINER    |  INS     |
      //   --------------------------
      //                     |   |
      //                     SB  EB
      //
      // So therefore, A and D are requesting data from the INS operand, while
      // B and C are requesting from the container operand.

      unsigned InsertedEndBit = InsertOffset + InsertedRegTy.getSizeInBits();
      unsigned EndBit = StartBit + Size;
      unsigned NewStartBit;
      Register SrcRegToUse;
      if (EndBit <= InsertOffset || InsertedEndBit <= StartBit) {
        SrcRegToUse = ContainerSrcReg;
        NewStartBit = StartBit;
        return findValueFromDefImpl(SrcRegToUse, NewStartBit, Size);
      }
      if (InsertOffset <= StartBit && EndBit <= InsertedEndBit) {
        SrcRegToUse = InsertedReg;
        NewStartBit = StartBit - InsertOffset;
        if (NewStartBit == 0 &&
            Size == MRI.getType(SrcRegToUse).getSizeInBits())
          CurrentBest = SrcRegToUse;
        return findValueFromDefImpl(SrcRegToUse, NewStartBit, Size);
      }
      // The bit range spans both the inserted and container regions.
      return Register();
    }

    /// Internal implementation for findValueFromDef(). findValueFromDef()
    /// initializes some data like the CurrentBest register, which this method
    /// and its callees rely upon.
    Register findValueFromDefImpl(Register DefReg, unsigned StartBit,
                                  unsigned Size) {
      MachineInstr *Def = getDefIgnoringCopies(DefReg, MRI);
      // If the instruction has a single def, then simply delegate the search.
      // For unmerge however with multiple defs, we need to compute the offset
      // into the source of the unmerge.
      switch (Def->getOpcode()) {
      case TargetOpcode::G_CONCAT_VECTORS:
        return findValueFromConcat(cast<GConcatVectors>(*Def), StartBit, Size);
      case TargetOpcode::G_UNMERGE_VALUES: {
        unsigned DefStartBit = 0;
        unsigned DefSize = MRI.getType(DefReg).getSizeInBits();
        for (const auto &MO : Def->defs()) {
          if (MO.getReg() == DefReg)
            break;
          DefStartBit += DefSize;
        }
        Register SrcReg = Def->getOperand(Def->getNumOperands() - 1).getReg();
        Register SrcOriginReg =
            findValueFromDefImpl(SrcReg, StartBit + DefStartBit, Size);
        if (SrcOriginReg)
          return SrcOriginReg;
        // Failed to find a further value. If the StartBit and Size perfectly
        // covered the requested DefReg, return that since it's better than
        // nothing.
        if (StartBit == 0 && Size == DefSize)
          return DefReg;
        return CurrentBest;
      }
      case TargetOpcode::G_BUILD_VECTOR:
        return findValueFromBuildVector(cast<GBuildVector>(*Def), StartBit,
                                        Size);
      case TargetOpcode::G_INSERT:
        return findValueFromInsert(*Def, StartBit, Size);
      default:
        return CurrentBest;
      }
    }

  public:
    ArtifactValueFinder(MachineRegisterInfo &Mri, MachineIRBuilder &Builder,
                        const LegalizerInfo &Info)
        : MRI(Mri), MIB(Builder), LI(Info) {}

    /// Try to find a source of the value defined in the def \p DefReg, starting
    /// at position \p StartBit with size \p Size.
    /// \returns a register with the requested size, or an empty Register if no
    /// better value could be found.
    Register findValueFromDef(Register DefReg, unsigned StartBit,
                              unsigned Size) {
      CurrentBest = Register();
      Register FoundReg = findValueFromDefImpl(DefReg, StartBit, Size);
      return FoundReg != DefReg ? FoundReg : Register();
    }

    /// Try to combine the defs of an unmerge \p MI by attempting to find
    /// values that provides the bits for each def reg.
    /// \returns true if all the defs of the unmerge have been made dead.
    bool tryCombineUnmergeDefs(GUnmerge &MI, GISelChangeObserver &Observer,
                               SmallVectorImpl<Register> &UpdatedDefs) {
      unsigned NumDefs = MI.getNumDefs();
      LLT DestTy = MRI.getType(MI.getReg(0));

      SmallBitVector DeadDefs(NumDefs);
      for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) {
        Register DefReg = MI.getReg(DefIdx);
        if (MRI.use_nodbg_empty(DefReg)) {
          DeadDefs[DefIdx] = true;
          continue;
        }
        Register FoundVal = findValueFromDef(DefReg, 0, DestTy.getSizeInBits());
        if (!FoundVal)
          continue;
        if (MRI.getType(FoundVal) != DestTy)
          continue;

        replaceRegOrBuildCopy(DefReg, FoundVal, MRI, MIB, UpdatedDefs,
                              Observer);
        // We only want to replace the uses, not the def of the old reg.
        Observer.changingInstr(MI);
        MI.getOperand(DefIdx).setReg(DefReg);
        Observer.changedInstr(MI);
        DeadDefs[DefIdx] = true;
      }
      return DeadDefs.all();
    }
  };

  bool tryCombineUnmergeValues(GUnmerge &MI,
                               SmallVectorImpl<MachineInstr *> &DeadInsts,
                               SmallVectorImpl<Register> &UpdatedDefs,
                               GISelChangeObserver &Observer) {
    unsigned NumDefs = MI.getNumDefs();
    Register SrcReg = MI.getSourceReg();
    MachineInstr *SrcDef = getDefIgnoringCopies(SrcReg, MRI);
    if (!SrcDef)
      return false;

    LLT OpTy = MRI.getType(SrcReg);
    LLT DestTy = MRI.getType(MI.getReg(0));
    unsigned SrcDefIdx = getDefIndex(*SrcDef, SrcReg);

    Builder.setInstrAndDebugLoc(MI);

    ArtifactValueFinder Finder(MRI, Builder, LI);
    if (Finder.tryCombineUnmergeDefs(MI, Observer, UpdatedDefs)) {
      markInstAndDefDead(MI, *SrcDef, DeadInsts, SrcDefIdx);
      return true;
    }

    if (auto *SrcUnmerge = dyn_cast<GUnmerge>(SrcDef)) {
      // %0:_(<4 x s16>) = G_FOO
      // %1:_(<2 x s16>), %2:_(<2 x s16>) = G_UNMERGE_VALUES %0
      // %3:_(s16), %4:_(s16) = G_UNMERGE_VALUES %1
      //
      // %3:_(s16), %4:_(s16), %5:_(s16), %6:_(s16) = G_UNMERGE_VALUES %0
      Register SrcUnmergeSrc = SrcUnmerge->getSourceReg();
      LLT SrcUnmergeSrcTy = MRI.getType(SrcUnmergeSrc);

      // If we need to decrease the number of vector elements in the result type
      // of an unmerge, this would involve the creation of an equivalent unmerge
      // to copy back to the original result registers.
      LegalizeActionStep ActionStep = LI.getAction(
          {TargetOpcode::G_UNMERGE_VALUES, {OpTy, SrcUnmergeSrcTy}});
      switch (ActionStep.Action) {
      case LegalizeActions::Lower:
      case LegalizeActions::Unsupported:
        break;
      case LegalizeActions::FewerElements:
      case LegalizeActions::NarrowScalar:
        if (ActionStep.TypeIdx == 1)
          return false;
        break;
      default:
        return false;
      }

      auto NewUnmerge = Builder.buildUnmerge(DestTy, SrcUnmergeSrc);

      // TODO: Should we try to process out the other defs now? If the other
      // defs of the source unmerge are also unmerged, we end up with a separate
      // unmerge for each one.
      for (unsigned I = 0; I != NumDefs; ++I) {
        Register Def = MI.getReg(I);
        replaceRegOrBuildCopy(Def, NewUnmerge.getReg(SrcDefIdx * NumDefs + I),
                              MRI, Builder, UpdatedDefs, Observer);
      }

      markInstAndDefDead(MI, *SrcUnmerge, DeadInsts, SrcDefIdx);
      return true;
    }

    MachineInstr *MergeI = SrcDef;
    unsigned ConvertOp = 0;

    // Handle intermediate conversions
    unsigned SrcOp = SrcDef->getOpcode();
    if (isArtifactCast(SrcOp)) {
      ConvertOp = SrcOp;
      MergeI = getDefIgnoringCopies(SrcDef->getOperand(1).getReg(), MRI);
    }

    if (!MergeI || !canFoldMergeOpcode(MergeI->getOpcode(),
                                       ConvertOp, OpTy, DestTy)) {
      // We might have a chance to combine later by trying to combine
      // unmerge(cast) first
      return tryFoldUnmergeCast(MI, *SrcDef, DeadInsts, UpdatedDefs);
    }

    const unsigned NumMergeRegs = MergeI->getNumOperands() - 1;

    if (NumMergeRegs < NumDefs) {
      if (NumDefs % NumMergeRegs != 0)
        return false;

      Builder.setInstr(MI);
      // Transform to UNMERGEs, for example
      //   %1 = G_MERGE_VALUES %4, %5
      //   %9, %10, %11, %12 = G_UNMERGE_VALUES %1
      // to
      //   %9, %10 = G_UNMERGE_VALUES %4
      //   %11, %12 = G_UNMERGE_VALUES %5

      const unsigned NewNumDefs = NumDefs / NumMergeRegs;
      for (unsigned Idx = 0; Idx < NumMergeRegs; ++Idx) {
        SmallVector<Register, 8> DstRegs;
        for (unsigned j = 0, DefIdx = Idx * NewNumDefs; j < NewNumDefs;
             ++j, ++DefIdx)
          DstRegs.push_back(MI.getReg(DefIdx));

        if (ConvertOp) {
          LLT MergeSrcTy = MRI.getType(MergeI->getOperand(1).getReg());

          // This is a vector that is being split and casted. Extract to the
          // element type, and do the conversion on the scalars (or smaller
          // vectors).
          LLT MergeEltTy = MergeSrcTy.divide(NewNumDefs);

          // Handle split to smaller vectors, with conversions.
          // %2(<8 x s8>) = G_CONCAT_VECTORS %0(<4 x s8>), %1(<4 x s8>)
          // %3(<8 x s16>) = G_SEXT %2
          // %4(<2 x s16>), %5(<2 x s16>), %6(<2 x s16>), %7(<2 x s16>) = G_UNMERGE_VALUES %3
          //
          // =>
          //
          // %8(<2 x s8>), %9(<2 x s8>) = G_UNMERGE_VALUES %0
          // %10(<2 x s8>), %11(<2 x s8>) = G_UNMERGE_VALUES %1
          // %4(<2 x s16>) = G_SEXT %8
          // %5(<2 x s16>) = G_SEXT %9
          // %6(<2 x s16>) = G_SEXT %10
          // %7(<2 x s16>)= G_SEXT %11

          SmallVector<Register, 4> TmpRegs(NewNumDefs);
          for (unsigned k = 0; k < NewNumDefs; ++k)
            TmpRegs[k] = MRI.createGenericVirtualRegister(MergeEltTy);

          Builder.buildUnmerge(TmpRegs, MergeI->getOperand(Idx + 1).getReg());

          for (unsigned k = 0; k < NewNumDefs; ++k)
            Builder.buildInstr(ConvertOp, {DstRegs[k]}, {TmpRegs[k]});
        } else {
          Builder.buildUnmerge(DstRegs, MergeI->getOperand(Idx + 1).getReg());
        }
        UpdatedDefs.append(DstRegs.begin(), DstRegs.end());
      }

    } else if (NumMergeRegs > NumDefs) {
      if (ConvertOp != 0 || NumMergeRegs % NumDefs != 0)
        return false;

      Builder.setInstr(MI);
      // Transform to MERGEs
      //   %6 = G_MERGE_VALUES %17, %18, %19, %20
      //   %7, %8 = G_UNMERGE_VALUES %6
      // to
      //   %7 = G_MERGE_VALUES %17, %18
      //   %8 = G_MERGE_VALUES %19, %20

      const unsigned NumRegs = NumMergeRegs / NumDefs;
      for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) {
        SmallVector<Register, 8> Regs;
        for (unsigned j = 0, Idx = NumRegs * DefIdx + 1; j < NumRegs;
             ++j, ++Idx)
          Regs.push_back(MergeI->getOperand(Idx).getReg());

        Register DefReg = MI.getReg(DefIdx);
        Builder.buildMerge(DefReg, Regs);
        UpdatedDefs.push_back(DefReg);
      }

    } else {
      LLT MergeSrcTy = MRI.getType(MergeI->getOperand(1).getReg());

      if (!ConvertOp && DestTy != MergeSrcTy)
        ConvertOp = TargetOpcode::G_BITCAST;

      if (ConvertOp) {
        Builder.setInstr(MI);

        for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
          Register DefReg = MI.getOperand(Idx).getReg();
          Register MergeSrc = MergeI->getOperand(Idx + 1).getReg();

          if (!MRI.use_empty(DefReg)) {
            Builder.buildInstr(ConvertOp, {DefReg}, {MergeSrc});
            UpdatedDefs.push_back(DefReg);
          }
        }

        markInstAndDefDead(MI, *MergeI, DeadInsts);
        return true;
      }

      assert(DestTy == MergeSrcTy &&
             "Bitcast and the other kinds of conversions should "
             "have happened earlier");

      Builder.setInstr(MI);
      for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
        Register DstReg = MI.getOperand(Idx).getReg();
        Register SrcReg = MergeI->getOperand(Idx + 1).getReg();
        replaceRegOrBuildCopy(DstReg, SrcReg, MRI, Builder, UpdatedDefs,
                              Observer);
      }
    }

    markInstAndDefDead(MI, *MergeI, DeadInsts);
    return true;
  }

  bool tryCombineExtract(MachineInstr &MI,
                         SmallVectorImpl<MachineInstr *> &DeadInsts,
                         SmallVectorImpl<Register> &UpdatedDefs) {
    assert(MI.getOpcode() == TargetOpcode::G_EXTRACT);

    // Try to use the source registers from a G_MERGE_VALUES
    //
    // %2 = G_MERGE_VALUES %0, %1
    // %3 = G_EXTRACT %2, N
    // =>
    //
    // for N < %2.getSizeInBits() / 2
    //     %3 = G_EXTRACT %0, N
    //
    // for N >= %2.getSizeInBits() / 2
    //    %3 = G_EXTRACT %1, (N - %0.getSizeInBits()

    Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
    MachineInstr *MergeI = MRI.getVRegDef(SrcReg);
    if (!MergeI || !isa<GMergeLikeOp>(MergeI))
      return false;

    Register DstReg = MI.getOperand(0).getReg();
    LLT DstTy = MRI.getType(DstReg);
    LLT SrcTy = MRI.getType(SrcReg);

    // TODO: Do we need to check if the resulting extract is supported?
    unsigned ExtractDstSize = DstTy.getSizeInBits();
    unsigned Offset = MI.getOperand(2).getImm();
    unsigned NumMergeSrcs = MergeI->getNumOperands() - 1;
    unsigned MergeSrcSize = SrcTy.getSizeInBits() / NumMergeSrcs;
    unsigned MergeSrcIdx = Offset / MergeSrcSize;

    // Compute the offset of the last bit the extract needs.
    unsigned EndMergeSrcIdx = (Offset + ExtractDstSize - 1) / MergeSrcSize;

    // Can't handle the case where the extract spans multiple inputs.
    if (MergeSrcIdx != EndMergeSrcIdx)
      return false;

    // TODO: We could modify MI in place in most cases.
    Builder.setInstr(MI);
    Builder.buildExtract(DstReg, MergeI->getOperand(MergeSrcIdx + 1).getReg(),
                         Offset - MergeSrcIdx * MergeSrcSize);
    UpdatedDefs.push_back(DstReg);
    markInstAndDefDead(MI, *MergeI, DeadInsts);
    return true;
  }

  /// Try to combine away MI.
  /// Returns true if it combined away the MI.
  /// Adds instructions that are dead as a result of the combine
  /// into DeadInsts, which can include MI.
  bool tryCombineInstruction(MachineInstr &MI,
                             SmallVectorImpl<MachineInstr *> &DeadInsts,
                             GISelObserverWrapper &WrapperObserver) {
    // This might be a recursive call, and we might have DeadInsts already
    // populated. To avoid bad things happening later with multiple vreg defs
    // etc, process the dead instructions now if any.
    if (!DeadInsts.empty())
      deleteMarkedDeadInsts(DeadInsts, WrapperObserver);

    // Put here every vreg that was redefined in such a way that it's at least
    // possible that one (or more) of its users (immediate or COPY-separated)
    // could become artifact combinable with the new definition (or the
    // instruction reachable from it through a chain of copies if any).
    SmallVector<Register, 4> UpdatedDefs;
    bool Changed = false;
    switch (MI.getOpcode()) {
    default:
      return false;
    case TargetOpcode::G_ANYEXT:
      Changed = tryCombineAnyExt(MI, DeadInsts, UpdatedDefs, WrapperObserver);
      break;
    case TargetOpcode::G_ZEXT:
      Changed = tryCombineZExt(MI, DeadInsts, UpdatedDefs, WrapperObserver);
      break;
    case TargetOpcode::G_SEXT:
      Changed = tryCombineSExt(MI, DeadInsts, UpdatedDefs);
      break;
    case TargetOpcode::G_UNMERGE_VALUES:
      Changed = tryCombineUnmergeValues(cast<GUnmerge>(MI), DeadInsts,
                                        UpdatedDefs, WrapperObserver);
      break;
    case TargetOpcode::G_MERGE_VALUES:
    case TargetOpcode::G_BUILD_VECTOR:
    case TargetOpcode::G_CONCAT_VECTORS:
      // If any of the users of this merge are an unmerge, then add them to the
      // artifact worklist in case there's folding that can be done looking up.
      for (MachineInstr &U : MRI.use_instructions(MI.getOperand(0).getReg())) {
        if (U.getOpcode() == TargetOpcode::G_UNMERGE_VALUES ||
            U.getOpcode() == TargetOpcode::G_TRUNC) {
          UpdatedDefs.push_back(MI.getOperand(0).getReg());
          break;
        }
      }
      break;
    case TargetOpcode::G_EXTRACT:
      Changed = tryCombineExtract(MI, DeadInsts, UpdatedDefs);
      break;
    case TargetOpcode::G_TRUNC:
      Changed = tryCombineTrunc(MI, DeadInsts, UpdatedDefs, WrapperObserver);
      if (!Changed) {
        // Try to combine truncates away even if they are legal. As all artifact
        // combines at the moment look only "up" the def-use chains, we achieve
        // that by throwing truncates' users (with look through copies) into the
        // ArtifactList again.
        UpdatedDefs.push_back(MI.getOperand(0).getReg());
      }
      break;
    }
    // If the main loop through the ArtifactList found at least one combinable
    // pair of artifacts, not only combine it away (as done above), but also
    // follow the def-use chain from there to combine everything that can be
    // combined within this def-use chain of artifacts.
    while (!UpdatedDefs.empty()) {
      Register NewDef = UpdatedDefs.pop_back_val();
      assert(NewDef.isVirtual() && "Unexpected redefinition of a physreg");
      for (MachineInstr &Use : MRI.use_instructions(NewDef)) {
        switch (Use.getOpcode()) {
        // Keep this list in sync with the list of all artifact combines.
        case TargetOpcode::G_ANYEXT:
        case TargetOpcode::G_ZEXT:
        case TargetOpcode::G_SEXT:
        case TargetOpcode::G_UNMERGE_VALUES:
        case TargetOpcode::G_EXTRACT:
        case TargetOpcode::G_TRUNC:
          // Adding Use to ArtifactList.
          WrapperObserver.changedInstr(Use);
          break;
        case TargetOpcode::COPY: {
          Register Copy = Use.getOperand(0).getReg();
          if (Copy.isVirtual())
            UpdatedDefs.push_back(Copy);
          break;
        }
        default:
          // If we do not have an artifact combine for the opcode, there is no
          // point in adding it to the ArtifactList as nothing interesting will
          // be done to it anyway.
          break;
        }
      }
    }
    return Changed;
  }

private:
  static Register getArtifactSrcReg(const MachineInstr &MI) {
    switch (MI.getOpcode()) {
    case TargetOpcode::COPY:
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_ZEXT:
    case TargetOpcode::G_ANYEXT:
    case TargetOpcode::G_SEXT:
    case TargetOpcode::G_EXTRACT:
      return MI.getOperand(1).getReg();
    case TargetOpcode::G_UNMERGE_VALUES:
      return MI.getOperand(MI.getNumOperands() - 1).getReg();
    default:
      llvm_unreachable("Not a legalization artifact happen");
    }
  }

  /// Mark a def of one of MI's original operands, DefMI, as dead if changing MI
  /// (either by killing it or changing operands) results in DefMI being dead
  /// too. In-between COPYs or artifact-casts are also collected if they are
  /// dead.
  /// MI is not marked dead.
  void markDefDead(MachineInstr &MI, MachineInstr &DefMI,
                   SmallVectorImpl<MachineInstr *> &DeadInsts,
                   unsigned DefIdx = 0) {
    // Collect all the copy instructions that are made dead, due to deleting
    // this instruction. Collect all of them until the Trunc(DefMI).
    // Eg,
    // %1(s1) = G_TRUNC %0(s32)
    // %2(s1) = COPY %1(s1)
    // %3(s1) = COPY %2(s1)
    // %4(s32) = G_ANYEXT %3(s1)
    // In this case, we would have replaced %4 with a copy of %0,
    // and as a result, %3, %2, %1 are dead.
    MachineInstr *PrevMI = &MI;
    while (PrevMI != &DefMI) {
      Register PrevRegSrc = getArtifactSrcReg(*PrevMI);

      MachineInstr *TmpDef = MRI.getVRegDef(PrevRegSrc);
      if (MRI.hasOneUse(PrevRegSrc)) {
        if (TmpDef != &DefMI) {
          assert((TmpDef->getOpcode() == TargetOpcode::COPY ||
                  isArtifactCast(TmpDef->getOpcode())) &&
                 "Expecting copy or artifact cast here");

          DeadInsts.push_back(TmpDef);
        }
      } else
        break;
      PrevMI = TmpDef;
    }

    if (PrevMI == &DefMI) {
      unsigned I = 0;
      bool IsDead = true;
      for (MachineOperand &Def : DefMI.defs()) {
        if (I != DefIdx) {
          if (!MRI.use_empty(Def.getReg())) {
            IsDead = false;
            break;
          }
        } else {
          if (!MRI.hasOneUse(DefMI.getOperand(DefIdx).getReg()))
            break;
        }

        ++I;
      }

      if (IsDead)
        DeadInsts.push_back(&DefMI);
    }
  }

  /// Mark MI as dead. If a def of one of MI's operands, DefMI, would also be
  /// dead due to MI being killed, then mark DefMI as dead too.
  /// Some of the combines (extends(trunc)), try to walk through redundant
  /// copies in between the extends and the truncs, and this attempts to collect
  /// the in between copies if they're dead.
  void markInstAndDefDead(MachineInstr &MI, MachineInstr &DefMI,
                          SmallVectorImpl<MachineInstr *> &DeadInsts,
                          unsigned DefIdx = 0) {
    DeadInsts.push_back(&MI);
    markDefDead(MI, DefMI, DeadInsts, DefIdx);
  }

  /// Erase the dead instructions in the list and call the observer hooks.
  /// Normally the Legalizer will deal with erasing instructions that have been
  /// marked dead. However, for the trunc(ext(x)) cases we can end up trying to
  /// process instructions which have been marked dead, but otherwise break the
  /// MIR by introducing multiple vreg defs. For those cases, allow the combines
  /// to explicitly delete the instructions before we run into trouble.
  void deleteMarkedDeadInsts(SmallVectorImpl<MachineInstr *> &DeadInsts,
                             GISelObserverWrapper &WrapperObserver) {
    for (auto *DeadMI : DeadInsts) {
      LLVM_DEBUG(dbgs() << *DeadMI << "Is dead, eagerly deleting\n");
      WrapperObserver.erasingInstr(*DeadMI);
      DeadMI->eraseFromParent();
    }
    DeadInsts.clear();
  }

  /// Checks if the target legalizer info has specified anything about the
  /// instruction, or if unsupported.
  bool isInstUnsupported(const LegalityQuery &Query) const {
    using namespace LegalizeActions;
    auto Step = LI.getAction(Query);
    return Step.Action == Unsupported || Step.Action == NotFound;
  }

  bool isInstLegal(const LegalityQuery &Query) const {
    return LI.getAction(Query).Action == LegalizeActions::Legal;
  }

  bool isConstantUnsupported(LLT Ty) const {
    if (!Ty.isVector())
      return isInstUnsupported({TargetOpcode::G_CONSTANT, {Ty}});

    LLT EltTy = Ty.getElementType();
    return isInstUnsupported({TargetOpcode::G_CONSTANT, {EltTy}}) ||
           isInstUnsupported({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}});
  }

  /// Looks through copy instructions and returns the actual
  /// source register.
  Register lookThroughCopyInstrs(Register Reg) {
    Register TmpReg;
    while (mi_match(Reg, MRI, m_Copy(m_Reg(TmpReg)))) {
      if (MRI.getType(TmpReg).isValid())
        Reg = TmpReg;
      else
        break;
    }
    return Reg;
  }
};

} // namespace llvm

#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif